Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
CHARACTERISATION OF ACC SYNTHASE DURING LEAF DEVELOPMENT IN WHITE CLOVER

(Trifolium repens L.)

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

at

Massey University

PATRICIA ALISON MURRAY

2001
Abstract

ACC synthase catalyses the rate limiting step in the ethylene biosynthetic pathway, and in all plants studied has been shown to be encoded by a highly divergent gene family. These different ACC synthase genes are differentially regulated in response to a variety of developmental and environmental stimuli. In this thesis, ACC synthase gene expression during leaf ontogeny in white clover (Trifolium repens L.) has been studied. This study utilises the stoloniferous growth pattern of white clover, which provides leaf tissue at different developmental stages, ranging from initiation at the apex, through mature green to senescent, and then finally necrotic.

RT-PCR, using degenerate primers to conserved regions of ACC synthase genes in the database, was used to amplify putative ACC synthase sequences from mRNA isolated from white clover leaf tissue. Sequencing and GenBank database alignment of the PCR products revealed that ACC synthase sequences comprising approximately 670 bp of the reading frame were amplified. Sequence alignments indicate that the sequences from white clover represent three distinct ACC synthases, and these were designated TR-ACSl (Trifolium repens ACC synthase 1), TR-ACS2 and TR-ACS3. TR-ACSl is 62 % and 71 % homologous to TR-ACS2 and TR-ACS3 respectively, and TR-ACS2 and TR-ACS3 are 63 % homologous, in terms of nucleotide sequence. Genomic Southern analysis, using the amplified reading frame of each gene as a probe, confirmed that the sequences are encoded for by distinct genes.

In a GenBank database search, TR-ACSl shows highest homology to an ACC synthase sequence from IAA-treated apical hooks of pea, and TR-ACS2 shows highest homology to an ACC synthase isolated from etiolated hypocotyls of mungbean. An ACC synthase isolated from white lupin, which was found to have increased expression during germination and in response to IAA and wounding, was most similar to TR-ACS3. Phylogenetic analysis determined that the three white clover ACC synthase genes are highly divergent. Phylogenetic analysis also determined that TR-ACSl groups with ACC synthase sequences isolated from IAA-treated apical hooks of etiolated pea seedlings and IAA-treated mung bean hypocotyls. TR-ACS2 was found to group with
ACC synthases isolated from etiolated hypocotyls of mung bean and TR-ACS3 was closest to a cDNA clone isolated from Citrus parapdisi.

Northern analysis has shown that two of these genes are expressed differentially during leaf ontogeny. TR-ACS1 is expressed in mature green leaves and TR-ACS3 is expressed in senescent leaf tissue. The expression of TR-ACS2 was unable to be determined by northern analysis, and so the more sensitive method of RT-PCR was used. This procedure determined that TR-ACS2 is expressed predominantly in the apex, newly initiated and mature green leaves, and again at the onset of senescence.

Sequence analysis of TR-ACS3 revealed that the coded protein is missing the active site of the enzyme. Using a primer specific for the conserved active site of ACC synthase, a sequence which was similar to TR-ACS3, but not completely homologous, was amplified by RT-PCR and designated TR-ACS3A. This sequence included the region encoding the active site of the enzyme, but contained an additional four nucleotides in the sequence. Thus the sequence may also encode a non-functional protein, and the possible roles of such non-functional proteins are discussed.

The pattern of TR-ACS gene expression observed during leaf ontogeny suggests that these genes are under precise developmental control. Further, an indication as to the nature of the stimuli that may regulate the expression of the ACC synthase genes was provided by the phylogenetic analysis. To learn more of these physiological stimuli, white clover leaves were treated with two of the primary stimuli of ACC synthase gene expression, IAA and wounding; factors that were also shown to regulate the expression of sequences phylogenetically related to each TR-ACS gene. While the results of this experiment do not appear to be definitive, TR-ACS1 was the only gene that hybridised to timepoints in the IAA-treated tissue, and TR-ACS3 was the only gene to hybridise to the wound-induced tissues. The significance of ACC synthase gene expression during leaf ontogeny in white clover and its regulation is discussed.

Antibodies were raised to the gene product of TR-ACS1 expressed in E. coli. Using western analysis, the antibodies were shown to recognise the gene products of all three TR-ACS genes and a protein of 55 KD with highest intensity in mature green leaf extracts. Minor recognition of proteins of 29, 34, 37, 69 and 82 KD was also observed.
Acknowledgements

I wish to thank my supervisor Dr Michael McManus for his excellent guidance and advice throughout the course of my PhD project. The encouragement, support and knowledge that has been imparted has been very much appreciated and valued. Thank you Michael for always being available no matter how busy you were and for being such an enthusiastic and inspirational supervisor.

I am grateful to Dr Mike Hay, AgResearch Grasslands, for providing financial assistance in the form of a three year stipend and to IMBS for a travel grant to the 6th International Congress of Plant Molecular Biology 2000 in Quebec, and to NZSPP and IMBS for travel grants to annual NZSPP meetings.

I would like to thank many of the staff and students in the Institute of Molecular Biosciences who have been wonderful in providing help in many aspects of my thesis and for their discussion, friendship, encouragement and fun. I would particularly like to thank Don and Sang Dong for their help and wisdom during my lab work, Dr Pete Lockhart for phylogenetic analysis, Lyn, Suzanne and Anya for their support and crazy conversations, Lekha, Dan, Carmel, Ranjith, Ivan and Richard for their help and for making this an enjoyable time. Thank you to Michael Wilson for the ‘calm’ computer advice.

Kirsty and Andrew, thank you for your friendship and support during the long haul and for the endless computing help. I am also grateful for the encouragement and friendship of Sheree and Pete, Merie, Margaret, Wendy, Sal and Mike, and Coralie and Evan.

A huge thank you to Jeff for his support, thoughtfulness, patience and steadiness during the never-ending thesis writing. Thanks for helping with scanning and for keeping me cheerful and sane.

Thank you to my Mum and Dad and family for their unflagging, unconditional support and encouragement in everything. It has been enormously appreciated.
Table of Contents

Abstract
Acknowledgements
Table of contents
List of figures
List of tables
Abbreviations

Chapter 1. Introduction

1.1 The plant hormone ethylene
1.2 Mode of ethylene action
1.3 Ethylene biosynthesis
1.3.1 Overview of the biosynthetic pathway
1.3.2 Overview of the regulation of the pathway
1.3.3 SAM synthetase
1.3.4 ACC oxidase
1.3.4.1 Biochemical studies
1.3.4.2 Molecular studies
1.4 ACC synthase
1.4.1 Characterisation of ACC synthase at the biochemical level
1.4.2 Characterisation of ACC synthase at the molecular level
1.4.3 Induction of ACC synthase gene expression by environmental stimuli
1.5 Regulation of gene expression during growth and development
1.5.1 Fruit ripening
1.5.2 Ethylene and leaf senescence
1.6 Leaf ontogeny and the role of ethylene in white clover
1.7 Thesis aims

Chapter 2. Materials and methods

2.1 Clonal propagation and harvest of white clover plant material
2.1.1 Plant material and growth conditions
2.1.2 Plant propagation
2.1.3 Model system for growth of white clover stolons | 31
2.1.4 Harvesting of plant material | 31
2.1.5 Treatment of plant material
 2.1.5.1 Wounding treatment | 31
 2.1.5.2 IAA treatment | 32
 2.1.5.3 Treatment of plant tissue with 1-MCP | 32
2.2 Biochemical methods | 33
 2.2.1 Protein extraction with saturated ammonium sulphate fractionation | 33
 2.2.2 Sephadex G-25 column chromatography | 33
 2.2.3 Quantification of protein in solution | 34
 2.2.4 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis | 34
 2.2.5 Coomassie Brilliant Blue staining of SDS-PAGE gels | 36
 2.2.6 Drying of gels following SDS-PAGE | 36
2.3 Molecular methods | 36
 2.3.1 Culture of bacteria | 36
 2.3.1.1 Preparation of LB media | 36
 2.3.1.2 Preparation of competent cells | 37
 2.3.2 Characterisation and sequencing of cloned DNA in *E. coli* | 37
 2.3.2.1 Isolation of plasmid DNA | 37
 2.3.2.2 Ethanol precipitation of DNA or RNA | 38
 2.3.2.3 Quantitation of DNA in solution | 38
 2.3.2.4 Digestion of DNA with restriction endonuclease enzymes | 39
 2.3.2.5 Agarose gel electrophoresis | 39
 2.3.2.6 Recovery of DNA from agarose gels | 40
 2.3.2.7 DNA ligation | 40
 2.3.2.8 Heat shock transformation of *E. coli* | 42
 2.3.2.9 Purification of DNA for sequencing | 44
 2.3.2.10 Automated sequencing of DNA | 44
 2.3.3 DNA sequence analysis | 44
 2.3.3.1 Sequence alignment | 44
 2.3.3.2 Phylogenetic analysis | 44
 2.3.4 Southern analysis | 45
 2.3.4.1 Isolation of genomic DNA | 45
 2.3.4.2 Digestion of genomic DNA | 46
2.3.4.3 Southern blotting of genomic DNA 46
2.3.4.4 Southern blotting of cDNA fragments 46
2.3.4.5 Labelling DNA for Southern and northern analysis with dCTP 48
2.3.4.6 Labelling DNA for Southern analysis with dATP 48
2.3.4.7 Hybridisation and washing of northern and Southern blots 49
2.3.5 Northern analysis 49
 2.3.5.1 Extraction of total RNA 49
 2.3.5.2 Isolation of poly(A)^+ mRNA 50
 2.3.5.3 Quantification of RNA in solution 51
 2.3.5.4 Electrophoresis of RNA 51
 2.3.5.5 Northern blotting 52
2.3.6 Reverse transcriptase dependent polymerase chain reaction 52
 2.3.6.1 Generation of cDNA using reverse transcriptase 52
 2.3.6.2 Amplification of DNA or cDNA by PCR 53
 2.3.6.3 Relative RT-PCR 56
2.4 Heterologous protein expression in E. coli 56
 2.4.1 Protein expression using PROEX-1 vector 57
 2.4.1.1 Preliminary induction of His-tagged fusion protein proteins in E. coli 57
 2.4.1.2 Large scale induction of His-tagged fusion proteins in E. coli 58
 2.4.1.3 Purification of His-tagged fusion protein 58
 2.4.1.4 Amino acid sequencing 59
2.5 Immunological analysis 59
 2.5.1 Production of polyclonal antibodies 59
 2.5.2 Western blotting 60
 2.5.3 Size estimation of proteins 61
2.6 Screening of a cDNA library 62
 2.6.1 Preparation of E. coli stocks and plating of cDNA library 62
 2.6.2 Screening the cDNA library by plaque lifting 62
 2.6.3 Purification of plaques putatively containing cDNA of interest 64
 2.6.4 Excising pZL 1 from positive λZiplox clones 64

Chapter 3. Results 66
3.1 Screening and analysis of a cDNA library 66
 3.1.1 Preparation and initial screening 66
3.1.2 Further screening of cDNA library
3.1.3 Excision of cDNA clones to pZL from λZiplox phage
3.1.4 Hybridisation specificity of ACS5 and ACS7
3.1.5 Determination of non specific hybridisation

3.2 Gene expression of ACC synthase during leaf ontogeny in white clover
3.2.1 White clover stolon growth
3.2.2 RT-PCR amplification of putative ACC synthase gene transcripts
3.2.3 ACC synthase sequence alignment
3.2.4 Confirmation of an ACC synthase multigene family by Southern analysis
3.2.5 Phylogenetic analysis of TR-ACS1, TR-ACS2 and TR-ACS3
3.2.6 Expression of ACC synthase during leaf ontogeny by northern analysis
3.2.7 Expression of ACC synthase during leaf ontogeny by RT-PCR
3.2.8 Identification of TR-ACS3-like genes in white clover

3.3 Induction of ACC synthases in white clover
3.4.1 Identification of TR-ACS proteins in E. coli
3.4.2 Western analysis using anti-TR-ACS1 antibodies

Chapter 4. Discussion
4.1 Screening and analysis of cDNA library
4.2 Identification of ACC synthase genes using RT-PCR
4.3 Gene expression of TR-ASC1, TR-ACS3 and TR-ACS3 during leaf ontogeny
 4.3.1 Significance of TR-ACS gene expression during leaf ontogeny
4.4 Induction of TR-ACS genes in white clover
4.5 Identification of TR-ACS3-like genes in white clover
4.6 Identification of TR-ACS proteins
4.7 Future studies

Bibliography
List of Figures

Figure 1.1 The ethylene biosynthetic pathway 7
Figure 1.2 Stages of leaf development along a single stolon of white clover 27
Figure 2.1 Map of the pCR 2.1 plasmid used for cloning PCR generated sequences 41
Figure 2.2 Map of the pPROEX-1 plasmid and multiple cloning sites 43
Figure 2.3 Arrangement of apparatus used to transfer DNA and RNA to Hybond-N+ membrane 47
Figure 2.4 Protein transfer sandwich for electro-transfer of protein onto PVDF membrane 60
Figure 2.5 Map of the pZL 1 plasmid used for the in vivo excision of DNA inserts from the λ-cDNA library prepared from leaves of white clover 63
Figure 3.1 Southern analysis of second round PCR products of sublibraries 10/1/1-10/1/10 probed with 32P-labelled ACS7 69
Figure 3.2 Screening of sublibraries 10/1/6, 10/1/7 and 10/1/10 71
Figure 3.3 Screening of sublibraries 10/1/7/1, 10/1/7/7 and 10/1/7/9 72
Figure 3.4 Restriction enzyme digests of pZL 1 plasmids excised in vivo in E. coli DH10B(ZIP) 73
Figure 3.5 Southern analysis of second round PCR products of sublibraries 10/1/1-10/1/10 probed with 32P-labelled ACS5 76
Figure 3.6 Hybridisation intensity comparison of ACS5, cysteine proteinase and pZL1 vector probed with 32P-labelled ACS5 77
Figure 3.7 PCR amplification of putative ACC synthase fragments 80
Figure 3.8 Diagrammatic representation of an ACC synthase gene from Arabidopsis thaliana 83
Figure 3.9 RT-PCR on poly(A)+ mRNA pooled from leaf tissue from different developmental stages 84
Figure 3.10 Alignment of coding frame regions of TR-ACS1, TR-ACS2 and TR-ACS3 consensus sequences 87
Figure 3.11 Alignment of deduced amino acid sequences of TR-ACS1, TR-ACS2 and TR-ACS3 consensus sequences 88
Figure 3.12 Specificity of TR-ACS1, TR-ACS2 and TR-ACS3 as probes in Southern analysis 91
Figure 3.13 Southern analysis of white clover genomic DNA 93
Figure 3.14 Amino acid sequence based phylogeny of the ACC synthase family 94
Figure 3.15 Northern analysis of ACC synthase gene expression during leaf ontogeny 96
Figure 3.16 Specificity of ACS gene-specific primers 98
Figure 3.17 RT-PCR analysis of expression of TR-ACS2

Figure 3.18 RT-PCR analysis of expression of TR-ACS2 using gene-specific primers

Figure 3.19 RT-PCR analysis of expression of TR-ACS2 using degenerate primers

Figure 3.20 RT-PCR analysis of expression of TR-ACS3

Figure 3.21 Alignment of TR-ASC3 and TR-ACS3A sequences

Figure 3.22 Alignment of deduced amino acid sequences of TR-ASC3 and TR-ACS3A consensus sequences

Figure 3.23 RT-PCR analysis of expression of ACC synthase following wounding

Figure 3.24 Assessment of the use of 18s rRNA as an internal control for RT-PCR

Figure 3.25 RT-PCR analysis of TR-ACS1 expression in IAA-treated leaf tissue

Figure 3.26 RT-PCR analysis of TR-ACS1 expression in IAA-treated and wounded leaf tissue

Figure 3.27 SDS-PAGE analysis of induction of TR-ACS1 fusion protein in E. coli strains DH5α and TB-1

Figure 3.28 Identification of column fractions containing the induced TR-ACS1 fusion protein

Figure 3.29 Deduced amino acid sequence of TR-ACS1

Figure 3.30 Western analysis of expressed TR-ACS1, TR-ACS2 and TR-ACS3 expressed fusion proteins using the antibody raised to TR-ACS1 protein

Figure 3.31 Western analysis of ACC synthase protein expression in white clover leaf tissue, using the antibody raised to TR-ACS1 fusion-protein
List of Tables

Table 2.1 Composition of potting mix used to propagate white clover 30
Table 2.2 Composition of resolving gel and stacking gels used for SDS-PAGE 35
Table 2.3 Primer sequences used in PCR for amplification of ACS sequences 55
Table 2.4 Primer sequences used for amplification of β-actin 55
Table 3.1 Comparison of the percentage of nucleotide homology and percentage of amino acid identity between the three ACS consensus sequences amplified from white clover leaf tissue by RT-PCR 85
Table 3.2 Isolation of ACS transcripts from white clover leaf tissue 89
Table 3.3 GenBank comparison of TR-ACS sequences 90
Abbreviations

A\textsubscript{260 nm} absorbance in a 1 cm light path at 260 nm
ACC 1-aminocyclopropane-1-carboxylic acid
Amp100 ampicillin (100 mg/ml)
APS ammonium persulphate
BCIP 5-bromo-4-chloro-3-indoyl phosphate
BSA bovine serum albumin
DNA deoxyribonucleic acid
DNase deoxyribonuclease
DTT dithiothreitol
EDTA ethylenediaminetetraacetic acid
EIN ethylene insensitive
FW fresh weight
h hour
IAA indole-3-acetic acid
Kb kilo-bases
kD kilo-dalton
LB Luria-Bertani media
MACC 1-(malonylamino)cyclopropane-1-carboxylate
1-MCP 1-methylcyclopropane
min minute
NaOAc sodium acetate
NBT p-nitro blue tetrazolium chloride
Ni-NTA nickel-nitrilotriacetic acid
PAG photosynthesis-associated gene
PAGE polyacrylamide gel electrophoresis
PCR polymerase chain reaction
pI isoelectric-point
RNase ribonuclease
RO reverse osmosis
RT-PCR reverse transcriptase-dependent PCR
SAG senescence associated gene
SAM S-adenosylmethionine
SA-PMP streptavidin magne-sphere particles
SDS sodium dodecyl sulphate
TEMED \(N,N,N',N'-\)tetramethylethylenediamine
Tris tris (hydroxymethyl)aminomethane
U units
UV ultra violet
V volt