Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
The effectiveness of on-farm control programmes against wildlife-derived bovine tuberculosis in New Zealand

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Massey University

Carola Sauter-Louis

2001
To obtain a copy of this thesis write to:

EpiCentre
Wool Building
Massey University
Palmerston North
New Zealand
Ph: +64 (0)6 350 5270
Fx: +64 (0)6 350 5716
E-mail: carola@sauter-louis.de
Abstract

In New Zealand the Australian brushtail possum (*Trichosurus vulpecula*), introduced in the middle of the 19th century, is the main wildlife reservoir for *Mycobacterium bovis* infection for farmed livestock and other wildlife species. Thus, control of tuberculosis (TB) has to involve both livestock and vector animals. Areas with endemic wildlife infection constitute 23% of New Zealand's land area. Vector control is mainly performed by large scale poisoning operations, by both aerial and on-ground baiting, conducted by official agencies, such as Regional Councils. The costs of vector control rose from NZ$18 million in 1995 to NZ$28 million in 1998/99, and finances are not available to cover all areas with endemic wildlife infection. There is a need for farmers to be involved and participate in TB control to complement the official control efforts. This thesis comprises a number of studies that looked in detail at on-farm control measures that could be applied at farm level, their efficiency and cost-effectiveness, in order to determine if and how farmers could take on-farm measures which would complement the official TB control programme.

In an initial survey of 27 Wairarapa herd managers, whose cattle herds were TB infected, 'grounded theory' was used to identify factors related to farm management and TB infection in cattle. Most farmers had knowledge or suspicion about potential high risk areas on their farm, where cattle were more likely to become infected with TB. Farms that grazed cattle in paddocks with TB hot-spot areas had a greater herd TB incidence than farms that excluded cattle from such areas, and used adjacent paddocks. Grazing management was found to be flexible, more so on beef farms than on dairy farms. These results formed the basis for designing on-farm control measures.

A subsequent intervention study used 67 Wairarapa farms. On-farm control measures were implemented for three years on 34 randomly selected 'focused control' farms. On-farm control measures included targeted vector control in spring and autumn, and adoption of grazing management in summer and winter that excluded cattle from TB hot-spots during these times. These measures were implemented by the research team during the first two years and farmers continued the control work in the third year. At the end of three years the effect of the interventions was evaluated. Focused control farms achieved more effective TB control than standard control farms. They were significantly less likely to have multiple TB animals per year, a higher proportion of focused control farms came off Movement Control, and the two-year cumulative TB incidence was reduced more on focused control farms than on standard control farms.

Part of the project was also to compare the Wairarapa project with a contemporary intervention study. The study was conducted on a national scale in four separate areas of New Zealand by a
national organisation, using 35 focused control and 70 standard control cattle/deer farms. Farmers were advised by a multi-disciplinary team on possible management changes and vector control for two years. The implementation of these measures was the responsibility of the individual farmers. Three and a half year after the start of the project the effectiveness was evaluated as part of this thesis. Focused control farms reduced the two-year cumulative TB incidence more than standard control farms. Comparison with the Wairarapa project indicated that the hands-on operational approach of the Wairarapa project had advantages over the ‘advice only’ approach in the national project.

All farmers involved in the two intervention studies were surveyed at the end of the intervention studies using a questionnaires, asking about farm management and TB related issues. Only the Wairarapa focused control farmers were interviewed during the project period. Only slight differences existed in these variables between focused and standard control farms in each of the projects, indicating that the allocation of farms to the two farm groups was adequate. Questions were also asked about attitudes towards TB and its control. Overall farmers rated the importance of TB eradication as very high. However, the majority of farmers were not in favour of stricter Movement Control regulations, removal of compensation or having to pay TB testing costs directly. Many farmers saw organisations, such as Government and Regional Council, as being responsible for eradicating TB and did not see any need to conduct control programmes themselves.

An economic analysis of the adoption of on-farm control measures was conducted using deterministic, stochastic and decision analysis. Under the current compensation level of 65% for TB test positive animals, the adoption of on-farm control measures generally was beneficial to dairy farms, but for beef farms only if they achieved TB free herd status. Reducing the compensation level to zero did not alter the situation significantly. The net gain in dairy farms increased, the situation in the beef breeding farms changed minimally and on beef finishing farms the adoption of control programmes became beneficial if the number of TB animals was reduced at least by two, without achieving TB free status.

The final stage of the project described in this thesis was the development and use of FarmORACLE, a whole-farm simulation model, that allows the user to combine knowledge about TB and its occurrence on farms with farm-specific grazing strategies. The model was used to compare traditional grazing strategies with alternative strategies, that excluded cattle and deer from grazing TB hot-spot paddocks during high-risk times. Four farms were described in detail. In all four farms an alternative grazing strategy was found that resulted in higher production or greater economic returns, while protecting the herd against exposure to tuberculous possums.
Acknowledgements

I came to New Zealand for the first time in 1993 and thanks to the encouragement and support I received during that time I decided to start a PhD. It was due to the vision of Roger Morris, my chief supervisor, that the project was developed and continued. Often I would think the problems are too big, the benefits too low, but Roger re-assured me and his enthusiasm would lift my spirits. I am especially grateful to Roger for providing the opportunity for me to do a PhD and for his personal and professional support. To Peter Wilson, my second supervisor, I am particularly grateful for the time and guidance I received during all these years. Especially in the last year, trying to teach me how to write not only correct English, but academic English. Thanks also to Dirk Pfeiffer, my third supervisor. For his guidance in many analytical matters and for his and Susanne’s friendship I am especially grateful. The combination of these three supervisors was the best I could have wished for, both on a personal and on a professional level.

I would like to express a special thanks to the late Ron Goile and to his wife, Donna. Ron conducted most of the fieldwork for me; he and Donna autopsied many possums and enabled me to go back and see my family in Germany. Without their help and input this project would never have been completed. Ron and Donna were like a second family to me here in New Zealand. Through their help and even more through their friendship I was able to grow with the project and not only learn about project related issues, but also about life and the importance of other things. I am extremely sad that Ron is not able to see this thesis finished, but I know that he will be with me in all the years and all the projects to come. Ron had a wonderful personality and I will never forget the talks we had about life, work, and personal things, sitting on the motorbike, having lunch under a tree, or when doing autopsies of smelly possums on the back of his truck.

The project involved three years of intensive fieldwork on 35 farms in the Wairarapa. Thank you to all these farmers and their families who made us feel so welcome and part of their families. Without their commitment this project would never have been completed and without their friendship it would not have been as enjoyable. Thank you also to all the farmers who participated in the various questionnaires.

This PhD would never have been completed without the support and friendship from all the people at the EpiCentre. Thanks to Ron Jackson, who encouraged me many times, to Fiona, whose help in writing English and publishing was often required; to Deb, who had to spend many hours of ‘counselling’ when things didn’t go the way I expected them to go; thanks also to Leigh and Laurie for their support and encouragement. A special thanks to Joanna, without her encouragement, reassurance and proof-reading, I probably would not have finished this PhD. Thanks to Nigel and Mark for their support. Thanks to Jörg, Sonja, Klim and Kathrein for the ‘German’ evenings and
the great company. And a special thanks to my office colleagues over the last few years – Joanna, Naomi, Rene and Nina, who supplied encouragement when times were difficult and a constant flow of chocolate at the end of the writing-up stage to keep my (and probably their own) sanity.

I would also like to acknowledge the tremendous help and friendship I have received from members of AgriQuality NZ based in Masterton, who provided me with data and field information, in particular Gillian Atkinson, Garth Pannett, and Alan Cornelius and all the livestock officers. I received also considerable help from staff in the Wellington Regional Council, based in Masterton. Thanks also to Chris Carter of AgriQuality and Tony Rhodes of Agriculture New Zealand for the help in obtaining the data from the national project, so that I could conduct the analysis.

I also would like to acknowledge the support of the AHB who funded this project and were helpful and patient many times during this PhD.

Finally, the greatest and deepest thanks goes to Tommi, my husband. We met one year into my PhD, got married, and lived for most of the time half a world apart, he in Germany, me in New Zealand. It was hard for both of us at times, having a marriage by e-mail, but he was supportive all the years, although he really wished nothing more than that I would be at home with him. He built databases, entered data totally unfamiliar to him (‘shoot them down’ instead of ‘down the chute’ a colloquial term for condemned carcasses), created queries and analytical outputs. He would encourage, support, give me confidence, and edge me on many times over the phone. I am unable to adequately express my gratitude to him and I am looking forward to enjoy ‘real’ married life with him. Thanks also to his family for supporting him while I was away.

I am particularly grateful to my parents, my sister and my brother. Without their encouragement, help and support, I would never have come to New Zealand in the first place and I would not have stayed that long. My father once was asked what I would be, once I have finished my PhD in New Zealand. He only smiled and said ‘Forty’. I managed to finish it before then, but sometimes it made me feel even older than that. Their support and love, even when separated by 20,000 km helped me to continue and conquer this challenge.

Thanks to all these people, and to all the students and staff from the EpiCentre for helping me to grow in myself, grow in personality, grow in character and grow professionally.

Carola Sauter-Louis
EpiCentre, Institute of Veterinary, Animal and Biomedical Sciences,
Massey University, Palmerston North, New Zealand

February 2001
Table of Contents

ABSTRACT ... I

ACKNOWLEDGEMENTS ... III

TABLE OF CONTENTS ... V

LIST OF FIGURES .. XI

LIST OF TABLES .. XV

INTRODUCTION A GUIDE TO THE METHODOLOGIES AND RATIONALE FOR RESEARCH PRESENTED IN THIS THESIS ... 1

BIBLIOGRAPHY ... 6

CHAPTER 1 CHANGING BEHAVIOUR: A LITERATURE REVIEW .. 9

INTRODUCTION ... 11

BEHAVIOUR CHANGE .. 11

Cognitive process ... 11

Information channels and sources .. 13

Brief overview of adult education .. 14

Innovation diffusion model ... 15

Innovation process ... 15

Characteristics and adoption of innovations .. 16

Change agent .. 18

Consequences of innovations ... 19

Decentralised diffusion systems .. 19

Human behaviour change: The smoking example .. 20

Example from agricultural extension ... 23

Definition of extension ... 24

Adoption process and efficiency of technology transfer .. 25

Recent techniques in agricultural extension ... 27

‘Farmer first’ model ... 27

Communication ... 28

Farmers’ and consumers’ goals ... 29

Motivation ... 30

Computer aided programs ... 30

Agricultural extension in New Zealand ... 31

History of extension ... 31

Communication channels .. 34

Factors influencing change in farm practices ... 36

Commercialisation of advisory services ... 38

Relevance to the hypothesis researched in this thesis ... 39

Conclusion ... 39

BIBLIOGRAPHY ... 40
CHAPTER 2 ANALYSIS OF WAIRARAPA FARMER PERCEPTIONS OF TUBERCULOSIS AND MANAGEMENT OPTIONS FOR CONTROL

ABSTRACT ... 59

INTRODUCTION ... 59

MATERIALS AND METHODS.. 60

GROUNDED THEORY ... 60
ANALYSIS OF QUALITATIVE DATA ... 61
SELECTION OF FARMS .. 62
INTERVIEW PROCESS .. 63
CONTENT ANALYSIS ... 63

RESULTS .. 65

DESCRIPTIVE ANALYSIS OF STUDY FARMS ... 65
General farm characteristics .. 65
TB history from existing records kept by AgriQuality ... 66
BUILDING THEORIES USING THE INTERVIEWS .. 68
Tuberculosis related observations by farmers .. 68
General farm management ... 75
Grazing management .. 76

DISCUSSION ... 79

DESCRIPTIVE ANALYSIS OF STUDY FARMS ... 79
METHODOLOGY ... 80
INTERVIEW CONTENT ANALYSIS ... 81

BIBLIOGRAPHY ... 87

CHAPTER 3 EFFECTIVENESS OF ON-FARM TUBERCULOSIS CONTROL PROGRAMMES:
FARMS LOCATED IN THE WAIRARAPA ... 93

ABSTRACT .. 95

INTRODUCTION ... 95

MATERIALS AND METHODS .. 97

STUDY AREA .. 97
POSSUM CONTROL EFFORTS BY THE REGIONAL COUNCIL ... 98
FARM SELECTION PROCESS ... 99
CATTLE TB DATA .. 101
CONFIRMATION OF TB STATUS .. 101
FARM VISITS .. 102
TB CONTROL MEASURES EMPLOYED IN THIS STUDY .. 103
Basis of the hypothesis .. 103
Targeted localised possum control ... 105
Livestock grazing management practices .. 107
ANALYSIS OF DATA ... 107

RESULTS .. 108

POWER ANALYSIS .. 108
VECTOR CONTROL CONDUCTED ON FOCUSED CONTROL FARMS BY THE RESEARCH TEAM 110
VECTOR CONTROL BY REGIONAL COUNCILS ... 113
ANALYSIS OF TUBERCULOSIS TESTING RECORDS ... 114
Time spent on Movement Control and Herd TB status at the end of the project 114
Number of TB cattle .. 116
Cumulative incidence and its reduction over three years ... 117

DISCUSSION ... 121
CHAPTER 4 EFFECTIVENESS OF ON-FARM TUBERCULOSIS CONTROL PROGRAMMES: COMPARISON OF WAIRARAPA STUDY WITH A CONTEMPORARY NATIONAL STUDY ... 133

ABSTRACT .. 135

INTRODUCTION .. 135

MATERIALS AND METHODS ... 136

STUDY AREAS ... 136
FARM SELECTION PROCESS ... 137
METHODS EMPLOYED .. 138
CATTLE AND DEER TB DATA AND CONFIRMATION OF TB STATUS 139
ANALYSIS OF DATA ... 139

RESULTS .. 140

VECTOR CONTROL CONDUCTED ON THE PROJECT FARMS BY THE REGIONAL COUNCIL 140
ANALYSIS OF TUBERCULOSIS TESTING RECORDS ... 141
Time spent on Movement Control and herd TB status at the end of the project 141
Number of TB animals ... 142
Cumulative TB incidence and its reduction over three years .. 143
COMPARISON OF THE NATIONAL PROJECT WITH THE WAIRARAPA PROJECT 147
Comparing only cattle farms ... 147
Comparing all farms ... 149

DISCUSSION ... 151

EVALUATION OF THE NATIONAL ONE-ON-ONE PROJECT .. 151
COMPARISON BETWEEN NATIONAL AND WAIRARAPA PROJECT ... 154

BIBLIOGRAPHY .. 154

CHAPTER 5 ATTITUDES OF FARMERS TO BOVINE TUBERCULOSIS CONTROL IN NEW ZEALAND ... 159

ABSTRACT .. 161

INTRODUCTION .. 161

MATERIALS AND METHODS ... 162

SURVEYS ... 162
Wairarapa project farms ... 162
National project farms .. 163
DEFINITION OF TERMS USED ... 165
ANALYSIS OF DATA ... 165

RESULTS .. 166

Wairarapa Farms ... 166
General farm characteristics ... 166
Herd manager ... 171
Stock management .. 172
TB risk assessment .. 173
Vectors and vector control on farms .. 175
Attitudes towards TB and its control .. 179
Perceived cost of TB and its control by farmers ... 186
Multivariate analysis between Wairarapa focused and standard control farms 187
NATIONAL STUDY FARMS .. 187
General farm characteristics ... 187
Herdmanger ... 190
Stock management .. 192
TB risk assessment .. 193
Vectors and vector control on farms 195
Attitudes towards TB and its control 197
Perceived cost of TB and its control by farmers 202
Multivariate analysis between national focused and standard control farms 202

DISCUSSION .. 203
Comparing focused control farms with standard control farms .. 203
Attitudes towards TB and its control 204
Conclusions .. 206

BIBLIOGRAPHY .. 207

CHAPTER 6 ECONOMIC EVALUATION OF TB CONTROL PROGRAMMES AND POTENTIAL BENEFITS OF USING INCENTIVES OR AN INSURANCE SCHEME FOR DIFFERENT FARM TYPES .. 209

ABSTRACT .. 211

DEFINITIONS .. 211

INTRODUCTION .. 212
Need for economic analysis ... 213
Techniques available for analysis 214
Aim of this study .. 214
Insurance .. 214

MATERIALS AND METHODS .. 216
Representative farms included in the study 216
Tuberculous animals .. 217
Details of costs and revenues used in the partial budgeting .. 218
Additional returns resulting from the implementation of control measures 218
Reduced costs resulting from the implementation of control measures 219
Additional costs resulting from the implementation of control measures 219
Returns foregone as a result of the introduction of control measures 221
Parameters used in the economic analysis 221
Deterministic model ... 221
Stochastic model .. 222
Decision analysis .. 225

RESULTS ... 226
Deterministic model ... 226
Current situation (65% compensation) 226
Alternative situations with reduced or no compensation for reactor animals 228
Alternative situation with subsidies on control costs ... 230
Break-even points ... 232
Stochastic model (@RISK) ... 233
Stochastic model on dairy farms 233
Stochastic model on beef breeding and beef finishing farms .. 236
Comparing 65% compensation level for reactors with zero compensation 239
Decision analysis .. 241
Decision analysis on dairy farms 241
Decision analysis on beef breeding farms 242
Decision analysis on beef finishing farms 246

DISCUSSION .. 251
Factors considered and omitted in the partial budget ... 251
List of Figures

Figure 1: Text coding windows for TB history of one sample farm using the qualitative software programme WinMAX98 ... 64
Figure 2: Example of a Mind Map with categories and events used in describing the TB situation and TB perception of one farmer in the sample ... 65
Figure 3: Box-plot of five-year cumulative TB incidence rates (lesioned animals 1990-1994) for the three main farm types (excluding one extreme outlier in the beef breeding group with an incidence of 0.87). ... 67
Figure 4: Location of study farms in the Wairarapa in the North Island of New Zealand 98
Figure 5. Average monthly point prevalence of TB in possums (data obtained from the longitudinal study in Castlepoint) ... 104
Figure 6. Proportion of possums dying from tuberculosis per month of population at risk 105
Figure 7. Relationship between power and sample size at four different proportions of focused control farms and 30% of standard control farms remaining on Movement Control 109
Figure 8. Relationship between sample size and power to detect a difference in cumulative incidence of TB of 0.01 and 0.02 between focused and standard control farms with a common standard deviation of 0.045 ... 110
Figure 9. Percentage of farms under RC vector control, assuming that a control operation lasts for four years .. 113
Figure 10. Percent of focused and standard control farms that had equal or more than one, two, or three reactors in any one of the two years ... 117
Figure 11. Frequency histogram of pre-study cumulative incidence of TB animals in 1995/96 for focused and standard control farms ... 118
Figure 12. Frequency histogram of cumulative incidence of TB animals 1998/99 for focused and standard control farms .. 119
Figure 13. Distribution of 2yr cumulative incidence (skin test reactors plus lesioned culls) for 1995/96, stratified by farm group and herd type ... 120
Figure 14. Distribution of 2yr cumulative incidence (skin test reactors plus lesioned culls) for 1998/99, stratified by farm group and herd type ... 120
Figure 15. Study farm locations within four areas of New Zealand .. 137
Figure 16. Percent of farms under RC vector control, assuming that a control operation lasts for four years .. 140
Figure 17. Time (in months) spent on Movement control by focused and standard control farms between 1996 and 1998 ... 141
Figure 18. Proportion of farms with one, two, three or more TB animals in the years 1993/94; 95/96 and 98/99 for focused control and standard control farms .. 143
Figure 19. Reduction in cumulative TB incidence between 1993/94 and 1997/98 for focused and standard control farms ... 144
Figure 20. Cumulative TB incidence in different herd types of focused and standard control farms for 1993/94 and 1997/98 .. 145
Figure 21. Comparison of reduction in cumulative TB incidence in cattle farms of Wairarapa and national focused and standard control farms ... 149
Figure 22. Effective farm size distribution of all farms included in the Wairarapa study 167
Figure 23. Violin plots for effective farmed area of Wairarapa focused control, standard control and non-TB farms .. 168
Figure 24. Cattle herd size distribution of farms included in the study in livestock units 169
Figure 25. Violin plots for the cattle proportion of total livestock units for focused control, standard control, and non-TB farms ... 170
Figure 26. Violin plots for cattle density on focused control, standard control, and non-TB farms .. 170
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>Tornado graph with results of sensitivity analysis showing the importance of influence of different input variables for the situation where a beef breeding farm had 5 reactors per year and reduced it to zero due to the implementation of on-farm control programmes. 238</td>
</tr>
<tr>
<td>53</td>
<td>Expected revenues minus costs from stochastic partial budgeting (@RISK) for all three farm types and all six scenarios of reducing reactor numbers with 65% and zero compensation. 240</td>
</tr>
<tr>
<td>54</td>
<td>Decision tree for expected financial outcomes for adoption or non-adoption of on-farm control measures on a dairy farm with five reactors. 242</td>
</tr>
<tr>
<td>55</td>
<td>Decision tree for expected financial outcomes for adoption or non-adoption of on-farm control measures on a beef breeding farm with five reactors. 243</td>
</tr>
<tr>
<td>56</td>
<td>Decision tree for beef breeding farm starting with two reactors and changed probabilities of reducing reactor numbers after implementing on-farm control programmes. 245</td>
</tr>
<tr>
<td>57</td>
<td>Subsidies and off-MC-payments for beef breeding farms in order to make adoption of on-farm control programmes the preferred option in the decision analysis for the five-, two, and one-reactor starting situation. 246</td>
</tr>
<tr>
<td>58</td>
<td>Subsidies and off-MC-payments for beef finishing farms in order to make adoption of on-farm control programmes the preferred option in the decision analysis for the five-, two, and one-reactor starting situation. 248</td>
</tr>
<tr>
<td>59</td>
<td>Graphical display of FarmORACLE. 277</td>
</tr>
<tr>
<td>60</td>
<td>Creating a paddock map in FarmTracker. 278</td>
</tr>
<tr>
<td>61</td>
<td>Setting up grazing plans in FarmORACLE. 281</td>
</tr>
<tr>
<td>62</td>
<td>Location of animal groups on the farm map in FarmORACLE. 282</td>
</tr>
<tr>
<td>63</td>
<td>FarmORACLE output of animal intake and farm cover for dairy cows. 283</td>
</tr>
<tr>
<td>64</td>
<td>FarmORACLE output of animal liveweight plus supply and demand for dairy cows. 284</td>
</tr>
<tr>
<td>65</td>
<td>Paddock map of dairy farm A, with TB hot-spot area in grey. 286</td>
</tr>
<tr>
<td>66</td>
<td>Grazing routines during summer and winter on dairy farm A, using traditional grazing plans. 287</td>
</tr>
<tr>
<td>67</td>
<td>Alternative grazing routines during summer and winter on dairy farm A, excluding TB hot-spots from grazing at these times. 287</td>
</tr>
<tr>
<td>68</td>
<td>Paddock map and TB hot-spot (in grey) on dairy farm B. 289</td>
</tr>
<tr>
<td>69</td>
<td>Aerial photograph of beef breeding farm. 292</td>
</tr>
<tr>
<td>70</td>
<td>Aerial photograph of beef breeding farm with paddock layout. 293</td>
</tr>
<tr>
<td>71</td>
<td>Paddock map on beef breeding farm (TB hot-spot in grey, pine plantation in dark green). 294</td>
</tr>
<tr>
<td>72</td>
<td>Grazing locations of cattle and sheep, using traditional grazing plans, for August 1998 on the beef breeding farm. 295</td>
</tr>
<tr>
<td>73</td>
<td>Paddock map and TB hot-spot (in grey) of the beef finishing farm. 297</td>
</tr>
<tr>
<td>74</td>
<td>August grazing plans under the traditional grazing scheme for cattle and sheep on the beef finishing farm. 298</td>
</tr>
<tr>
<td>75</td>
<td>December grazing plans under the traditional grazing scheme for cattle and sheep on the beef finishing farm. 298</td>
</tr>
<tr>
<td>76</td>
<td>Alternative grazing plans for cattle during high risk times (winter and summer). 299</td>
</tr>
</tbody>
</table>
List of Tables

Table 1. Mean [and range] of some characteristics of study farms in the Wairarapa. 66
Table 2. Distribution of focused and standard control farms by herd type and Regional Council vector control area (December 1996). .. 100
Table 3. Details of possum trapping and poisoning on the focused control farms, together with their effective farmed area. ... 112
Table 4. Number of focused and standard control farms by TB status at the end of the intervention programme (December 1999). .. 115
Table 5. Transitions of TB status of focused and standard control farms during the project period 1997-1999. (I= infected, C= clear status, D= disbanded) ... 116
Table 6. Number of focused and standard control farms with one, two or more reactors in any one of the two years. ... 117
Table 7. Average two-year cumulative incidence (cum inc.) of TB animals in focused and standard control farms and the reduction versus the 1995/96 cumulative incidence. 118
Table 8. Within group average of two-year cumulative incidence of TB animals in focused and standard control farms, stratified for herd type; and reduction in cumulative incidence achieved. (The number of farms in each category is shown in brackets.) 119
Table 9. Two-year cumulative TB incidence for 1995/96 and 1998/99 for focused and standard control farms, stratified by Regional Council control received prior to June 1996 .. 121
Table 10. Number of focused control and standard control farms by TB status at the end of 1998 – in brackets the percentage of total farms .. 142
Table 11. comparing TB status at end of 1998 within herd type, in brackets percentage of farms in that herd type group... 142
Table 12. Number of focused and standard control farms with one, two or more TB animals in any one of the two years ... 143
Table 13. Average two-year cumulative TB incidence (Cum inc.) for national focused and standard control farms .. 144
Table 14. Average two-year cumulative incidence (Cum inc.) of TB in focused control and standard control farms, stratified for herd type and reduction in cumulative incidence achieved .. 145
Table 15. Comparison of two-year cumulative TB incidence (Cum inc.) and reduction between focused and standard control farms stratified by regions (the number of farms is shown in brackets) ... 146
Table 16. Two-year cumulative TB incidence (Cum inc.) on focused and standard control farms stratified on whether they had received vector control prior to the start of the project mid 1995 (the number of farms is given in brackets) ... 146
Table 17. TB status of Wairarapa and national cattle study farms at the end of the projects 146
Table 18. Number of Wairarapa and national study cattle farms with one, two, three or more TB animals in the final study year ... 147
Table 19. Comparison of two-year cumulative TB incidences in the years prior to the commencement of the intervention studies and the last two years of the projects of Wairarapa and national study farms (cattle farms only) ... 148
Table 20. TB status of Wairarapa and national study farms at the end of the projects 148
Table 21. Number of Wairarapa and national study farms with at least one, two or three TB animals in the final study year .. 150
Table 22. Comparison of two-year cumulative TB incidences (Cum inc.) in the years prior to the commencement of the intervention studies and the last two years of the projects of Wairarapa and national study farms (all farms) ... 151
Table 23. Number of farmers responding to the questionnaire in the Wairarapa and National project .. 164
Table 24. General characteristics of focused control, standard control, and non-TB farms

Table 25. Average farmed area stratified by herd type and Wairarapa farm group (with range in brackets).

Table 26. Information on stock movements on and off farms for focused control, standard control, and non-TB farms

Table 27. Information on the TB situation and perception of focused control, standard control, and non-TB farms

Table 28. Assumed likelihood of contact between possums/ferrets and livestock, as indicated by focused control, standard control, and non-TB farmers.

Table 29. Vector control by Regional Council and farmers as stated by focused control, standard control, and non-TB farmers.

Table 30. Attitudes towards TB control by Wairarapa focused control, standard control, and non-TB farmers (percentages of farm group in brackets).

Table 31. Importance of farmer conducted vector control as seen by the three farm groups - focused control, standard control, and non-TB farmers.

Table 32. Organisations considered by Wairarapa herd managers to be responsible for eradicating TB (in brackets the number of farms that ranked these organisations with the highest priority). The last column gives the percentages of all farmers that nominated this organisation.

Table 33. Organisations considered by Wairarapa herd managers to be responsible for doing the actual work to eradicate TB (in brackets the number of farms that ranked these organisations with the highest priority). The last column gives the percentages of all farmers that nominated this organisation.

Table 34. Estimated costs of TB and its control to Wairarapa focused and standard control farms.

Table 35. General farm characteristics of National focused and standard control farms.

Table 36. Average farmed area stratified by herd type and national farm group (with range in brackets).

Table 37. Livestock units and stock densities of cattle and deer on national focused and standard control farms.

Table 38. Information on herd managers for national focused and standard control farms.

Table 39. Information on stock movements on and off farms for national focused and standard control farms.

Table 40. Information on the TB situation and perception of national focused and standard control farms.

Table 41. Assumed likelihood of contact between possums/ferrets and livestock, as indicated by national focused and standard control farmers.

Table 42. Vector control by Regional Council and farmers as stated by national focused and standard control farmers.

Table 43. Attitudes towards TB control by national focused and standard control farmers (percentages of farm group in brackets).

Table 44. Importance of farmer conducted vector control as seen by focused and standard control farmers.

Table 45. Organisations considered by national herd managers to be responsible for eradicating TB (in brackets the number of farms that ranked these organisations with the highest priority). The last column gives the percentages of all farmers that nominated this organisation.

Table 46. Organisations considered by national herd managers to be responsible for doing the actual work to eradicate TB (in brackets the number of farms that ranked these organisations with the highest priority). The last column gives the percentages of all farmers that nominated this organisation.

Table 47. Estimated costs of TB and its control to national focused control and standard control farms.

Table 48. Some characteristics of farms in the Hawke’s Bay-Wairarapa District (from Ministry of Agriculture and Forestry, 1998).
Table 49. Summary of data and assumptions used in partial budgeting of implementing on-farm control programme on the three farm types in the Wairarapa .. 221
Table 50. The six scenarios analysed in the study .. 222
Table 51. Distribution parameters for input variables for costs and returns used in the stochastic @ RISK partial budgeting model for the three farm types in the Wairarapa 224
Table 52. Assumed probabilities of reducing reactor numbers per farm if conducting on-farm TB control or not .. 226
Table 53. Expected economic outcomes of the partial budgeting for reducing the number of reactors in three different farm types (using current compensation of 65%) ... 227
Table 54. Expected economic outcomes in partial budgeting of reducing the number of reactors in the three different farm types with zero compensation .. 230
Table 55. Expected net returns with subsidy to cover costs of poison and bait stations for beef breeding farms and additional subsidies necessary to achieve net gain in all and all except one scenarios .. 231
Table 56. Expected net returns with subsidy to cover costs of poison and bait stations for beef finishing farms and additional subsidies necessary to achieve net gain in all and all except one scenarios ... 231
Table 57. Expected net returns with subsidy to cover costs of poison and bait stations for dairy farms and additional subsidies necessary to achieve net gain in all and all except one scenarios .. 232
Table 58. Descriptive statistics for the probability distributions of the difference between returns and costs resulting from simulation modelling of the six different scenarios for dairy farms .. 234
Table 59. Expected financial values of adoption and non-adoption of on-farm control measures on dairy farms under different levels of compensation and slaughter levies with different starting numbers of reactors .. 241
Table 60. Expected financial values of adoption and non-adoption of on-farm control measures on beef breeding farms under different levels of compensation and slaughter levies with different starting numbers of reactors .. 244
Table 61. Yearly off-MC-payments and subsidies for material and labour necessary to make ‘adoption’ of on-farm control programmes the preferred option on beef breeding farms under 65% and zero compensation for reactor animals, stratified for reactor starting situations with five, two and one reactors .. 246
Table 62. Expected financial values of adoption and non-adoption of on-farm control measures on beef finishing farms under different levels of compensation and slaughter levies with different starting numbers of reactors .. 247
Table 63. Yearly off-MC-payments and subsidies for material and labour necessary to make ‘adoption’ of on-farm control programmes the preferred option on beef finishing farms under 65% and zero compensation for reactor animals, stratified for reactor starting situations with five, two and one reactors .. 248
Table 64. Subsidies used for the three farm types under two different amounts of off-MC-payments, stratified for starting reactor numbers under 40% and 65% reactor compensation .. 249
Table 65. Regional cost for providing vouchers for control work and two different off-MC-payments under two different compensation levels for reactor animals .. 250
Table 66. Expected financial outcome of adopting on-farm control measures for the three herd types and the different reactor scenarios .. 259
Table 67. Economic outcomes of deterministic and stochastic partial budgeting on adopting on-farm control methods for TB, stratified by farm types, compensation level and reduction of TB reactor numbers .. 263
Table 68. Outcomes of decision analysis whether to adopt on-farm control programmes or not, stratified by farm types, reactor compensation level and number of reactors to start with ... 264
Table 69. Liveweight targets for dairy cows and heifers (in kg), used in FarmORACLE .. 279
Table 70. Liveweight targets for beef cattle and sheep (in kg), used in FarmORACLE 280
Table 71. Production outcomes in modelling traditional (base) and alternative grazing plans on Dairy farm A..288
Table 72. Production outcomes in modelling traditional ('Base List' and 'Base High') and alternative grazing plans on Dairy farm B..290
Table 73. Economic comparison between grazing plans used on Dairy farm B. ..291
Table 74. Summary of cattle and sheep liveweights for sale using different grazing plans........296
Table 75. End liveweights of cattle and sale ewes for three different grazing plans.........................299
Table 76. Difference in carcass weights and economic outcome comparing different grazing plans on the beef finishing farm. ..300
Table 77. Comparison of grazing regimes using 800 versus 1600 kg DM/ha residual................301