Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Identification and characterization of an 8.4 kDa protein antigen of *Mycobacterium bovis*.

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

at Massey University, Palmerston North, New Zealand

Alexander Dougal McLachlan

ABSTRACT.

The culture filtrate (CF) derived from a *M. smegmatis* subclone transformed with the mycobacteria/*E. coli* plasmid shuttle vector pSU4511 containing a 4.3 kb fragment of *M. bovis* DNA (*M. smegmatis* pSU151.43), was observed to stimulate PBMC from a steer vaccinated with *M. bovis* BCG to proliferate and produce IFN-γ. To identify the source of immunoreactivity, the proteins in CF derived from *M. smegmatis* pSU151.43 were separated by fast protein liquid chromatography (FPLC) and the fractions were screened in whole blood IFN-γ assays. A stimulatory protein was purified that had a molecular mass of 8335 Da and the N-terminal amino acid sequence: DPVDAVINTI. Polyclonal antisera were raised against the purified recombinant antigen in rabbits and used for Western blotting.

The nucleotide sequence of the 4.3 kb insert of *M. bovis* DNA was determined, and the open reading frame (ORF) coding for the 8.4 kDa protein was identified. Computer analysis of the deduced amino acid sequence with the programme PSORT predicted that the nascent protein consisted of a 28 amino acid export signal sequence followed by an 82 amino acid mature protein. It was also found that *M. avium* possesses a nucleotide sequence that potentially codes for a protein with a high degree of homology to the 8.4 kDa antigen of *M. bovis*.

A segment of the 4.3 kb insert of *M. bovis* DNA adjacent to the gene coding for the 8.4 kDa antigen was found to be polymorphic between the strain of *M. bovis* from which the cosmids library was constructed and the published sequence of *M. tuberculosis* H37Rv (Cole et al. 1998). The *M. bovis* sequence contained 1.7 copies of a 62 bp exact tandem repeat and the *M. tuberculosis* sequence contained 2.7 copies. The species distribution of the 62 bp exact tandem repeat (ETR) locus was characterized by polymerase chain reaction (PCR) and Southern blotting. The 62 bp ETR was found to occur only in *M. tuberculosis* complex species and may be a useful genetic marker for differentiating between *M. bovis* and *M. tuberculosis*.

Lymphocyte proliferation and IFN-γ assays were used to measure the responses of ten BCG vaccinated and ten unvaccinated calves the 8.4 kDa antigen, PPD-B and PPD-A tuberculin, both before and after intratracheal challenge infection with virulent *M. bovis.*
The results provided evidence that vaccination of cattle with *M. bovis* BCG but not infection with *M. bovis* appeared to elicit an immune response to the 8.4 kDa antigen of *M. bovis*.

To obtain greater quantities of recombinant 8.4 kDa antigen, the gene that codes for the protein was cloned into *E. coli* and *M. smegmatis* expression plasmids. The 8.4 kDa antigen was overexpressed and secreted with an N-terminal 6 x Histidine tag by *M. smegmatis*. Approximately 500 µg of 6 x Histidine tagged 8.4 kDa Ag were purified / litre of CF in one step by metal chelate affinity chromatography. The recombinant protein was shown to elicit specific IFN-γ responses *in vitro.*
ACKNOWLEDGEMENTS.

The studies that comprise this thesis were carried out using facilities and equipment provided by the Institute of Veterinary Animal and Biomedical Sciences (IVABS), Massey University. The funding for consumables and the scholarship were provided by the Agricultural Marketing and Development Trust (AGMARDT).

In common with many others who have embarked on Ph.D studies I have found it to have been a tremendous growth process, both professionally and personally. I hereby acknowledge the primary contribution made by my supervisors. My chief supervisor, Dr. Alan Murray took a chance by engaging a veterinarian with limited research experience, had a project with definite objectives and gave me a free rein, but provided useful criticism of often overlooked details. Dr. Murray also performed the PCR analysis described in Chapter 5. Dr. Brigitte Gicquel must be thanked for enabling this work to be conducted at the Pasteur Institute, Paris. My second supervisor, Dr. John Lumsden provided critical input into chromatographic and SDS-PAGE protein separation, Chapters 3 and 6, insight into the analysis of immunological assays, and from time to time - pastoral care.

Much of the work reported in this thesis was only made possible by the assistance of collaborators and commercial service providers. The nucleotide sequence of the 4.3 kb insert of *M. bovis* and other DNA sequences was determined by Dr. Kathryn Stowell and Lorraine Berry at the Massey University DNA Analysis Service. The species distribution of the 62 bp ETR locus was investigated in many more isolates of mycobacteria than available at Massey University by Dr. Cristina Gutierrez at the Pasteur Institute, Paris. Mass spectrometry and N-terminal sequencing was performed by Dr. Gill Norris and Mr. Trevor Loo at Massey University MasSpec, and Protein Sequencing Services. The experimental animals used at Massey University were grazed at the Large Animal Teaching Unit, and thanks must be extended to Mr. Robin Whitson and Odine Johnstone for their willing assistance with blood sampling.

The investigation of immune responses of BCG vaccinated and *M. bovis* challenged animals to the 8.4 kDa antigen was only possible because Dr. Bryce Buddle extended an invitation to ‘piggy-back’ on a trial conducted at AgResearch Wallaceville. I am indebted to him and Denise Keen for supplying blood from the calves, despite sometimes inclement weather. Acknowledgement must also be made of the input Dr. Bryce Buddle provided towards analysis and presentation of the data. Also Mr. Duncan Hedderley from the
Institute of Fundamental Sciences, Massey University who performed the ANOVA of the lymphocyte proliferation and IFN-γ data with the statistical programme SAS.

Many other members of IVABS and the Mycobacteria Laboratory provided invaluable assistance at various stages of the project. I would like to thank Linley Fray for teaching me how to perform lymphocyte proliferation and IFN-γ assays, Chris Dupont and Jane Oliaro who taught me PCR, gave general advice on molecular biological techniques and other pithy insights into the scientists’ world, Dr. Jeremy Rae for assistance with the ERMA application to the Genetic Technology Committee, Miho Minamikawa, Sue Copeland and Kalyani Perera for being company on innumerable weekends spent at the lab. I would also like to thank Mrs. Jan Scharma for volunteering to wash the tubes used for collecting the FPLC fractions. In addition, Professor. Hugh Blair, Mrs. Allain Scott, Mr. Peter Wildbore and Mrs. Karen Williamson must be thanked for their efficient administrative assistance.

Mention must also be made of others who were more peripherally involved. Principally Dr. Dave West who first suggested that I consider embarking on a Ph.D, and Professors Colin Wilkes, Bob Jolly and George Rolleston and Dr. Keith Thompson who provided the impetus to make it a reality. I would also like to acknowledge the support and friendship of others within IVABS too numerous to name individually, including the other post-graduate students, for their advice, brain-storming and social facilitation generally.

On a personal note, I would like to express my gratitude to Dr. Lisa Williams for invaluable critical comments on drafts of the manuscript, and to Professors Bill Manktelow and George Rolleston and Dr. Mark Rees for proofreading the final draft. My flatmates David Pacheco, Carolina Realini, Charlotte Sundé, Anna Mosley, Sabine Przemeck, Ellen Bennett and Megan Leyland for making 38A Parata St such a legendary place to live. Special mention must be made of Penny Back, Arturo Luque and Andrea Flavell who were just such good friends. My family particularly merits acknowledgement for their forebearance. My parents must have quietly despaired when their son returned to university, but they were unstintingly supportive.
TABLE OF CONTENTS.

Abstract ... I
Acknowledgements .. III
List of Tables .. X
List of Figures ... XII
Abbreviations .. XV
Introduction .. XVIII

Chapter 1. Literature Review .. 1

1.1 HISTORICAL OVERVIEW .. 2
 1.1.1 Control measures implemented in the twentieth century 3

1.2 THE BACTERIUM .. 4
 1.2.1 Taxonomy ... 4
 1.2.2 Mycobacterium tuberculosis complex .. 5
 1.2.3 Genotypic typing of mycobacterial isolates ... 6

1.3 PATHOGENESIS OF TUBERCULOSIS IN CATTLE .. 11
 1.3.1 Route of infection ... 11
 1.3.2 Development of tuberculous granulomas ... 11
 1.3.3 Progression of tuberculous disease .. 12

1.4 THE IMMUNE RESPONSE TO INFECTION WITH M. bovis 13

1.5 CONTROL AND ERADICATION OF BOVINE TUBERCULOSIS 18
 1.5.1 Principles of bovine tuberculosis control and eradication .. 19
 1.5.2 Control of bovine tuberculosis in New Zealand .. 20

1.6 DIAGNOSIS OF INFECTION IN CATTLE ... 21
 1.6.1 The intradermal test .. 22
 1.6.2 In vitro diagnostic assays ... 24
 1.6.3 Application of parallel in vitro diagnostic tests to bovine tuberculosis control in New Zealand .. 27
 1.6.4 Investigation of alternatives to PPD tuberculins ... 27

1.7 VACCINATION OF CATTLE AGAINST TUBERCULOSIS ... 29
 1.7.1 Origins of BCG and its use in humans ... 29
 1.7.2 Vaccination of cattle with BCG ... 30
 1.7.3 Alternatives to BCG .. 32

1.8 IDENTIFICATION OF MYCOBACTERIAL PROTEIN ANTIGENS 34
 1.8.1 Somatic and Secreted mycobacterial antigens .. 35
 1.8.2 Protein export by mycobacteria .. 35
 1.8.3 The immunological implications of somatic and secreted antigens 36
 1.8.4 Culture Filtrate as a source of secreted mycobacterial antigens 37
Chapter 2. Nucleotide sequence analysis of the 4.3 kb M. bovis DNA insert ... 41

2.1 INTRODUCTION ... 42

2.2 MATERIALS AND METHODS ... 42
2.2.1 Bacterial growth conditions ... 42
2.2.2 Extraction of plasmid DNA from E. coli .. 43
2.2.3 Restriction endonuclease digestion of plasmid DNA 44
2.2.4 Separation of DNA fragments by electrophoresis 44
2.2.5 Extraction of DNA from agarose gels ... 45
2.2.6 Phosphatase treatment of plasmid .. 45
2.2.7 Quantitation of DNA .. 45
2.2.8 Ligation of DNA fragments .. 45
2.2.9 Transformation of E. coli by electroporation 46
2.2.10 DNA sequencing .. 47
2.2.11 Computer analysis of DNA sequences .. 47

2.3 RESULTS .. 47
2.3.1 Construction of the pUC18/4.3 plasmids ... 47
2.3.2 Nucleotide sequence of the 4.3 kb insert 48
2.3.3 BLASTN search with the 4.3 kb M. bovis sequence 48
2.3.4 Alignment of the 4.3 kb M. bovis DNA insert sequence against the homologous M. tuberculosis sequences 49
2.3.5 BLASTN search with the 62 bp repeat sequence 49

2.4 DISCUSSION ... 50

Chapter 3. Identification of an immunoreactive 8.4 kDa protein in culture filtrate from M. smegmatis pSU151.43 51

3.1 INTRODUCTION ... 52

3.2 MATERIALS AND METHODS ... 52
3.2.1 Bacterial growth conditions ... 52
3.2.2 Preparation of culture filtrates for immunological assays 53
3.2.3 Estimation of protein concentrations ... 53
3.2.4 Preparation of culture filtrate for biochemical fractionation 54
3.2.5 Fractionation of the culture filtrate .. 54
3.2.6 Cattle used for this study ... 55
3.2.7 Lymphocyte proliferation assays .. 55
3.2.8 IFN-γ assays .. 57
3.2.9 N-terminal sequencing .. 57
3.2.10 Mass spectrometry .. 58
Chapter 4. Species distribution of the 62 base pair polymorphic tandem repeat locus

Chapter 5. Identification of a sequence in M. avium with homology to the gene coding for the 8.4 kDa Ag of M. bovis
Chapter 6. Immune responses to the 8.4 kDa antigen of BCG vaccinated and unvaccinated calves before and after challenge with *M. bovis*.

6.1 INTRODUCTION

6.2 MATERIALS AND METHODS
- 6.2.1 Experimental animals
- 6.2.2 Lymphocyte proliferation assays
- 6.2.3 IFN-\(\gamma\) assays
- 6.2.4 Immunoblotting
- 6.2.5 Statistical analyses

6.3 RESULTS
- 6.3.1 Lymphocyte proliferation and IFN-\(\gamma\) assay responses before and after challenge.
 - Sampling times 4, 5 and 6
- 6.3.2 Magnitude of responses to PPD-B, PPD-A and the 8.4 kDa Ag
- 6.3.3 Antibody responses

6.4 DISCUSSION

Chapter 7. Overexpression of the 8.4 kDa Ag by *E. coli* and *M. smegmatis*.

7.1 INTRODUCTION

7.2 MATERIALS AND METHODS
- 7.2.1 Plasmid propagation and extraction
- 7.2.2 Amplification of insert DNA by polymerase chain reaction
- 7.2.3 Restriction endonuclease digestion of DNA
- 7.2.4 Ligation of DNA and transformation of *E. coli*
- 7.2.5 Verification of cloning
- 7.2.6 Expression of recombinant fusion proteins in *E. coli*
- 7.2.7 Determination of the solubility of the GST-8.4 kDa antigen fusion protein
- 7.2.8 Transformation of *M. smegmatis*
- 7.2.9 Overexpression of the 8.4 kDa antigen by *M. smegmatis*
- 7.2.10 Purification of the 6 x Histidine tagged 8.4 kDa antigen by metal chelate affinity chromatography

7.3 RESULTS
- 7.3.1 Construction of plasmids for overexpression of recombinant 8.4 kDa antigen in *E. coli*
- 7.3.2 Overexpression of recombinant 8.4 kDa antigen in *E. coli*
- 7.3.3 Comparison of GST-8.4 kDa protein expression from *M. bovis* and *M. tuberculosis* sequences
- 7.3.4 Solubility of GST-8.4 kDa protein expressed in *E. coli* BL21
- 7.3.5 Construction of the plasmid pSUPSSHTb.8.4-DS(B) for over-expression and secretion of the 8.4 kDa Ag by *M. smegmatis*
7.3.6 Overexpression and secretion of recombinant 8.4 kDa antigen with a 6 x Histidine tag by \textit{M. smegmatis}... 114
7.3.7 Stimulatory activity of the recombinant 8.4 kDa antigen in IFN-\gamma assays................ 115
7.4 DISCUSSION.. 116

Conclusions and future directions... 119

Appendix I. Compilation of TB complex species’ secreted protein antigens........... 127

Appendix II.A Nucleotide sequence of the 4.3 kb \textit{Sph} I fragment of \textit{M. bovis}..... 134

Appendix II.B Primers used to sequence the 4.3 kb fragment of \textit{M. bovis}........... 135

Appendix III. Published sequence details of the 8.4 kDa antigen......................... 136

Appendix IV. Chapter 6. Raw data... 137

Appendix V. Chapter 6. Statistical analyses... 146

Appendix VIa. Sequence of expression construct pGEX-6P-3:8.4-DS(B)......... 154

Appendix VIb. Plasmid map showing construction of pSUPSSHTb:8.4-DS(B)..... 155

Appendix VII. Media, buffers and commonly used reagents............................ 156

References... 161
LIST OF TABLES.

Chapter 2.

Table 2.1 The strain of E. coli used in this study. 43
Table 2.2 Plasmids used in this study. 44

Chapter 3.

Table 3.1 Plasmids used in this study. 53
Table 3.2 Lymphocyte proliferation and IFN-γ responses to ProRPC column eluates derived from CF of M. smegamitis pSU151.43. 63

Chapter 4.

Table 4.1 The bacterial species and strains studied at Massey University. 70a
Table 4.2 Primers used in this study. 72
Table 4.3 The species distribution of the 62 bp ETR locus. 77a
Table 4.4 Genotypic typing results obtained with M. tuberculosis isolates from human patients. 78
Table 4.5 Genotypic typing results obtained with M. bovis isolates from human patients. 79
Table 4.6 Genotypic typing results obtained with M. bovis isolates from animals. 80

Chapter 5.

Table 5.1 Primers used in this study. 85

Chapter 6.

Table 6.1 Trial protocol. 90a
Table 6.2 Antigens used in lymphocyte proliferation assays. 92
Table 6.3 Details of antigens used in Western blots. 93
Table 6.4 Number of responses, Pre-challenge (Bleed 4). 94a
Table 6.5 Number of responses, Five weeks post-challenge (Bleed 5). 94a
Table 6.6 Number of responses, Ten weeks post-challenge (Bleed 6). 95
Chapter 7.

Table 7.1 Plasmids used in this study. 106a
Table 7.2 Bacteria used in this study. 107
Table 7.3 Primers used in this study. 107a
Table 7.4 IFN-γ assay responses. 116

Appendix 1.

Table I.A Protein antigens identified in the CF of TB complex species. 127
Table I.B Extracellular proteins of *M. tuberculosis* not identified as antigens. 132
Table I.C Somatic proteins unique to TB complex species. 132
Table I.D Extracellular enzyme activities of *M. tuberculosis*. 133
LIST OF FIGURES.

Chapter 1.

Figure 1.1 Spread of bovine tuberculosis by the lympho-haematogenous route. 11a
Figure 1.2 Generalization of tuberculosis from a lung lesion. 11a
Figure 1.3 Schematic representation of the domain structure of signal sequences, at the N-terminus of precursor proteins exported by the sec-dependent general secretory pathway. 34a

Chapter 2.

Figure 2.1 Agarose gel showing restriction digestion fragments of plasmids pSU151.43, pUC18/4.3#1 and pUC18/4.3#2. 47a
Figure 2.2 Alignment of part of the nucleotide sequence of the 4.3 kb M. bovis insert against the corresponding sequence of M. tuberculosis H37Rv, showing the 62 bp ETR locus. 48a
Figure 2.3 The predicted genes within the M. tuberculosis H37Rv sequence that is homologous to the 4.3 insert of M. bovis DNA. 49

Chapter 3.

Figure 3.1 Lymphocyte proliferation responses (Δ c.p.m) of PBMC from the BCG vaccinated animal No. 5, and the unvaccinated control animals Nos. 53 and 55, stimulated at 2.5 µg protein / ml. 60a
Figure 3.2 IFN-γ responses (Δ OD_{590}) of PBMC from the BCG vaccinated animal No. 5, and the unvaccinated control animals Nos. 53 and stimulated at 2.5 µg protein / ml. 60b
Figure 3.3 A section of a typical Uno™Q-6 anion exchange FPLC fractionation run. 61a
Figure 3.4 Representative whole blood IFN-γ assay responses (Δ OD_{590}) of the BCG vaccinated animal No.5 to Uno™Q-6 anion exchange column fractions. 62
Figure 3.5 A section of a typical Superose 6 HR 10/30 gel filtration FPLC run showing fractionation of the Uno™Q-6 eluate fraction C. 62a
Figure 3.6 A section of a ProRPC 5/2 reverse phase FPLC run showing elution of the 8.4 kDa protein as a single peak at 31% acetonitrile. 63a
Figure 3.7 Mass spectrometric analysis of a preparation of the 8.4 kDa antigen purified by reverse phase chromatography. 65
Figure 3.8 Western blot showing the 8.4 kDa Ag detected by specific polyclonal antiserum following separation of *M. smegmatis* pSU151.43 CF in reducing and non reducing conditions.

Chapter 4.

Figure 4.1 Representative agarose gel electrophoresis of the products of PCR amplification with primers SM3 and SM4 directed against genomic mycobacterial DNA extracted from the species listed in Table 4.1.

Figure 4.2 Southern blot showing the species distribution of 62 bp ETR locus.

Chapter 5.

Figure 5.1 Agarose gel showing the results of PCR with primers SM5f and SM5r.

Figure 5.2 Alignment of the translated sequence of the 8.4 kDa protein of *M. bovis* against the matching translated sequence of *M. avium*.

Figure 5.3 Alignment of the gene coding for the 8.4 kDa antigen of *M. bovis* against *M. avium* sequence 41.

Chapter 6.

Figure 6.1 Positive responses to PPD-B, PPD-A and the 8.4 kDa Ag; Pre-challenge (Bleed 4).

Figure 6.2 Positive responses to PPD-B, PPD-A and the 8.4 kDa Ag; Five weeks post-challenge (Bleed 5).

Figure 6.3 Positive responses to PPD-B, PPD-A and the 8.4 kDa Ag; Ten weeks post-challenge (Bleed 6).

Figure 6.4 Magnitude of responses to PPD-B, PPD-A and the 8.4 kDa Ag; Pre-challenge (Bleed 4).

Figure 6.5 Magnitude of responses to PPD-B, PPD-A and the 8.4 kDa Ag; Five weeks post-challenge (Bleed 5).

Figure 6.6 Magnitude of responses to PPD-B, PPD-A and the 8.4 kDa Ag; Ten weeks post-challenge (Bleed 6).

Figure 6.7 Geometric mean responses to PPD-B, PPD-A and the 8.4 kDa Ag; Pre-challenge, five and ten weeks post-challenge (Bleeds 4, 5 & 6).
Chapter 7.

Figure 7.1 SDS-PAGE gel showing overexpression of a GST-8.4 kDa Ag fusion protein by *E. coli* BL21. 113a

Figure 7.2 SDS-PAGE gel showing expression of a GST-8.4 kDa fusion protein from *M. bovis* and *M. tuberculosis* sequences. 113b

Figure 7.3 SDS-PAGE gel showing the soluble GST-8.4 kDa fusion protein expressed in *E. coli* BL21 transformed with the plasmid pGEX-6P-3:8.4-DS(B). 113c

Figure 7.4 Nucleotide sequence of the expression construct in plasmid pSUPSSHTb:8.4-DS(B), and the translated amino acid sequence of the overexpressed nascent protein. 114a

Figure 7.5 Western blot of recombinant 8.4 kDa Ag overexpressed and secreted by *M. smegmatis*. 114b
ABBREVIATIONS.

2D-PAGE two dimensional polyacrylamide gel electrophoresis.
2-ME 2-mercaptoethanol.
2xSLB 2 x sample loading buffer.
6 x His 6 x Histidine.
A_{280} absorbance at 280 nm.
Ag antigen.
AHB Animal Health Board.
APC antigen presenting cell.
APS ammonium persulfate.
ATCC American Type Culture Collection.
BCG M. bovis bacillus Calmette-Guérin.
BLAST basic local alignment search tool.
bp nucleotide base pairs
BSA bovine serum albumin.
CCT comparative cervical test.
CD cluster of differentiation.
CF culture filtrate.
Cos151 M. smegmatis cosmid library clone 151.
ConA concanavalin A.
dH_{2}O double distilled water.
c.p.m counts per minute.
Δ c.p.m difference in counts per minute.
Δ OD_{450} difference in optical density at 450 nm.
DAB 3, 3’-Diaminobenzidine.
DIG-dUTP Digoxigenin-11-2’-deoxy-uridine-5’-triphosphate.
DMSO dimethyl sulfoxide.
DNA deoxyribonucleic acid.
dsDNA double stranded DNA.
dNTP deoxynucleoside triphosphate.
DR direct repeat.
DTH delayed type hypersensitivity.
DTT dithiothreitol.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIA</td>
<td>enzyme immunoassay.</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme linked immunosorbent assay.</td>
</tr>
<tr>
<td>ERMA</td>
<td>Environmental Risk Management Authority.</td>
</tr>
<tr>
<td>ETR</td>
<td>exact tandem repeat.</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations.</td>
</tr>
<tr>
<td>FCS</td>
<td>foetal calf serum.</td>
</tr>
<tr>
<td>FPLC</td>
<td>fast protein liquid chromatography.</td>
</tr>
<tr>
<td>g</td>
<td>gravity (a force of ~ 10 N).</td>
</tr>
<tr>
<td>GST</td>
<td>glutathione-S-transferase.</td>
</tr>
<tr>
<td>HRP</td>
<td>horesradish peroxidase.</td>
</tr>
<tr>
<td>ICAM</td>
<td>intercellular adhesion molecule.</td>
</tr>
<tr>
<td>IFA</td>
<td>Incomplete Freund’s Adjuvant.</td>
</tr>
<tr>
<td>IFN</td>
<td>interferon.</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>interferon gamma.</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin.</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropylthio-β-galactoside.</td>
</tr>
<tr>
<td>IS</td>
<td>insertion sequence.</td>
</tr>
<tr>
<td>IU</td>
<td>international units.</td>
</tr>
<tr>
<td>IUATLD</td>
<td>International Union Against Tuberculosis and Lung Disease.</td>
</tr>
<tr>
<td>IUPAC</td>
<td>International Union of Pure and Applied Chemists.</td>
</tr>
<tr>
<td>kb</td>
<td>kilobase pairs.</td>
</tr>
<tr>
<td>LB</td>
<td>Lauria-Bertani.</td>
</tr>
<tr>
<td>LpP</td>
<td>lymphocyte proliferation.</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex.</td>
</tr>
<tr>
<td>MIRU</td>
<td>mycobacterial interspersed repetitive unit.</td>
</tr>
<tr>
<td>MPTR</td>
<td>major polymorphic tandem repeat.</td>
</tr>
<tr>
<td>MW</td>
<td>molecular weight.</td>
</tr>
<tr>
<td>MWCO</td>
<td>molecular weight cut-off.</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information.</td>
</tr>
<tr>
<td>NK</td>
<td>natural killer T-lymphocyte.</td>
</tr>
<tr>
<td>NVL</td>
<td>no visible lesions.</td>
</tr>
<tr>
<td>OD</td>
<td>optical density.</td>
</tr>
<tr>
<td>OIE</td>
<td>Office International des Epizooties.</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame.</td>
</tr>
</tbody>
</table>
PBMC peripheral blood mononuclear cells.
PBS phosphate buffered saline.
PCR polymerase chain reaction.
PGRS polymorphic GC rich repetitive sequence.
PMSF phenylmethylsulfonyl fluoride.
PO₄SB phosphate start buffer.
PO₄SB phosphate wash buffer.
PPD purified protein derivative.
PPD-A PPD derived from *M. avium*.
PPD-B PPD derived from *M. bovis*.
RFLP restriction fragment length polymorphism.
RNA ribosomal nucleic acid.
r.p.m revolutions per minute.
SDS-PAGE sodium dodecyl sulphate - polyacrylamide electrophoresis.
SIT single intradermal test.
TAE Tris-acetate.
TB complex *Mycobacterium tuberculosis* complex.
TBE Tris-borate.
TIGR The Institute for Genomic Research.
TEMED N, N, N’, N’-tetramethylethylenediamine.
Th 1/Th 2 T-helper cell phenotype Type 1/Type 2.
TNF tumour necrosis factor.
TTBS Tween Tris-buffered saline.
U units.
UV ultraviolet.
V volts.
VNTR variable number of tandem repeats.
WHO World Health Organization.
w/v weight for volume.
X-Gal 5-bromo-4-chloro-3-indoyl-β-D-galactoside.