Transformation and plant availability of copper in pasture soils

A Thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Soil Science at Massey University, Palmerston North, New Zealand.

Md. Afiqur Rahman Khan
2001
ABSTRACT

The response of pasture to copper (Cu) fertilisers in most soils is very short-lived necessitating frequent applications of Cu fertilisers. The short-term response to Cu by plants is attributed to the ready adsorption of Cu by organic matter and other soil components. Cu distribution among these different fractions and the relative availability of these fractions for plant uptake, are fundamental to an understanding of the transformation of Cu in soil. As Cu has not been routinely analysed in the past, there is no standard soil test extractant in New Zealand. The use of single chemical extractions in routine soil analysis is a fast and simple way to evaluate the availability of soil nutrients to plants. Farmers require accurate information on the length of time that Cu applications remain fully effective in order to supply the Cu required for the grazing animal. Pasture provides the main source of Cu for grazing animals. There is a need to define the rates of change in the effectiveness of Cu fertiliser over the range of soil and climatic conditions encountered in New Zealand.

The specific objectives of the study were: (i) to investigate the effect of soil components on the sorption and desorption of added and native Cu in soils; (ii) to examine the soil and fertiliser properties that influence the effectiveness of Cu topdressing in terms of increasing Cu uptake by pastures; (iii) to determine the transformation of Cu added through fertiliser applied to soils; (iv) to quantify the forms of Cu in soils using a sequential fractionation procedure; (v) to identify the forms of Cu in various soil test extractants and to assess the efficiency of these soil test extractants in predicting Cu uptake; (vi) to estimate the effects of N and P fertilisers on the uptake of native Cu by ryegrass; (vii) to examine at the residual effectiveness of two Cu source fertilisers as influenced by N fertiliser, lime and EDTA additions; and (viii) to evaluate the seasonal influence on the availability of native and added Cu to pasture.

Copper sorption and desorption isotherms were determined for a number of soils (Manawatu, Tokomaru, Ramiha, Ngamoka and Mangamahu) before and after the removal of various soil components. A series of glasshouse and field trials were carried out using three Cu sources, five soils and four Cu levels. The dry matter yields of ryegrass and Cu concentration in the herbage were monitored over a number of harvests. The soil was collected from the glasshouse trial at various intervals and analysed for different fractions (exchangeable, organic, oxide and residual) and were
extracted with various soil test extractants. Copper extracted from the soils was correlated with the Cu concentration in the herbage.

A second glasshouse trial with two soils, four levels of nitrogen (N) and five levels of phosphate fertiliser was conducted. The dry matter (DM) yield and the Cu concentration in the ryegrass were measured. The effects of N fertiliser, lime and EDTA addition on the availability of residual Cu was investigated in a separate glasshouse trial. A series of field trials were conducted, in the same paddocks, to examine the effect of season on the uptake of Cu from two Cu sources.

The differences in the chemical characteristics of the soils resulted in some variation in the sorption and desorption of Cu between the soils. Soil pH, organic carbon, iron and aluminium oxides play a major role in the sorption and desorption of Cu in soils. Organic matter and oxides are important in adsorption reactions, but differences exist in their relative importance. Increasing levels of Cu increased the Cu concentration in plants. Sources of Cu fertiliser have a significant effect on DM yield, and Cu concentration at all harvests. Soil pH, organic matter, CEC and clay content correlated with Cu concentration in plants. Cu uptake in grasses decreased with time after fertiliser application. Organic and oxide bound Cu contributed >80% of total Cu in all the soils. The organically bound Cu fraction was highest in soils with high levels of organic matter. Both the organically bound and the oxide bound fractions of Cu decreased with time after fertiliser application, indicating a possible decrease in the availability of Cu. Soil exchangeable, organic and oxide bound fractions of Cu were correlated with soil organic matter, CEC and clay content. Both the organic and oxide bound Cu were correlated with plant Cu uptake. The major forms of Cu extracted by the soil test reagents include organically bound, followed by oxide bound, residual and exchangeable forms. The ratios of different forms of Cu strongly suggest that Cu is residing mainly in the organic form and increases in this order: exchangeable < residual < oxide < organic. The efficiency of chemical extractants in extracting the Cu from the soil followed: TEA-DTPA > Mehlich-3 > Mehlich-1 > 0.02M SrCl₂ > 0.1M HCl > 1.0M NH₄NO₃ > 0.01M CaCl₂ > 0.1M NaNO₃ > 0.01M Ca(NO₃)₂.

Increasing levels of both N and P fertilisers increased both the DM yield and the uptake of native Cu. Increasing levels of N increased both the DM yields and the Cu
concentration in soils with residual Cu. The effect on Cu concentration persisted beyond the first cut only at the highest N addition. Increasing levels of lime increased the DM yield of pasture, but decreased the Cu concentration in pasture at the highest level of lime addition. Increasing levels of EDTA increased the Cu concentration in soils and thereby increased the Cu concentration in the pasture. The application of 1000 kg lime ha\(^{-1}\) and 50 kg N ha\(^{-1}\) was very effective in enhancing plant availability of residual Cu in soils, but EDTA increased the plant available Cu to toxic levels. The highest application rate of lime and N fertiliser decreased the exchangeable and free Cu in the Ngamoka soil, but EDTA showed the opposite effect.

In the field experiment Cu levels have no significant effect on DM yield during all seasons. The field study shows differences in seasonal response to added Cu. Increasing levels of Cu increased the Cu concentration in pasture. Types of Cu fertiliser have a significant effect on Cu concentration. The differences in pasture growth and Cu concentrations in plants seasonally could be attributed to the differences in air and soil temperature, soil moisture content and solar radiation patterns within the trial period.

Adsorption and desorption reactions are likely to be the major factors controlling the availability of Cu to plants. The major forms of Cu that can be extracted by soil test extractants are the organically bound, followed by oxide bound, residual and exchangeable forms. Organic and oxide bound Cu were the main sources of plant available Cu. The uptake of native Cu and residual Cu from soils showed that N and lime at 50 kg N ha\(^{-1}\) and 1000 kg lime ha\(^{-1}\) levels increased the Cu concentration, and EDTA also increased the plant available Cu to toxic levels. The effect of N, lime, and EDTA on the availability of residual Cu in ryegrass needs further investigation. Both the glasshouse and field trials indicate that Cu uptake is internally regulated by the growth of pasture and externally affected by the transformation of Cu in soils.
DEDICATED

to my

BELOVED PARENTS
ACKNOWLEDGMENTS

It is the heartfelt gratitude that I acknowledged the many people who have made the completion of this study possible.

Firstly and most importantly to Associate Professor Nanthi S. Bolan for his unfailing help and advice, wholehearted guidance, patience and friendship during my study period.

To Dr. Alec D. Mackay for his very helpful guidance and encouragement. His advice was often keenly sought throughout the study.

To Associate Professor M. J. Hedley, Dr. A. Palmer and Dr. P. Loganathan for their valuable guidance and suggestions.

To AgResearch for allowing the collection of soil samples and Massey University Pasture Growth Research Unit for providing the facility for the field trial.

Members of the Soil and Earth Science Group, particularly to Messrs L. D. Currie, James A. Hanly, B. Toes, I. Furfert, Ross J. Wallace and Mrs. Anne West and Mrs. Glenys C. Wallace for their help with field and laboratory works. To Mr. Mike Bretherton for his willing assistance in solving computer related problems.

To Mr. Malcolm Boag for his comprehensive proof reading of the thesis.

The staff and postgraduate students, past and present, of the Soil and Earth Science Group, all of whom contributed in a variety ways.

To my wife, Salma and son, Sami and daughter, Anisa for their patience and encouragement throughout the study.

To the Academic Board and University Council for awarding the Helen E Akers and Johannes August Anderson Ph D Scholarships.

To New Zealand Society of Soil Science for awarding the Summit Quinphos Bursary “1999”.

And to Mankind Trading Company and Massey University Research Fund (MURF) for providing the financial support for the analytical costs of my research.
TABLE OF CONTENTS

ABSTRACT .. II
ACKNOWLEDGMENTS ... VI
TABLE OF CONTENTS .. VII
LIST OF FIGURES ... XVI
LIST OF TABLES ... XXI
LIST OF PLATES ... XXIV

CHAPTER 1 GENERAL INTRODUCTION ... 1

1.1 INTRODUCTION ... 1
1.2 OBJECTIVES OF VARIOUS EXPERIMENTS .. 3
1.2.1 Adsorption and desorption of Cu in pasture soils .. 3
1.2.2 Plant availability of Cu from different Cu fertilisers in pasture soils 3
1.2.3 Transformation and plant uptake of Cu in different soils 3
1.2.4 Effect of nitrogen, phosphorus fertilisers, lime, and EDTA on the availability of native Cu and residual Cu .. 4
1.2.5 Seasonal response of copper availability in pasture 4

CHAPTER 2 LITERATURE REVIEW ... 6

2.1 INTRODUCTION ... 6
2.2 SOURCES OF COPPER IN SOILS ... 6
2.2.1 Soil parent materials .. 6
2.2.2 Ore minerals .. 7
2.2.3 Fertilisers ... 8
2.2.4 Pesticides ... 9
2.2.5 Sewage sludge ...10
2.2.6 Composts and agricultural wastes ...11
2.2.7 Wood preservatives ...11
2.2.8 Atmospheric deposition ..12
2.3 COPPER IN SOILS .. 12
2.3.1 Total Cu in soils ..12
2.3.2 Forms of soil Cu ..13
2.4.1 Soil solution Cu

2.4.2 Exchangeable Cu

2.4.3 Specifcally adsorbed Cu

2.4.4 Occluded Cu

2.4.5 Cu in the structure of silicate clay and primary minerals

2.4.6 Cu associated with biomass

2.3.3 Determination of soil Cu by a sequential fractionation scheme

2.3.3.1 Exchangeable fraction

2.3.3.2 Organic fractions

2.3.3.3 Oxide fractions

2.3.3.4 Residual fractions

2.3.4 Determination of total Cu

2.3.5 Factors affecting forms of Cu in soils

2.3.5.1 Cu addition to soils

2.3.5.2 Soil pH

2.3.5.3 Organic matter amendments

2.3.5.4 Effect of contact time

2.4 REACTIONS OF COPPER IN SOILS

2.4.1 Cu adsorption and fixation by soils

2.4.1.1 Formation of Cu complexes in soils

2.4.1.2 Adsorption of Cu by soil components

2.4.1.2.1 Sorption by organic matter

2.4.1.2.2 Sorption by hydrous oxides

2.4.1.2.3 Sorption by silicate clay minerals

2.4.2 Desorption of Cu

2.4.3 Cu chelate equilibria in aerobic and anaerobic soils

2.5 PLANT AVAILABILITY OF COPPER IN SOILS

2.5.1 Availability of native Cu

2.5.2 Availability of fertiliser Cu

2.5.3 Cu uptake and translocation

2.5.3.1 Cu absorption by plant roots

2.5.3.2 Translocation of Cu in plants

2.5.3.3 Interaction with other ions and nutrients

2.5.4 Effect of Cu fertiliser on DM yield and Cu concentration

2.5.5 Residual effectiveness of applied Cu
CHAPTER 3 ADSORPTION AND DESORPTION OF COPPER IN PASTURE SOILS

3.1 INTRODUCTION

3.1.1 Cu adsorption

3.1.2 Cu desorption

3.2 MATERIALS AND METHODS

3.2.1 Soils used

3.2.2 Soil physical and chemical analysis

3.2.3 Time-dependent experiment on Cu sorption

3.2.4 pH dependent copper sorption isotherm for soils

3.2.5 Copper sorption isotherm for soil components

3.2.6 Fractionation of soil Cu

3.2.7 Desorption of native and added Cu

3.2.8 Desorption study for incubated soil

3.2.9 Desorption study at different pH levels

3.2.10 Extractable soil Cu

3.2.10.1 0.04M EDTA extracting solution

3.2.10.2 Mehlich-1 extracting solution

3.2.10.3 Mehlich-3 extracting solution

CHAPTER 2.5 ENVIRONMENTAL FACTORS AFFECTING REACTIONS AND THE AVAILABILITY OF COPPER IN SOILS

2.5.6 Biochemical functions of Cu

2.5.7 Deficiency and toxicity of Cu in plants

2.5.8 Copper and animal health

2.5.9 Soil and plant tests for Cu

2.5.9.1 Water soluble Cu

2.5.9.2 Exchangeable Cu

2.5.9.3 Complexed, chelated and adsorbed Cu

2.6 ENVIRONMENTAL FACTORS AFFECTING REACTIONS AND THE AVAILABILITY OF COPPER IN SOILS

2.6.1 Soil moisture content and redox reaction

2.6.2 Seasonal variation and soil temperature

2.6.3 Radiation

2.6.4 Plant and other organisms

2.6.4.1 Mycorrhizae

CHAPTER 3.2 ADSORPTION AND DESORPTION OF COPPER IN PASTURE SOILS

3.2.10 Biochemical functions of Cu

3.2.11 Deficiency and toxicity of Cu in plants

3.2.12 Copper and animal health

3.2.13 Soil and plant tests for Cu

3.2.14 Water soluble Cu

3.2.15 Exchangeable Cu

3.2.16 Complexed, chelated and adsorbed Cu

3.2.17 ENVIRONMENTAL FACTORS AFFECTING REACTIONS AND THE AVAILABILITY OF COPPER IN SOILS

3.2.18 Soil moisture content and redox reaction

3.2.19 Seasonal variation and soil temperature

3.2.20 Radiation

3.2.21 Plant and other organisms

3.2.22 Mycorrhizae

CHAPTER 3.3 ADSORPTION AND DESORPTION OF COPPER IN PASTURE SOILS

3.3.1 INTRODUCTION

3.3.1.1 Cu adsorption

3.3.1.2 Cu desorption

3.3.2 MATERIALS AND METHODS

3.3.2.1 Soils used

3.3.2.2 Soil physical and chemical analysis

3.3.2.3 Time-dependent experiment on Cu sorption

3.3.2.4 pH dependent copper sorption isotherm for soils

3.3.2.5 Copper sorption isotherm for soil components

3.3.2.6 Fractionation of soil Cu

3.3.2.7 Desorption of native and added Cu

3.3.2.8 Desorption study for incubated soil

3.3.2.9 Desorption study at different pH levels

3.3.2.10 Extractable soil Cu

3.3.2.10.1 0.04M EDTA extracting solution

3.3.2.10.2 Mehlich-1 extracting solution

3.3.2.10.3 Mehlich-3 extracting solution

CHAPTER 3.4 ADSORPTION AND DESORPTION OF COPPER IN PASTURE SOILS

3.4.1 INTRODUCTION

3.4.1.1 Cu adsorption

3.4.1.2 Cu desorption

3.4.2 MATERIALS AND METHODS

3.4.2.1 Soils used

3.4.2.2 Soil physical and chemical analysis

3.4.2.3 Time-dependent experiment on Cu sorption

3.4.2.4 pH dependent copper sorption isotherm for soils

3.4.2.5 Copper sorption isotherm for soil components

3.4.2.6 Fractionation of soil Cu

3.4.2.7 Desorption of native and added Cu

3.4.2.8 Desorption study for incubated soil

3.4.2.9 Desorption study at different pH levels

3.4.2.10 Extractable soil Cu

3.4.2.10.1 0.04M EDTA extracting solution

3.4.2.10.2 Mehlich-1 extracting solution

3.4.2.10.3 Mehlich-3 extracting solution
CHAPTER 4 PLANT AVAILABILITY OF COPPER FROM DIFFERENT COPPER FERTILISERS IN PASTURE SOILS. ... 98

4.1 INTRODUCTION... 98
4.2 MATERIALS AND METHODS.. 99
 4.2.1 Soil collection and preparation... 99
 4.2.2 Copper fertilisers used... 99
 4.2.3 Plant growth experiment.. 100
 4.2.4 Grass and soil sample preparation... 102
 4.2.5 Ryegrass samples for Cu analysis... 102
 4.2.6 Chemical Analysis... 102
 4.2.7 Statistical analysis.. 103
4.3 RESULTS AND DISCUSSION... 103
CHAPTER 5 TRANSFORMATION AND PLANT UPTAKE OF COPPER IN SOILS119

5.1 INTRODUCTION ...119
5.2 MATERIALS AND METHODS120
 5.2.1 Soil sampling from pots ..120
 5.2.2 0.005 M EDTA-extractable Cu120
 5.2.3 Total soil Cu ..120
 5.2.4 Fractionation of soil Cu120
 5.2.5 Total Cu of particle size fractions121
 5.2.6 Chemical analysis ..121
 5.2.7 Statistical analysis ...121
5.3 RESULTS AND DISCUSSION ...121
 5.3.1 Recovery of Cu by fractionation121
 5.3.1.1 Recovery of native Cu121
 5.3.1.2 Recovery of applied Cu during fractionation122
 5.3.2 Distribution of native Cu123
 5.3.2.1 Fractionation of control soil123
 5.3.2.2 Total Cu in particle size fractions124
5.3.3 Distribution of applied Cu ... 125
 5.3.3.1 Exchangeable Cu ... 125
 5.3.3.2 Organic bound Cu ... 128
 5.3.3.3 Oxide bound Cu ... 131
 5.3.3.4 Residual Cu ... 134
5.3.4 Total sum of Cu fractions .. 136
5.3.5 Effect of soil properties on fractionation ... 137
5.3.6 Plant availability to Cu fractions .. 142

5.4 CONCLUSION AND FURTHER STUDY ... 144

CHAPTER 6 SOIL TEST TO PREDICT THE AVAILABILITY OF COPPER 145

6.1 INTRODUCTION ... 145
6.2 MATERIALS AND METHODS .. 147
 6.2.1 Soils and soil analysis ... 147
 6.2.2 Single soil test extractants .. 147
 6.2.2.1 Methods for M1, M3, 0.1M HCl, and TEA-DTPA extractants 147
 6.2.2.2 0.01 M Ca(NO₃)₂ extractant .. 148
 6.2.2.3 0.01 M CaCl₂ extractant ... 148
 6.2.2.4 0.1 M NaNO₃ extractant ... 149
 6.2.2.5 1 M NH₄NO₃ extractant ... 149
 6.2.2.6 0.02 M SrCl₂ extractant ... 149
 6.2.3 Fractionation of Cu ... 149
 6.2.4 Chemical form study .. 150
 6.2.5 Speciation of Cu .. 150
 6.2.6 Chemical analysis .. 151
 6.2.7 Statistical analysis .. 151

6.3 RESULTS AND DISCUSSION ... 151
 6.3.1 Soil characteristics .. 151
 6.3.2 Fractionation of Cu ... 151
 6.3.3 Soil test extractants (M1, M3 and TEA-DTPA) 154
 6.3.4 Extraction of Cu by soil test reagents .. 155
 6.3.4.1 Effect of soil type on Cu concentration 155
 6.3.4.2 Effect of types of fertiliser .. 156
CHAPTER 7 EFFECT OF NITROGEN AND PHOSPHORUS FERTILISER ON THE AVAILABILITY OF NATIVE COPPER...173

7.1 INTRODUCTION..173
7.2 MATERIALS AND METHODS..174
 7.2.1 Soils ...174
 7.2.2 Fertilisers..174
 7.2.3 Plant growth experiment..174
 7.2.4 Grass sample preparation..175
 7.2.5 Ryegrass samples for Cu analysis...175
 7.2.6 Chemical Analysis..175
 7.2.7 Statistical analysis..175
7.3 RESULTS AND DISCUSSION...176
 7.3.1 Initial soil...176
 7.3.2 Effect of soil types on dry matter yield and Cu concentration..176
 7.3.3 Effect of N on dry matter yield, Cu concentration and Cu uptake...176
 7.3.4 Effect of P on dry matter yield, Cu concentration and Cu uptake....178
7.4 CONCLUSION AND FURTHER STUDY179

CHAPTER 8 EFFECT OF LIME, EDTA AND NITROGEN FERTILISER ON THE AVAILABILITY RESIDUAL COPPER ..180

8.1 INTRODUCTION...180
8.2 MATERIALS AND METHODS...181
 8.2.1 Soil collection and preparation..181
 8.2.2 Plant growth experiment and treatments..................................181
8.2.3 Harvesting and soil sampling .. 183
8.2.4 Soil analysis ... 183
8.2.5 Ryegrass samples for Cu analysis .. 183
8.2.6 Chemical Analysis .. 184
8.2.7 Statistical analysis ... 184
8.3 RESULTS AND DISCUSSION .. 184
8.3.1 Soil characteristics .. 184
8.3.2 Dry matter yield and Cu concentration 184
 8.3.2.1 Effect of N fertiliser ... 184
 8.3.2.2 Effect of lime ... 184
 8.3.2.3 Effect of EDTA .. 185
8.3.3 Effect of soil types on DM yield and Cu concentration 186
8.3.4 Effect on exchangeable Cu .. 188
8.3.5 Effect of fertiliser Cu sources and levels of residual Cu on DM yield and Cu concentration ... 190
8.3.6 Effect of soil test extractants on plant Cu concentration 192
8.4 CONCLUSION AND FURTHER STUDY ... 196

CHAPTER 9 SEASONAL RESPONSE OF COPPER AVAILABILITY IN PASTURE .. 197

9.1 INTRODUCTION ... 197
9.2 MATERIALS AND METHODS .. 198
 9.2.1 Field trial .. 198
 9.2.1.1 Experimental site .. 198
 9.2.1.2 Soil and pasture sampling 199
 9.2.1.3 Soil moisture, soil temperature and climate data 200
 9.2.1.4 Fractionation of Cu and soil analysis 200
 9.2.1.5 Pasture analysis ... 200
 9.2.1.6 Chemical analysis .. 200
 9.2.2 Incubation study .. 201
 9.2.3 Statistical analysis ... 201
9.3 RESULTS AND DISCUSSION .. 201
 9.3.1 Climatic data .. 201
 9.3.2 Pasture growth rate .. 202
9.3.3 Pasture Cu concentration .. 206
9.3.4 Pasture Cu uptake .. 211
9.3.5 Effect of soil temperature and moisture on Cu concentration in soils... .. 216
9.3.6 Seasonal effect on soil pH .. 217
9.3.7 Effect on exchangeable Cu .. 218
9.3.8 Fractionation of soil Cu ... 219
9.4 CONCLUSIONS .. 221

CHAPTER 10 SUMMARY, CONCLUSION AND FURTHER STUDY 222

10.1 LITERATURE REVIEW ... 222
10.2 ADSORPTION AND DESORPTION OF COPPER IN PASTURE SOILS. 223
10.2.1 Adsorption study .. 223
10.2.2 Desorption study .. 224
10.3 PLANT AVAILABILITY OF DIFFERENT COPPER SOURCES IN PASTURE SOILS 225
10.4 TRANSFORMATION AND PLANT UPTAKE OF COPPER IN DIFFERENT SOILS 225
10.5 SOIL TESTS TO PREDICT THE AVAILABILITY OF COPPER.............. 227
10.6 EFFECT OF LIME, EDTA, NITROGEN AND PHOSPHATE FERTILISERS ON THE AVAILABILITY OF COPPER 228
10.6.1 Effect of nitrogen and phosphorus fertilisers on the availability of native copper.. 228
10.6.2 Effect of lime, EDTA and nitrogen fertiliser on the availability of residual copper .. 229
10.7 SEASONAL RESPONSE OF COPPER AVAILABILITY IN PASTURE 230
10.8 SUGGESTION FOR FUTURE STUDY ... 232

REFERENCES .. 233
LIST OF FIGURES

Figure 1.1 The flow diagram / structures of the thesis. .. 5
Figure 2.1 Development of variable surface positive charge through the dissociation or
association of H^+ on a mineral surface (Bolan et al., 1999). 29
Figure 2.2 Complex formation of Cu ions by humic acid according to pH (Van Dijk,
1971). .. 34
Figure 3.1 Time dependent Cu adsorption isotherms. The data were fitted to
Mitscherlich growth function, $Y = A(1 - B^X)$, where Y= amount sorbed, X= time, A
and B are constants. ... 71
Figure 3.2 Copper adsorption isotherms for the different soils. 72
Figure 3.3 Copper adsorption isotherm for different soil components of the Manawatu
soil. ... 75
Figure 3.4 Copper adsorption isotherm for different soil components of the Tokomaru
soil. .. 76
Figure 3.5 Copper adsorption isotherm for different soil components of the Ramiha soil.
.. 76
Figure 3.6 Copper adsorption isotherm for different soil components of the Ngamokoa
soil. .. 77
Figure 3.7 Copper adsorption isotherm for different soil components of the Mangmahu
soil. .. 77
Figure 3.8 Effect of soil pH level on Cu sorption of the Manawatu soil. 80
Figure 3.9 Effect of soil pH level on Cu sorption of the Tokomaru soil. 81
Figure 3.10 Effect of soil pH level on Cu sorption of the Ramiha soil. 81
Figure 3.11 Effect of soil pH level on Cu sorption of the Ngamokoa soil. 82
Figure 3.12 Effect of pH levels on equilibrium solution Cu concentrations at various
input concentrations (mg L$^{-1}$) (a) Manawatu, (b) Tokomaru, (c) Ramiha and (d)
Ngamokoa soils. Data are means ± SE, $n=2$. ... 83
Figure 3.13 Freundlich constant (K) for Cu adsorption by different soils at various pH
values ... 84
Figure 3.14 Distribution coefficient (K_d) for Cu adsorption by different soils at various
equilibrium concentration levels. Data are means ± SE, $n=2$. 85
Figure 3.15 Distribution coefficient (K_d) of Cu sorption at different input concentrations
by (a) Manawatu, (b) Tokomaru, (c) Ramiha and (d) Ngamokoa soils at different
pH levels. [Input concentrations (mg Cu L\(^{-1}\))]: +100; 200; 400; 600; 1000]. Data are means ± SE, n=2...

Figure 3.16 Desorption of native Cu from two soils (Manawatu and Ngamoka)...

Figure 3.17 Desorption of native and added Cu at (a) 2 hrs and (b) 24 hrs desorption period in Manawatu and Ngamoka soil.

Figure 3.18 Cumulative desorption of native and added Cu from the (a) Manawatu soil and (b) Ngamoka soil incubated with added Cu for different periods. Desorption was carried out using two desorption periods [(i) 2 and (ii) 24 hours].

Figure 3.19 Effect of pH on Cu adsorption and desorption.

Figure 3.20 Cumulative desorption of Cu at two pH (5 and 8) and two sorption levels (30 and 50 mg L\(^{-1}\)) in different soils.

Figure 4.1 Effect of different soils on dry matter yield (g pot\(^{-1}\)) of rye grass at different harvests. Data are means ± SE, n=48.

Figure 4.2 Effect of fertiliser type on dry matter yield at different harvests. Data are means ± SE, n=80; control n=20.

Figure 4.3 Effect of soil types on Cu uptake after fertiliser addition. Data are means ± SE, n=48.

Figure 4.4 Effect of sources of Cu on Cu uptake following fertiliser addition. Data are means ± SE, n=80.

Figure 4.5 Cumulative recovery of Cu at (a) 50 mg Cu kg\(^{-1}\) soil, (b) 100 mg Cu kg\(^{-1}\) soil and (c) 200 mg Cu kg\(^{-1}\) soil of different Cu fertilisers.

Figure 5.1 Comparison of total native Cu with the sum of individual fractions for each soil. Data are means ± SE, n=3.

Figure 5.2 Comparison of total applied Cu determined by tri-acid extraction with the sum of individual fractions 28 days after application.

Figure 5.3 Effect of sampling periods on exchangeable Cu concentration (mg kg\(^{-1}\)). Data are means ± SE, n=12.

Figure 5.4 Effect of fertilisers on exchangeable Cu concentration (mg kg\(^{-1}\)) at various sampling periods. Data are means ± SE, n=20.

Figure 5.5 Effect of treatment levels on exchangeable Cu concentration (mg kg\(^{-1}\)) at various sampling periods. Data are means ± SE, n=15.

Figure 5.6 Effect of treatment levels on organic bound Cu (- - - -) and oxide bound Cu (-----) concentration (mg kg\(^{-1}\)) at various sampling periods. Data are means ± SE, n=15.
Figure 5.7 Effect of forms of Cu fertilisers on oxide bound Cu concentration (mg kg⁻¹) at various sampling periods. Data are means ± SE, n=20.

Figure 5.8 Effect of treatment levels on oxide bound Cu concentration (mg kg⁻¹) at various times of soil sampling following fertiliser application. Data are means ± SE, n=15.

Figure 5.9 Effect of forms of Cu fertilisers on residual Cu concentration (mg kg⁻¹) at various sampling periods. Data are means ± SE, n=20.

Figure 5.10 Effect of treatment levels on residual Cu concentration (mg kg⁻¹) at various sampling periods following fertiliser application. Data are means ± SE, n=15.

Figure 5.11 Sum of fractions of Cu (mg Cu kg⁻¹) at different levels (a) 50 mg Cu kg⁻¹, (b) 100 mg Cu kg⁻¹, (c) 200 mg Cu kg⁻¹ following the fertiliser application. [(✦Manawatu; ✦Tokomaru; ●Ramiha; ▲Ngamoka; and ▼Mangamahu)]. Data are means ± SE, n=3.

Figure 5.12 Relationship between soil organic carbon and different fractions of Cu: (a) exchangeable Cu; (b) organically bound Cu; (c) oxide bound Cu; and (d) residual Cu.

Figure 5.13 Relationship between CEC and different fractions of Cu: (a) exchangeable Cu; (b) organically bound Cu; (c) oxide bound Cu; and (d) residual Cu.

Figure 5.14 Relationship between clay content and different fractions of Cu: (a) exchangeable Cu; (b) organically bound Cu; (c) oxide bound Cu; and (d) residual Cu.

Figure 5.15 Correlation of (a) soil exchangeable Cu, (b) organically bound Cu, (c) oxide bound Cu and (d) residual Cu on plant uptake.

Figure 6.1 Concentration of different fractions of Cu extracted by soil tests at different levels of Cu application.

Figure 6.2 Percentage of different fractions of Cu (a) Manawatu soil and (b) Ngamokoka soil extracted by the soil test extractants.

Figure 6.3 Correlation between Cu in soil test extractants and (a) exchangeable (b) organic bound Cu (c) oxide and (d) residual Cu fractions.

Figure 6.4 The relationship between the concentrations of soil Cu extractable by (a) M1 and M3, (b) M1 and TEA-DTPA (c) and M3 and TEA-DTPA extractants from the two soils that received 0 to 200 mg Cu kg⁻¹ soil from two different Cu fertilisers.
Figure 6.5 Linear correlations of Cu in the ryegrass with the amounts of extractable Cu determined by using the (a) M1, (b) M3 and (c) TEA-DTPA extracting procedures.

171

Figure 7.1 Effect of N levels on (a) dry matter yield, (b) Cu concentration and (c) Cu uptake. Data are means ± SE, n=3.

177

Figure 7.2 Effect of P levels on (a) dry matter yield, (b) Cu concentration and (c) Cu uptake. Data are means ± SE, n=3.

179

Figure 8.1 Effect of N fertilisers, lime and EDTA on DM yield and Cu concentration at different harvests for both soils. The optimum (_____) and the toxic (- - - -) levels of Cu in the plant are indicated in the figure. Data are means ± SE, n=48.

186

Figure 8.2 Effect of soil types on DM yield and Cu concentration as affected by N fertilisers, lime and EDTA addition at various level of Cu from different sources. Data are means ± SE, n=24.

187

Figure 8.3 Effect of soil types on exchangeable Cu as affected by (a) Nitrogen, (b) Lime, and (c) EDTA. Data are means ± SE, n=24.

190

Figure 8.4 Effect of Cu fertiliser sources on DM yield [(a) CuO, (b) CuSO₄] and Cu concentration [(c) CuO, (d) CuSO₄] as affected by lime, Nitrogen or EDTA. Data are means ± SE, n=24.

191

Figure 8.5 Effect of residual Cu levels on Cu concentration either treated with N (a), lime (b) or EDTA (c). Data are means ± SE, n=12.

192

Figure 8.6 Relationship between Cu concentration in plants and Cu extracted by (a) M1, (b) M3 and (c) TEA-DTPA extractants as affected by EDTA.

192

Figure 8.7 Concentration of Cu extracted by (a) Mehlich 1 (M1), (b) Mehlich 3 (M3) and (c) TEA-DTPA extractions prior to and after the addition of lime.

193

Figure 8.8 Relationship between soils exchangeable Cu as affected by N (a, d), lime (b, e), and EDTA (c, f) additions and Cu extracted by the M1, M3 and TEA-DTPA extracting procedures prior to and after lime application.

194

Figure 8.9 Relationship between Cu concentration in plants and (a) exchangeable Cu and (b) free Cu in soil solution with addition of N (➕) and lime (●).

195

Figure 8.10 Relationship between Cu concentration in plants and (a) exchangeable Cu and (b) free Cu in soil solution with addition of EDTA.

195
Figure 9.1 Weather data for soil temperature (●), air temperature (➕), radiation (◼), gravimetric soil moisture (▼) and rain fall (+) during different trial periods. (Data are mean ±SE for the different parameters at each trial period)......................... 202

Figure 9.2 Pasture growth rates as influenced by different levels of Cu fertiliser at different periods after fertiliser application. Data are means ± SE, n=3.................. 203

Figure 9.3 Effect of air temperature (a), soil temperature (b), gravimetric soil moisture (c) and solar radiation (d) on pasture growth rates. Data are means ± SE, n=3... 206

Figure 9.4 Effect of fertiliser Cu sources on Cu concentration at 5 kg Cu ha⁻¹ level. Data are means ± SE, n=3... 207

Figure 9.5 Effect of seasonal responses to added Cu on Cu concentration in pasture. Data are means ± SE, n=3... 208

Figure 9.6 Effect of air temperature (a), soil temperature (b), gravimetric soil moisture (c), and solar radiation (d) on Cu concentration. Data are means ± SE, n=3..... 210

Figure 9.7 Relationship between pasture growth rate and Cu concentration.......................... 211

Figure 9.8 Effect of seasonal responses to added Cu on total Cu uptake in pasture. Data are means ± SE, n=3... 212

Figure 9.9 Effect of air temperature (a), soil temperature (b), gravimetric soil moisture (c), and solar radiation (d) on Cu uptake. Data are means ± SE, n=3........ 215

Figure 9.10 Relationship between pasture growth rate and Cu uptake................................... 216

Figure 9.11 Soil pH and exchangeable Cu at different trial periods. Data are means ± SE, n=3... 218

Figure 9.12 Effect of (a) soil moisture and (b) soil temperature on exchangeable Cu at different trial periods. Data are means ± SE, n=3................................. 219

Figure 9.13 Fractionation of soils native Cu and Cu added as (CuSO₄) at different trial periods. Data are means ± SE, n=3... 221
LIST OF TABLES

Table 2.1 Copper content of major rock types (mg kg⁻¹).. 6
Table 2.2 Typical Cu concentrations in soils from various parent materials (Viets, 1962). ... 7
Table 2.3 Copper ore minerals (Hignett and McClellan, 1985).. 8
Table 2.4 The principal copper materials used in Cu fertilisers.. 8
Table 2.5 Copper minerals and Cu containing fertiliser materials (Netzer and Beszedits, 1979). ... 9
Table 2.6 Ranges and mean concentrations of Cu in surface soils calculated on the world scale (Kabata-Pendias and Pendias, 1992)... 13
Table 2.7 Copper in the natural soil solution of different soils.. 16
Table 2.8 Effect of pH on solution composition of Cu, expressed as percent in solution (Harter, 1983) .. 16
Table 2.9 Various fractionation schemes used by different authors............................... 20
Table 2.10 Comparison of the relative extracting abilities of sequential copper fractionation schemes... 22
Table 2.11 Total soil Cu recovered from soils by three methods of digestion............... 25
Table 2.12 Adsorption of Cu in soils and soil components.. 31
Table 3.1 The soils and experimental conditions used in the various adsorption and desorption experiments. ... 63
Table 3.2 Sequential fractionation scheme for Cu in soil... 66
Table 3.3 Initial soil properties .. 70
Table 3.4 Freundlich equation describing the adsorption of Cu in different soil components... 75
Table 3.5 Percent contribution of the organic matter and oxide components to Cu adsorption at two initial concentration levels... 79
Table 3.6 Freundlich equation describing the adsorption of Cu at various pH levels in different soils ... 80
Table 3.7 Cumulative desorbed native soil Cu and different extractable Cu concentrations... 88
Table 3.8 Soil pH at various intervals of desorption... 91
Table 4.1 Sources of Cu used as fertilisers in the plant growth experiment.................... 100
Table 4.2 Correlations of dry matter yield with soil properties....................................... 104
Table 4.3 Effect of fertiliser rates on dry matter yield (g pot⁻¹) of ryegrass at different harvests................................. 107
Table 4.4 Effect of soil types on Cu concentration (mg kg⁻¹) in ryegrass at different harvests... 110
Table 4.5 Correlations of Cu concentration in ryegrass with soil properties.............. 110
Table 4.6 Effect of fertiliser type on Cu concentration (mg kg⁻¹) of ryegrass at different harvests... 111
Table 4.7 Effect of fertiliser rates on Cu concentration (mg kg⁻¹) of ryegrass at different harvests... 112
Table 4.8 Correlations of copper uptake with soil properties... 114
Table 4.9 Effect of fertilisers and treatment levels on Cu uptake by ryegrass............. 116
Table 5.1 Fractions of native Cu (mg kg⁻¹) in the whole soil ... 124
Table 5.2 Concentration of total native Cu in whole soil and particle size fractions.. 125
Table 5.3 Effect of soil types on organically bound Cu concentration (mg kg⁻¹) at various sampling periods................................. 129
Table 5.4 Effect of fertilisers on organically bound Cu concentration (mg kg⁻¹) at various sampling periods................................. 130
Table 5.5 Effect of soil types on oxide bound Cu concentration (mg kg⁻¹) at various sampling periods................................. 132
Table 5.6 Effect of soil types on residual Cu concentration (mg kg⁻¹) at various sampling periods................................. 135
Table 5.7 Correlations between soil properties and Cu concentration in the different fractions... 138
Table 6.1 Comparison of methods used in determination of extractable Cu.............. 148
Table 6.2 Effect of treatment combinations on various forms of Cu by sequential fractionation procedure at 295 days after... 153
Table 6.3 Copper concentration in soil test extractants... 155
Table 6.4 Effect of soils and types of fertiliser on extractable soil Cu (mg kg⁻¹)....... 156
Table 6.5 Effect of Cu levels on extractable soil Cu (mg kg⁻¹)... 157
Table 6.6 Copper species in soil test extractants... 159
Table 6.7 Copper species in chemical fractions... 160
Table 6.8 Copper fractions in the soil test extractants... 162
Table 6.9 Correlation coefficient of different extractants with plant available Cu..... 170
Table 7.1 Effect of soil types on DM yield, Cu concentration and uptake............. 176
Table 9.1 Time frame of the different trial periods .. 199
Table 9.2 Effect of fertiliser levels on Cu concentration (CuSO₄ and CuO) 208
Table 9.3 Mean Cu concentration in soil solution at various levels of soil temperature and moisture contents for four different soils .. 217
LIST OF PLATES

Plate 4.1 Plant growth experiment with different levels of CuSO₄ fertiliser (Ballantrae high fertility and Ballantrae low fertility known as Ngamoka and Mangamahu soil, respectively)... 101

Plate 4.2 Effect of soil types on plant growth experiment (Ballantrae low fertility known as Mangamahu soil). .. 101

Plate 8.1 Glasshouse trial of N effects on residual Cu availability in ryegrass. 182

Plate 8.2 Glasshouse trial of lime effects on residual Cu availability in ryegrass (Ballantrae high fertility known as Ngamoka soil).. 182

Plate 8.3 Glasshouse trial of EDTA effects on residual Cu availability in ryegrass. 183

Plate 9.1 Location of the field trial... 199