Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE RESPONSE BY GRAZING DAIRY COWS TO SUPPLEMENTARY FEEDS

A thesis presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
In Animal Science

Institute of Veterinary, Animal and Biomedical Sciences,
Massey University
Palmerston North

JOHN WILLIAM PENNO
2002
This thesis is dedicated to my Grandparents

William James and Nancie Julia Penno
ABSTRACT

Many experiments have measured the responses of grazing dairy cows to various forms of supplementary feed, but few have studied the reasons for the large differences in responses between experiments. Two short-term, and one long-term supplementary feeding trials were designed to help understand the reasons for wide variation in responses that have been reported, and to develop a biophysical framework to improve the prediction of the response by grazing cows to supplementary feeds.

Two grazing trials (trial 1 in year 1; trial 2 in year 2) were conducted with groups of cows in early, mid and late lactation in spring, summer, autumn and winter, in a partially complete Latin Square arrangement. At each stage of lactation, and in each season of the year, cows were offered either a restricted pasture allowance (25 to 35 kg DM/cow/day), or the restricted pasture allowance plus supplements offered at 50 MJME/cow/day in trial 1 and 80 MJME/cow/day in trial 2. The supplements were either rolled maize grain (MG) or a mixture of feeds formulated to nutritionally balance the diet (BR). Supplemented cows at each stage of lactation and during each season of the year were compared to their respective control groups, which received only the restricted pasture allowance.

In both trials 1 and 2, offering MG and BR supplements resulted in large increases in DMI. At a restricted metabolisable energy (ME) allowance, offering supplementary feeds increased ME intake by 0.65 MJME/MJME offered. This highly significant linear relationship was consistent across the different seasons and did not diminish at higher ME allowance. Between stages of lactation, substitution rates (SR) ranged from 0.1 to 0.3 (±0.1) during trial 1, and 0.1 to 0.5 (±0.1) during trial 2, however differences were not closely associated with either stage of lactation, season of the year or type of supplement offered. The pasture dry matter intake of the unsupplemented
cows (PDMI) was closely associated with SR, with SR increasing from 0.0 to 0.6 kg as the PDMI increased from 1.5 to 3.5% of liveweight.

In trial 1, the immediate responses ranged from 2.0 to 5.6g milksolids (MS)/MJME and from 0.3 to 11.1g liveweight/MJME. In trial 2, the immediate responses ranged from 0.3 to 3.3g MS/MJME and from 1.9 to 6.4g liveweight/MJME. The immediate MS responses were consistently smaller during spring than in other seasons of the year. The carryover responses (measured during the four weeks following supplementary feeding) were about 0.5 times the immediate effects in both trials 1 and 2. In trial 1 there was no difference (P>0.10) between the total milksolids responses (immediate plus carryover responses) of early and mid lactation cows, whereas in trial 2 mid lactation cows demonstrated larger (P<0.05) total milksolids responses than early lactation cows. In trial 1 the total milksolids responses measured in spring, summer autumn and winter were 6.4, 6.9, 3.6 and 7.5 (±1.17) g MS/MJME, respectively. During trial 2 the total milksolids responses measured in spring, summer autumn and winter were -0.1, 3.4, 3.6 and 4.7 (±0.74) g MS/MJME, respectively. There was no difference in the total milksolids response resulting from MG or BR in trial 1, whereas during trial 2 the milksolids response from MG and BR were 1.9 and 3.9 (±0.52) g MS/MJME, respectively.

Stage of lactation and season of the year accounted for little of the variation in the magnitude of the marginal milksolids response from feeding supplementary feeds. The factor that was of greatest importance was the relative feed deficit (RFD) measured by the reduction in milksolids yield (kg MS/cow/day) of the respective control groups that had occurred when the feeding treatments had been imposed. Total marginal milksolids responses were greatest when severe feed restrictions, relative to the current feed demand, resulted in large reductions in milksolids yield of the control groups. Total marginal milksolids response increased (P<0.01) by 0.9g MS/MJME offered as supplement per 0.1 kg MS/cow/day RFD. Total marginal milksolids responses also declined (P<0.01) by 0.2g MS/MJME offered as supplement as pasture allowance increased by 10 MJME/cow/day.
In the long-term trial, five spring-calving pasture-based farmlet systems were compared with the objective of measuring the long-term effects of offering large quantities of three types of supplementary feed within dairying systems. Four of five farmlets (5.67 ha) were stocked with 25 high genetic merit Friesian cows (4.41 cows/ha) and one farmlet was stocked with 19 cows (3.35 cows/ha) calving between 12 July and 31 August in each year, for three complete years. Herds on the higher stocked (HS) farmlets were offered either no supplementary feed from off farm sources (Control), or supplementary feeds of rolled maize grain (MO), or whole maize crop silage (WCS), or a nutritionally balancing ration (BR). The herd grazing the lower stocked farmlet (LS) was offered supplementary feed of pasture silage that had been conserved on that farmlet from surplus spring pasture.

The high stocking rate and early calving date of the supplemented herds resulted in low pasture allowances at most times of the year, requiring the use of 1.1 to 1.7 t DM/cow/year as supplementary feed. While some pasture substitution may have occurred, there was no difference between the annual pasture dry matter intake (DMI) of the supplemented and control herds. Feeding treatments of MO, WCS, BR and LS increased annual milksolids (MS) yield from 269 (Control herd) to 400, 363, 408 and 361 (±15.8) kg/cow, respectively. Differences in total dry matter and metabolisable energy intake per cow explained most of the differences in MS yield per cow between the five farmlets. Marginal responses from the MO, WCS, BR, and LS treatments averaged 7.3, 7.6, 7.8, and 6.6g MS/MJME over the three years of the experiment. Cows in the HS supplementary feeding herds and the LS herd calved in fatter condition and maintained higher DMI in early spring, and had shorter post partum anoestrous interval and a lower incidence of anoestrous than those in the HS control herd.

A model based on the data derived from the two short-term trials used RDF, pasture allowance, supplement intake and stage of lactation to predict much of the variability between some published short-term experiments, and closely agreed with the milksolids responses measured during the long-term trial.
ACKNOWLEDGEMENTS
ACKNOWLEDGEMENTS

Like all successful human endeavors, a Ph.D. project is a team effort. The scale and nature of the experiments reported in this thesis are such that it seems unjust that most of the credit is ultimately bestowed upon one person. For significant periods of time during the experimental work, all of the people, land and cows at the DRC No 2 and No 3 Dairies were devoted to these experiments. I fully acknowledge that there is probably nobody who has worked at the Dairying Research Corporation, or indeed there is probably nobody who has spent much time with me over the past 5 years, who has not contributed to the completion of this project.

Firstly I must thank the DRC for providing the opportunity and financial support for me to undertake this project. Much of the credit belongs to Sir James Graham, Ken Jury and Arnold Bryant, the men who provided the vision of what the DRC could become if it chose the right people, developed them, provided them with opportunities and expected much from them. I do not believe I could have had a better mentor early in my career than Arnold. Working beside him was an unearned privilege, and without doubt provided the inspiration and encouragement to embark on this project. My thanks must also go to Rob Pringle and Dave Clark for sending me away for 12 months to write up – without which this project would not be finished yet.

To my chief supervisor Colin Holmes – from the first discussions while watching the Lions vs. Manawatu at the Palmerston North Show Grounds - thank you for your encouragement and patience, for giving me the space and flexibility I needed, but also for challenging me to never be satisfied with less than my best. To Jock Macmillan, Steve Davis, Ian Brookes and Gavin Wilson, thanks for the advice and many iterations of editorial help while completing this thesis.
Special thanks must go to the many farm staff who managed, fed, weighed, milked, sampled, ate pies and laughed with me during the three years of experimentation. Particular mention must go to the farm managers Brian Walsh, Wally Carter and Mike Coulter.

These experiments generated over 33000 milk samples that were processed and analysed by Margaret Bryant and her team in the DRC milk lab. Glenise Ferguson helped process over 8800 alkane samples (of varying material) and more than 750 were analysed by Ross McKee’s fed lab staff. While there is no doubt that at times their efficiency means their efforts go unnoticed, without their accuracy and attention to detail this work would be meaningless. For the data recording systems provided by Jim Lancaster and Carol Leydon-Davis who not only kept the vast amount of data manageable, but provided entry point quality control. To Harold Henderson and Rhonda Hooper, thanks not only for your help with matters statistical, but also for patiently teaching me as we went. Thanks also to Allison Amon, for help with typesetting and formatting this thesis.

Kevin Macdonald must be the second in line for credit from this project. Kevin is a remarkable person and has made a remarkable contribution to my work. I have often joked that I would have achieved little without Kevin beside me. Perhaps the truth is that Kevin would have achieved far more without me beside him. Thank you for your skill, your unending commitment, your fantastic attitude and your early morning radio jokes.

Special thanks must go to my family, particularly my mother who encouraged me to get all the education I could get, and my father who always challenged me to be all that I could be. Thanks also to my many friends for their support and encouragement particularly Ben and Juliet, Sanks, Macks, and Tim.

Finally, to Jamie, who was born partway through the process, and who has probably sacrificed the most for its completion, thank you.
TABLE OF CONTENTS
TABLE OF CONTENTS

ABSTRACT ... i
ACKNOWLEDGEMENTS ... iv
TABLE OF CONTENTS .. vi
LIST OF APPENDICES ... xiv
LIST OF TABLES .. xvi
LIST OF FIGURES .. xxv
LIST OF ABREVIATIONS ... xxxi

CHAPTER 1: INTRODUCTION
1.1 BACKGROUND .. 1
1.2 OVERALL AIM AND OBJECTIVES ... 2
1.3 THESIS STRUCTURE .. 3

CHAPTER 2: LITERATURE REVIEW: THE RESPONSE OF GRAZING COWS TO SUPPLEMENTARY FEEDS
2.1 INTRODUCTION .. 5
2.2 PASTURE AS A NUTRIENT SOURCE FOR GRAZING DAIRY COWS 7
 2.2.1 Energy and protein yielding nutrients supplied by pasture 7
 2.2.1.1 Yield and chemical composition of New Zealand dairy pastures 7
 2.2.1.2 Carbohydrates in pasture ... 9
 2.2.1.3 Protein in pasture ... 9
 2.2.1.4 Rumen fermentation of ingested feed ... 11
 2.2.1.4.1 Energy substrates derived from fermentation 11
 2.2.1.4.2 Protein substrates from fermentation 12
 2.2.2 The cow .. 13
 2.2.2.1 Nutrient demand ... 13
2.2.2.2 Priorities for nutrients from competing functions 14
2.2.2.3 Use of nutrients derived from the diet .. 17
2.2.3 Feed intake ... 21
 2.2.3.1 General model of feed intake ... 21
 2.2.3.2 Rate of eating and grazing... 21
 2.2.3.3 Diet digestibility and rumen capacity ... 23
 2.2.3.4 Metabolic constraints ... 24
2.2.4 Integrating the cow, feed supply and nutrient demand 25

2.3 RESPONSES OF PASTURE-FED COWS TO INCREASES IN FEEDING LEVEL 26
 2.3.1 Response to extra pasture .. 26
 2.3.2 Response to extra feed other than pasture (supplementary feed) 28
 2.3.3 Pasture substitution .. 36
 2.3.3.1 Effects of pasture and supplement allowance 37
 2.3.3.2 Effects of the nutritional characteristics of the forage 39
 2.3.3.3 Effects of the nutritional characteristics of the supplement 40
 2.3.3.4 Effects of supplementary feeding on grazing behaviour 41
 2.3.3.5 Effects of the nutritional requirements of the cow 42
 2.3.3.6 Total energy allowance and pasture substitution 42
 2.3.4 Milk yield responses of pasture-fed cows supplementary feeds 44
 2.3.4.1 Pasture intake .. 46
 2.3.4.2 Amount of supplement offered ... 46
 2.3.4.3 Pasture quality .. 48
 2.3.4.4 Nutritional characteristics of the supplement offered 49
 2.3.4.4.1 Energy supplements .. 49
 2.3.4.4.2 Processing cereal grains .. 50
 2.3.4.4.3 Protein supplements ... 52
 2.3.4.5 State of the cow: stage of lactation and nutritional history 56
 2.3.5 Total feed allowance and milk yield of cows receiving pasture and
 supplement .. 61
 2.3.6 Immediate and carryover effects .. 67
2.4 RESPONSES TO SUPPLEMENTARY FEED IN FARM SYSTEMS .. 71
2.5 CONCLUSION AND IMPLICATIONS .. 73
2.6 REFERENCES .. 74

CHAPTER 3: SUPPLEMENTARY FEEDING RESPONSES BY COWS IN EARLY, MID AND LATE LACTATION GRAZING LOW PASTURE ALLOWANCES IN SPRING, SUMMER, AUTUMN AND WINTER

1. PASTURE INTAKE AND SUBSTITUTION

3.1 ABSTRACT ... 98
3.2 INTRODUCTION .. 99
3.3 MATERIALS AND METHODS ... 100
 3.3.1 Animals and pastures .. 100
 3.3.2 Experimental design ...' 101
 3.3.3 Supplementary feeds .. 102
 3.3.4 Feeding .. 103
 3.3.5 Experimental measurements .. 103
 3.3.5.1 Pasture allocation ... 103
 3.3.5.2 Pasture intake ... 105
 3.3.5.3 Pasture chemical composition ... 106
 3.3.6 Statistical analysis ... 106
3.4 RESULTS ... 107
 3.4.1 Feed offered .. 107
 3.4.1.1 Pasture quality ... 107
 3.4.1.2 Pasture allowance ... 107
 3.4.1.3 Supplementary feeding treatments ... 107
 3.4.2 Feed intake ... 110
 3.4.2.1 Trial 1: Pasture and supplement DMI ... 110
 3.4.2.2 Trial 2: Pasture and supplement DMI ... 114
 3.4.2.2.1 Spring .. 118
 3.4.2.2.2 Summer .. 118
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.2.2.3 Autumn</td>
<td>118</td>
</tr>
<tr>
<td>3.4.3.3.4 Winter</td>
<td>119</td>
</tr>
<tr>
<td>3.4.3 Total feed allowance and feed intake</td>
<td>119</td>
</tr>
<tr>
<td>3.4.4 Pasture substitution</td>
<td>119</td>
</tr>
<tr>
<td>3.5 DISCUSSION</td>
<td>124</td>
</tr>
<tr>
<td>3.5.1 Pasture DMI</td>
<td>124</td>
</tr>
<tr>
<td>3.5.1.1 Pasture allowance</td>
<td>124</td>
</tr>
<tr>
<td>3.5.1.2 Stage of lactation</td>
<td>126</td>
</tr>
<tr>
<td>3.5.1.3 Season of the year</td>
<td>126</td>
</tr>
<tr>
<td>3.5.2 Total feed intake</td>
<td>127</td>
</tr>
<tr>
<td>3.5.3 Pasture substitution</td>
<td>129</td>
</tr>
<tr>
<td>3.5.3.1 Unsupplemented pasture DMI</td>
<td>129</td>
</tr>
<tr>
<td>3.5.3.2 Stage of lactation</td>
<td>130</td>
</tr>
<tr>
<td>3.5.3.3 Seasons of the year</td>
<td>131</td>
</tr>
<tr>
<td>3.5.3.4 Type of supplement</td>
<td>132</td>
</tr>
<tr>
<td>3.6 CONCLUSION</td>
<td>133</td>
</tr>
<tr>
<td>3.7 REFERENCES</td>
<td>134</td>
</tr>
</tbody>
</table>

CHAPTER 4: SUPPLEMENTARY FEEDING RESPONSES BY COWS IN EARLY, MID AND LATE LACTATION GRAZING LOW PASTURE ALLOWANCES IN SPRING, SUMMER, AUTUMN AND WINTER

2. MILK YIELD AND LIVESTOCK CHANGE, AND SOME BLOOD AND RUMEN METABOLITES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 ABSTRACT</td>
<td>140</td>
</tr>
<tr>
<td>4.2 INTRODUCTION</td>
<td>142</td>
</tr>
<tr>
<td>4.3 MATERIALS AND METHODS</td>
<td>144</td>
</tr>
<tr>
<td>4.3.1 Experimental design</td>
<td>144</td>
</tr>
<tr>
<td>4.3.2 Measurements</td>
<td>147</td>
</tr>
<tr>
<td>4.3.2.1 Milk volume and composition, and liveweight</td>
<td>147</td>
</tr>
<tr>
<td>4.3.2.2 Rumen and blood metabolites</td>
<td>147</td>
</tr>
</tbody>
</table>
Table of Contents

4.3.3 Statistical analysis .. 148

4.4 RESULTS ... 149

4.4.1 Results of trial 1 .. 149
 4.4.1.1 Trial 1: Rumen pH and ammonia concentration .. 149
 4.4.1.2 Trial 1: Blood metabolites ... 149
 4.4.1.3 Trial 1: Milksolids yield measured during the experimental period 153
 4.4.1.4 Trial 1: Concentration of milkfat and milk protein .. 157
 4.4.1.5 Trial 1: Milksolids yield measured during the carryover period 157
 4.4.1.6 Trial 1: Rate of liveweight change ... 158

4.4.2 Results of Trial 2 ... 162
 4.4.2.1 Trial 2: Rumen pH and ammonia concentration .. 162
 4.4.2.2 Trial 2: Blood metabolites measured during the experimental period 166
 4.4.2.3 Trial 2: Milksolids yield .. 168
 4.4.2.3.1 Spring ... 168
 4.4.2.3.2 Summer ... 168
 4.4.2.3.3 Autumn ... 170
 4.4.2.3.4 Winter .. 170
 4.4.2.4 Trial 2: Milkfat and protein concentration .. 171
 4.4.2.5 Trial 2: Milksolids yield measured during the carryover period 171
 4.4.2.6 Trial 2: Rate of liveweight change measured during the experimental period 173

4.5 DISCUSSION .. 174

4.5.1 Effects of stage of lactation .. 174
4.5.2 Effects of season of the year .. 177
4.5.3 Form of supplementary feed .. 179
4.5.4 Carryover effects ... 181

4.6 CONCLUSIONS ... 182

4.7 REFERENCES ... 183
CHAPTER 5: SUPPLEMENTARY FEEDING RESPONSES BY COWS IN EARLY, MID AND LATE LACTATION GRAZING LOW PASTURE ALLOWANCES IN SPRING, SUMMER, AUTUMN AND WINTER

3. MARGINAL RESPONSES IN MILK SOLIDS YIELD AND LIVESTOCK

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 ABSTRACT</td>
<td>189</td>
</tr>
<tr>
<td>5.2 INTRODUCTION</td>
<td>191</td>
</tr>
<tr>
<td>5.3 MATERIALS AND METHODS</td>
<td>192</td>
</tr>
<tr>
<td>5.3.1 Experimental design</td>
<td>192</td>
</tr>
<tr>
<td>5.3.2 Calculations</td>
<td>192</td>
</tr>
<tr>
<td>5.3.3 Statistical analysis</td>
<td>193</td>
</tr>
<tr>
<td>5.4 RESULTS</td>
<td>194</td>
</tr>
<tr>
<td>5.4.1 Immediate responses to supplementary feeds</td>
<td>194</td>
</tr>
<tr>
<td>5.4.1.1 Stage of lactation</td>
<td>194</td>
</tr>
<tr>
<td>5.4.1.2 Season of the year</td>
<td>194</td>
</tr>
<tr>
<td>5.4.1.3 Type of supplementary feed</td>
<td>198</td>
</tr>
<tr>
<td>5.4.2 Carryover responses and total milk solids responses to supplementary feeds</td>
<td>198</td>
</tr>
<tr>
<td>5.4.2.1 Stage of lactation</td>
<td>198</td>
</tr>
<tr>
<td>5.4.2.2 Season of the year</td>
<td>201</td>
</tr>
<tr>
<td>5.4.2.3 Type of supplementary feed</td>
<td>201</td>
</tr>
<tr>
<td>5.4.3 Predicting the milksolids response to supplementary feeding</td>
<td>201</td>
</tr>
<tr>
<td>5.5 DISCUSSION</td>
<td>206</td>
</tr>
<tr>
<td>5.5.1 Stage of lactation</td>
<td>206</td>
</tr>
<tr>
<td>5.5.2 Season of the year</td>
<td>206</td>
</tr>
<tr>
<td>5.5.3 Carryover responses</td>
<td>207</td>
</tr>
<tr>
<td>5.5.4 Potential energy deficit</td>
<td>208</td>
</tr>
<tr>
<td>5.6 CONCLUSIONS</td>
<td>214</td>
</tr>
<tr>
<td>5.7 REFERENCES</td>
<td>215</td>
</tr>
</tbody>
</table>
CHAPTER 6: EXTRA FEED FOR GRAZING DAIRY COWS: A COMPARISON OF MAIZE GRAIN, MAIZE SILAGE, A NUTRITIONALLY BALANCING RATION AND EXTRA PASTURE

6.1 ABSTRACT ... 218

6.2 INTRODUCTION ... 219

6.3 MATERIALS AND METHODS .. 221
 6.3.1 Experimental site, cows and management 221
 6.3.1.1 Farmlets .. 221
 6.3.1.2 Herds and management .. 222
 6.3.1.3 Grazing management ... 223
 6.3.2. Supplementary feeding .. 223
 6.3.2.1 Treatments .. 223
 6.3.2.2. Supplementary feeds and ration formulation 224
 6.3.3. Experimental measurements ... 224
 6.3.3.1 Pasture ... 224
 6.3.3.2 Animal performance ... 225
 6.3.3.3 Sample analysis .. 225
 6.3.4. Statistical analysis ... 226

6.4 RESULTS .. 226
 6.4.1. Feed supply .. 226
 6.4.1.1 Pasture production .. 226
 6.4.1.2 Pasture and supplement chemical composition 229
 6.4.1.3 Composition of balanced ration .. 229
 6.4.1.4 Pasture and supplementary feed intake 229
 6.4.2. Animal performance .. 231
 6.4.2.1 Milk production ... 231
 6.4.2.2 Liveweight and body condition score 237
 6.4.2.3 Reproductive performance .. 237

6.5 DISCUSSION .. 241
 6.5.1 Farmlet performance ... 241
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5.1.1 Pasture substitution</td>
<td>241</td>
</tr>
<tr>
<td>6.5.1.2 Milk yields per cow</td>
<td>243</td>
</tr>
<tr>
<td>6.5.1.3 Lactation length</td>
<td>244</td>
</tr>
<tr>
<td>6.5.1.4 Milk yield per hectare</td>
<td>247</td>
</tr>
<tr>
<td>6.5.1.5 Liveweight and body condition</td>
<td>249</td>
</tr>
<tr>
<td>6.5.1.6 Reproductive performance</td>
<td>249</td>
</tr>
<tr>
<td>6.5.2 Responses to extra feed</td>
<td>250</td>
</tr>
<tr>
<td>6.5.2.1 Responses to additional dry matter and metabolisable energy</td>
<td>250</td>
</tr>
<tr>
<td>6.5.2.2 Differences in milk yield response between types of feed</td>
<td>256</td>
</tr>
<tr>
<td>6.5.2.3 Differences in milk yield response between years</td>
<td>257</td>
</tr>
<tr>
<td>6.6 CONCLUSIONS</td>
<td>258</td>
</tr>
<tr>
<td>6.7 REFERENCES</td>
<td>259</td>
</tr>
</tbody>
</table>

CHAPTER 7: GENERAL DISCUSSION AND IMPLICATIONS FOR DAIRY FARMERS MAKING SUPPLEMENTARY FEEDING DECISIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 INTRODUCTION</td>
<td>267</td>
</tr>
<tr>
<td>7.2 LIMITATIONS OF THE METHODS</td>
<td>268</td>
</tr>
<tr>
<td>7.3 PREDICTION OF PASTURE SUBSTITUTION</td>
<td>269</td>
</tr>
<tr>
<td>7.4 PREDICTION OF MILKSOLIDS RESPONSES</td>
<td>271</td>
</tr>
<tr>
<td>7.5 CONCLUSIONS</td>
<td>276</td>
</tr>
<tr>
<td>7.6 REFERENCES</td>
<td>277</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

Appendix 1: Trellis graphs of the milksolids yield and liveweight of each cow during trials 1 and 2 .. 280

Figure A1.1: Daily milksolids yield of each cow in the early, mid and late lactation experimental groups offered the control, maize grain (MG) and balancing ration (BR) feeding treatments, measured during the uniformity (weeks −2 to −1), supplementary feeding (weeks 0 to 4), and carryover (weeks 5 to 7) periods of trial 1 .. 281

Figure A1.2: Liveweight of each cow in the early, mid and late lactation experimental groups offered the control, maize grain (MG) and balancing ration (BR) feeding treatments, measured during the uniformity (weeks −2 to −1), supplementary feeding (weeks 0 to 4), and carryover (weeks 5 to 7) periods of trial 1 .. 285

Figure A1.3: Daily milksolids yield of each cow in the early, mid and late lactation experimental groups offered the control, generous pasture (AP), maize grain (MG) and balancing ration (BR) feeding treatments, measured during the uniformity (weeks −2 to −1), supplementary feeding (weeks 0 to 4), and carryover (weeks 5 to 7) periods of trial 1. .. 289

Figure A1.4: Liveweight of each cow in the early, mid and late lactation experimental groups offered the control, generous pasture allowance (AP), maize grain (MG) and balancing ration (BR) feeding treatments, measured during the uniformity (weeks −2 to −1) and supplementary feeding (weeks 0 to 4) periods of trial 2 .. 293

Appendix 2: Data from trial 1 published in the Proceedings of the New Zealand Society of Animal Production. .. 297
Appendix 3: Data from the 3 year farmlet trial published in the Proceedings of the New Zealand Society of Animal Production... 302
LIST OF TABLES

CHAPTER 2

Table 2.1 Seasonal variation in the mean (+ SEM) digestible organic matter in dry matter (DOMD), acid detergent fibre (ADF), neutral detergent fibre (NDF), crude protein, soluble carbohydrate (SOLCHO), pectin, phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) concentration (g/100g DM) of pastures sampled from four commercial dairy farms (from Moller, 1997) ... 10

Table 2.2 Some detail of supplementary feeding experiments published since 1979 including; pasture allowance, stage of lactation (SOL) supplementary feed intake, milk yield (MY) of the control cows, marginal responses in milk yield (MY), milkfat (MF), milk protein (MP), and liveweight per kg of dry matter (DM) offered as supplementary feed, marginal milk solids (MS) response per mega-joule of metabolisable energy (MJME) offered as supplement, and pasture substitution rate (kg DM/kg DM) .. 30

Table 2.3 Mean responses and associated energetic requirements resulting from 1 kg DM (11.7 MJ metabolisable energy; ME) offered as supplementary feed to pasture-fed dairy cows (Table 2.2) .. 35

Table 2.4 The effect on herbage intake, yield of milk and milk constituents and liveweight of offering concentrates to early lactation cows continuously grazing spring pasture at three grazing heights (Rook et al. 1996a; Rook et al. 1996b) .. 43

Table 2.5 Effect of metabolisable energy intake (MEI) and stage of lactation (days-in-milk; DIM) on 4% fat corrected milk yield (MY; kg/c/d) of groups of
cows offered pasture only (48 observations), pasture and supplementary feed (73 observations) from 15 supplementary feeding studies (Table 2.2).... 58

Table 2.6 A comparison of milk and milksolids responses to supplementary feeds reported from experiments with early, mid and late lactation cows published since 1979, summarised in Table 2.2 59

Table 2.7 Pre-treatment stage of lactation, as measured by days in milk (DIM), and 4% fat corrected milk yield (FCM/100 kg Lwt), daily pasture allowance (kg DM/cow and MJME/cow/100 kg Lwt), supplement and pasture metabolisable energy intake (MJME/100 kg Lwt), milk yield and substitution rate (MJME pasture:MJME supplement) for some recent studies investigating supplementary feeding of grazing dairy cows 63

Table 2.8 The effect of total metabolisable energy intake (MEI, MJ/c/d) on 4% fat-corrected milk yield (MY, kg/c/d)) in some experiments investigating supplementary feeding of grazing dairy cows.. 66

Table 2.9 The immediate and carryover fat corrected milk (FCM) yield responses to supplementary feeds from some recent experiments .. 68

Table 2.10 An example of carryover milk yield responses associated with increases in immediate milk yield and liveweight gain resulting from supplementary feeding of grazing cows with pasture silage or concentrates (O’Brien et al., 1996). 70

Table 2.11 Mean milkfat and protein response to supplementary feeding of grazing dairy cows measured in long-term experiments................................. 72
CHAPTER 3

Table 3.1 Estimated concentration of dry matter (DM), neutral detergent fibre (NDF), lignin, crude protein, soluble crude protein, non-protein nitrogen, neutral detergent fibre insoluble protein (NDFIP), acid detergent fibre insoluble protein (ADFIP), starch, fat, ash, and effective neutral detergent fibre (eNDF), rates of carbohydrate and protein degradation, and amino acid composition of feeds used when checking feed rations with the CNCPS... 104

Table 3.2 Trials 1 and 2: Concentration of crude protein, lipid, ash, acid detergent fibre (ADF), neutral detergent fibre (NDF), soluble carbohydrate and metabolisable energy (ME), and organic matter digestibility (OMD) of the pasture offered during each experimental period ... 108

Table 3.3 Trials 1 and 2: Daily pasture allowance (kg DM/cow) offered to early lactation cows in the *ad lib* pasture groups (AP), and to the early, mid and late lactation cows offered the control, maize grain and balancing ration treatments, during each experimental period ... 109

Table 3.4 Trials 1 and 2: Mixture of supplementary feeds (kg DM/cow/day) offered to cows in the maize grain (MG) and balanced ration (BR) treatment groups and the total amount of DM and metabolisable energy (ME) offered each day ... 111

Table 3.5 Trial 1: Daily pasture and supplement dry-matter intake (kg/cow) of cows in early, mid and late lactation offered either a restricted pasture allowance (Control) or the restricted pasture allowance plus supplements of rolled maize grain (MG) or a balancing ration (BR), measured during the final week of each experimental period. ... 112
Table 3.6 Trial 2: Dairy pasture and supplement dry-matter intake (kg/cow) of cows in early mid and late lactation offered either a restricted pasture allowance (Control), or a generous pasture allowance (AP), or the restricted pasture allowance plus supplements of rolled maize grain (MG) or a balancing ration (BR), measured during the final week of each experimental period117

Table 3.7 Trials 1 and 2: The relationship between total allowance of metabolisable energy (MEA; MJME/cow/day) from pasture plus supplement, and total metabolisable energy intake (MEI; MJME/cow/day) in spring, summer, autumn and winter... 121

Table 3.8 Trials 1 and 2: The average dry matter substitution rate (kg pasture DM/kg supplement DM) resulting from maize grain (MG) and nutritionally balancing (BR) supplements offered to cows at different stages of lactation and seasons of the year.. 122

Table 3.9 Trials 1 and 2: The relationship between the unsupplemented pasture dry matter intake per 100 kg/liveweight (PDMI) and substitution rate, and the average substitution rate (SR) adjusted for PDMI of groups in early, mid and late lactation .. 125

CHAPTER 4

Table 4.1 Stage of lactation and mean yield of milk, milkfat, protein and mean liveweight of each group measured during the uniformity week of trial 1, immediately before supplementary feeding treatments were imposed. 145

Table 4.2 Stage of lactation and mean yield of milk, milkfat, protein and mean liveweight of each group measured during the uniformity week of trial 2, immediately before supplementary feeding treatments were imposed 146
Table 4.3 Trial 1: Average concentrations of albumin, beta hydroxy butyrate (BOH), non-esterified fatty acids (NEFA), glucose and urea measured in blood plasma sampled from cows in early, mid and late lactation (n=24), offered a restricted pasture allowance (Control) or a restricted pasture allowance and supplementary feeds of 50 MJME/cow/day as rolled maize grain or a nutritional balancing ration (BR) in spring, summer, autumn and winter..152

Table 4.4 Trial 1 experimental period: Mean values for yields of milk, milkfat and protein, for concentrations of milkfat and protein, and for the rate of liveweight change measured during each experimental period................. 154

Table 4.5 Trial 1 carryover period: Mean values for yield of milk, milkfat and protein, for concentration of milkfat and protein and for rate of liveweight change of cows in early and mid lactation during each carryover period, when all cows were offered a generous pasture allowance and no supplements..159

Table 4.6 Trial 2: Average concentrations of albumin, beta hydroxy butyrate (BOH), non-esterified fatty acids (NEFA), glucose and urea measured in blood plasma sampled from cows in early, mid and late lactation (n=24), offered a restricted pasture allowance (Control) or a restricted pasture allowance and supplementary feeds of 80 MJME/cow/day as rolled maize grain or a nutritional balancing ration (BR) in spring, summer, autumn and winter...167

Table 4.7 Trial 2 experimental period: Mean values for yields of milk, milkfat and protein, for concentration of milkfat and protein and for rate of liveweight change measured each experimental period................................. 169
Table 4.8 Trial 2 carryover period: Mean values for yield of milk, milkfat and protein, and for concentrations of milkfat and protein of cows in early and mid lactation during each carryover period, when all cows were offered a generous pasture allowance and no supplements .. 172

CHAPTER 5

Table 5.1 Trial 1: The average immediate milksolids responses (g MS/MJME) resulting from maize grain (MG) and nutritionally balancing (BR) supplements offered at 50 MJME/cow/day to cows at different stages of lactation and seasons of the year ... 195

Table 5.2 Trial 2: The average immediate milksolids responses (g MS/MJME) resulting from maize grain (MG) and nutritionally balancing (BR) supplements offered at 80 MJME/cow/day to cows at different stages of lactation and seasons of the year ... 196

Table 5.3 Trials 1 and 2: The average immediate liveweight response (g MS/MJME) resulting from maize grain (MG) and nutritionally balancing (BR) supplements offered to cows at different stages of lactation and seasons of the year ... 197

Table 5.4 Trials 1 and 2: The average carryover milksolids response (g MS/MJME) measured for four weeks maize grain (MG) and nutritionally balancing (BR) supplements offered to cows at different stages of lactation and seasons of the year ... 199

Table 5.5 Trials 1 and 2: The average total milksolids response (g MS/MJME) resulting from maize grain (MG) and nutritionally balancing (BR)
supplements offered to cows at different stages of lactation and seasons of the year .. 200

Table 5.6 The effect of the reduction in milk solids yield of the unsupplemented cows as restricted feeding was imposed (as a measure of the relative feed deficit), the milk solids (MS) yield of the unsupplemented cows measured during the experimental period, supplement intake and stage of lactation on the immediate milk solids response to supplementary feeds (g MS/MJME) .. 204

Table 5.7 The effect of the reduction in milk solids yield of the unsupplemented cows as restricted feeding was imposed (as a measure of the relative feed deficit), the pasture allowance, supplement intake and stage of lactation on the total milk solids response of early and mid lactation cows to supplementary feeds (g MS/MJME) .. 205

Table 5.8 The factors used by the models shown in Tables 6 and 7 to predict the immediate marginal milk solids response for some recently published experiments shown in Figure 3, and the total marginal milk solids response shown in Figure 4 .. 211

CHAPTER 6

Table 6.1 The quality of pasture grown and the chemical composition of the Maize grain, Maize silage and pasture offered during the three years of the experiment in winter (1 June to 31 August), spring (1 September to 30 November), summer (1 December to 28 February) and autumn (1 March to 31 May) .. 227
Table 6.2 Annual pasture growth per hectare and dry matter (DM) and metabolisable energy (ME) intake per cow for each year of the experiment ... 228

Table 6.3 Composition of the balanced ration supplement offered during the three seasons of the experiment (% total supplement DM). ... 230

Table 6.4 Mean pasture and supplementary feed dry matter intake (kg DM/cow/day) of each herd during year 1 .. 233

Table 6.5 Mean pasture and supplementary feed dry matter intake (kg DM/cow/day) of each herd during year 2 ... 234

Table 6.6 Mean pasture and supplementary feed dry matter intake (kg DM/cow/day) of each herd during year 3 ... 235

Table 6.7 Annual yield of milk, mean concentrations of milkfat and protein, and yields of milkfat, protein and milksolids .. 236

Table 6.8 Reproductive performance of herds stocked at 4.41 cows/ha with no supplementary feed (Control), or with supplements of maize grain (MG), with maize silage (WCS) or with a nutritionally balancing ration (BR), or stocked at 3.35 cows/ha without purchased supplement (LS) over three seasons .. 240

Table 6.9 Effect of pasture dry-matter allowance (DMA; kg DM/c/day) on pasture dry matter intake (DMI) for each of the treatment herds over the three years of the trial .. 242
Table 6.10 Mean annual pasture and supplement supply, and production of milk, milkfat, milk protein and milksolids from the five farmlet systems for three complete seasons... 248

Table 6.11 Marginal milkfat, milk protein and milksolids response of the farm systems to incremental units of dry matter (DM) and metabolisable energy (ME) supplied by the three forms of supplementary feed, and from extra pasture (LS), relative to the HS control system... 251

Table 6.12 An estimate of the fate of additional metabolisable energy (ME) provided to the high stocked herds as supplementary feed. ... 255
LIST OF FIGURES

CHAPTER 2

Figure 2.1 A scheme for linking animal, feed, and environmental characteristics to animal performance and feed intake. ... 8

Figure 2.2 A simplified view of links between feed chemistry, end products of digestion (nutrients), and the production of milk and body constituents 18

Figure 2.3 The effect of pasture ME allowance on pasture ME intake of grazing dairy cows, measured in some recent experiments. .. 27

Figure 2.4 The effect of pasture organic matter (OM) allowance on pasture OM intake at three levels of supplementary feed intake (Meijs and Hoekstra, 1984).. 38

Figure 2.5 The effect of total feed ME allowance (pasture plus supplementary) on total feed ME intake, measured in some recent experiments...................... 45

Figure 2.6 The effect of concentrate dry mater (DM) intake on the 4% fat-corrected milk yield and liveweight gain of early and late lactation cows at three levels of pasture intake (Stockdale and Trigg, 1989) ... 47

Figure 2.7 The effect of total feed ME allowance (pasture plus supplement) on 4% fat-corrected milk yield (FCM), measured in some recent experiments 65
CHAPTER 3

Figure 3.1 Trials 1 and 2: Average pasture dry-matter intake (DMI) of cows receiving a restricted pasture allowance (control), a generous pasture allowance (AP; trial 2 only), or a restricted pasture allowance plus either maize grain (MG) or a ration balancing (BR) supplement, measured during the final week of the spring, summer, autumn and winter experimental periods. ... 113

Figure 3.2 Trial 1: Average pasture dry-matter intake (DMI) of cows grazing on a restricted pasture allowance and offered no supplementary feed (control), supplements of rolled maize grain (MG) or a supplement formulated to balance the diet (BR) during the four experimental periods. 115

Figure 3.3 Trial 1: Average pasture dry-matter intake (DMI) of cows in early, mid and late lactation grazing on a restricted pasture allowance and offered no supplementary feed (control), or supplements of rolled maize grain (MG) or a supplement formulated to balance the diet (BR)......................... 116

Figure 3.4 Trials 1 and 2: The relationship between the total metabolisable energy allowance (MEA) from pasture plus supplement offered to each experimental group grazing a restricted pasture allowance, and the total metabolisable energy intake (MEI) of that group (regression equations are shown in Table 3.7)... 120

Figure 3.5 Trials 1 and 2: The relationship between the pasture intake by unsupplemented cows (PDMI; kg DM/100 kg of liveweight) and substitution rate (Individual regression equations for each season, and the pooled regression equation, are shown in Table 3.9). .. 123
CHAPTER 4

Figure 4.1 Trial 1: Rumen fluid pH of cows receiving nutritional treatments of a restricted pasture allowance (control), a restricted pasture allowance and 50 MJME/cow/day of rolled maize grain (MG) or a mixture of supplements formulated to balance the diet (BR) during the spring, summer, autumn and winter experimental periods. .. 150

Figure 4.2 Trial 1: Concentration of ammonia nitrogen (N) in rumen fluid of cows receiving nutritional treatments of a restricted pasture allowance (Control), a restricted pasture allowance and 50 MJME/cow/day of rolled maize grain (MG) or a mixture of supplements formulated to balance the diet (BR) during the spring, summer, autumn and winter experimental periods. ... 151

Figure 4.3 Trials 1 and 2: Average milksolids yield of early, mid and late lactation cows offered feeding treatments of a restricted pasture allowance (Control), a generous pasture allowance (AP; trial 2 only), or a restricted pasture allowance and supplements of rolled maize grain (MG) or a nutritional balancing ration (BR) measured during the spring, summer, autumn and winter. ... 155

Figure 4.4 Trial 1: Average milksolids yield of cows offered nutritional treatments of a restricted pasture allowance (Control), or the restricted pasture allowance and supplementary feeds of either rolled maize grain (MG) or a nutritional balancing ration (BR) measured during the final three weeks of the spring, summer, autumn and winter experimental periods. 156

Figure 4.5 Trials 1 and 2: Average milksolids yield of early and mid lactation cows offered feeding treatment of a restricted pasture allowance (Control), a
generous pasture allowance (AP; trial 2 only), or a restricted pasture allowance and supplements of rolled maize grain (MG) or a nutritional balancing ration (BR) measured during the spring, summer, autumn and winter carryover periods (milk solids yield of late lactation groups were not measured during the carryover periods).

Figure 4.6 Trials 1 and 2: Average liveweight of early, mid and late lactation cows offered feeding treatments of a restricted pasture allowance (Control), a generous pasture allowance (AP; trial 2 only), or a restricted pasture allowance and supplements of rolled maize grain (MG) or a nutritional balancing ration (BR) measured at the conclusion of the spring, summer, autumn and winter experimental periods.

Figure 4.7 Trial 1: Average rate of liveweight change of cows offered nutritional treatments of a restricted pasture allowance (Control), or a restricted pasture allowance and supplementary feeds of wither rolled maize grain (MG) or a nutritional balancing ration (BR) measured during the spring, summer, autumn and winter experimental periods.

Figure 4.8 Trial 2: Rumen fluid pH of cows receiving nutritional treatments of a restricted pasture allowance (Control), or a restricted pasture allowance and 80 MJME/cow/say of rolled maize grain (MG) or a mixture of supplements formulated to balance the diet (BR) during the spring, summer, autumn and winter experimental periods.

Figure 4.9 Trial 2: Concentration of ammonia nitrogen (N) in rumen fluid of cows receiving nutritional treatments of a restricted pasture allowance (Control), or a restricted pasture allowance and 80 MJME/cow/say of rolled maize grain (MG) or a mixture of supplements formulated to
balance the diet (BR) during the spring, summer, autumn and winter experimental periods ... 165

CHAPTER 5

Figure 5.1 The effect of the decline in milksolids yield of the unsupplemented cows that occurred as restricted feeding was imposed (as a measure of the relative feed deficit) on the immediate milksolids response to supplementary feeds ... 202

Figure 5.2 The effect of the decline in milksolids yield of the unsupplemented cows that occurred as restricted feeding was imposed (as a measure of the relative feed deficit) on the total milksolids response of early and mid lactation cows to supplementary feeds ... 203

Figure 5.3 A comparison of the predicted immediate milksolids response using the model presented in Table 6, and the immediate milksolids response calculated from the published values of some recent experiments (Table 8) ... 212

Figure 5.4 A comparison of the predicted immediate milksolids response using the model presented in Table 7, and the immediate milksolids response calculated from the published values of some recent experiments (Table 8) ... 213

CHAPTER 6

Figure 6.1 Seasonal variation in the pasture allowance offered to herds stocked at 4.41 cows/ha, with no purchased supplement (Control), or with supplements of maize grain (MG), maize silage (WCS) or a nutritionally
balancing ration (BR), or to herds stocked at 3.35 cows/ha without purchased supplement (LS).. 232

Figure 6.2 Mean daily 4% FCM yield of cows stocked at 4.41 cows/ha with no purchased supplement (Control), or with supplements of maize grain (MG), with maize silage (WCS), or with a nutritionally balancing ration (BR), or stocked at 3.35 cows/ha without purchased supplement (LS), over the three complete lactations.. 238

Figure 6.3 Mean liveweight of cows stocked at 4.41 cows/ha with no purchased supplement (Control), or with supplements of maize grain (MG), with maize silage (WCS), or with a nutritionally balancing ration (BR), or stocked at 3.35 cows/ha without purchased supplement (LS), over the three complete lactations.. 239

Figure 6.4 The relationship between annual metabolisable energy intake (MEI) and lactation length (DIM) for each herd and each year of the trial. 245

Figure 6.5 The relationship between lactation length (DIM) and annual milksolids yield (MS) for each herd and each year of the trial.. 246

Figure 6.6 The relationship annual metabolisable energy intake (MEI) and annual milksolids yield (MS) for each herd and each year of the trial. 252
LIST OF ABBREVIATIONS

• • •
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Amino acids</td>
</tr>
<tr>
<td>ADF</td>
<td>Acid detergent fibre</td>
</tr>
<tr>
<td>ADFIP</td>
<td>Acid detergent fibre insoluble protein</td>
</tr>
<tr>
<td>AP</td>
<td>Ad libitum pasture</td>
</tr>
<tr>
<td>ARDOM</td>
<td>Apparently rumen digested organic matter</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>BOH</td>
<td>Beta hydroxy butyrate</td>
</tr>
<tr>
<td>BR</td>
<td>Nutritionally balancing ration</td>
</tr>
<tr>
<td>CNCPS</td>
<td>Cornell Net Carbohydrate and Protein System</td>
</tr>
<tr>
<td>CP</td>
<td>Crude protein</td>
</tr>
<tr>
<td>DIM</td>
<td>Days in milk</td>
</tr>
<tr>
<td>DM</td>
<td>Dry matter</td>
</tr>
<tr>
<td>DMI</td>
<td>Dry matter intake</td>
</tr>
<tr>
<td>DOMD</td>
<td>Digestible organic matter in dry matter</td>
</tr>
<tr>
<td>eNDF</td>
<td>Effective neutral detergent fibre</td>
</tr>
<tr>
<td>FCM</td>
<td>Fat corrected milk (4%)</td>
</tr>
<tr>
<td>HS</td>
<td>High stocking rate</td>
</tr>
<tr>
<td>LCFA</td>
<td>Long chain fatty acids</td>
</tr>
<tr>
<td>LS</td>
<td>Low stocking rate</td>
</tr>
<tr>
<td>ME</td>
<td>Metabolisable energy</td>
</tr>
<tr>
<td>MEA</td>
<td>Metabolisable energy allowance</td>
</tr>
<tr>
<td>MEI</td>
<td>Metabolisable energy intake</td>
</tr>
<tr>
<td>MF</td>
<td>Milkfat</td>
</tr>
<tr>
<td>MG</td>
<td>Maize grain</td>
</tr>
<tr>
<td>MP</td>
<td>Milk protein</td>
</tr>
<tr>
<td>MR</td>
<td>Milk yield response</td>
</tr>
<tr>
<td>MS</td>
<td>Milksolids</td>
</tr>
<tr>
<td>MY</td>
<td>Milk yield</td>
</tr>
<tr>
<td>NDF</td>
<td>Neutral detergent fibre</td>
</tr>
</tbody>
</table>
List of Abbreviations

NDFIP Neutral detergent fibre insoluble protein
NEFA Non-esterified fatty acids
NPN Non protein nitrogen
OM Organic matter
OMD Organic matter digestibility
PDMI Pasture dry matter intake of unsupplemented cows
r.s.d. Residual standard deviation
RDP Rumen degradable protein
REML Residual maximum likelihood
RFD Relative feed deficit
s.e.d. Standard error of the difference
SOLCHO Soluble carbohydrate
SR Substitution rate
UDP Rumen undegradable protein
VFA Volatile fatty acids
WCS Whole crop silage (Maize silage)