Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Practical Aspects of Phytoextraction

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
in
Earth Science

Christopher William Noel Anderson

2000

Massey University
Palmerston North
New Zealand
APPLICATION FOR APPROVAL OF REQUEST TO EMBARGO A THESIS
(Pursuant to AC 98/168 (Revised 2), Approved by Academic Board 16.02.99)

Name of Candidate: Christopher W. N. Anderson ID Number: 93000196
Degree: PhD Dept/Institute/School: Institute of Natural Resources
Thesis Title: Practical Aspects of Phytoextraction
Name of Chief Supervisor: Prof. R. R. Brooks Telephone Extn: 7023

As author of the above named thesis, I request that my thesis be embargoed from public access until (date) 1st of April 2002 for the following reasons:

☐ Thesis contains commercially sensitive information.
☐ Thesis contains information which is personal or private and/or which was given on the basis that it not be disclosed.
☐ Immediate disclosure of thesis contents would not allow the author a reasonable opportunity to publish all or part of the thesis.
☐ Other (specify):

Please explain here why you think this request is justified:

This thesis contains unpublished information that describes in detail the steps necessary to effect the phytoextraction of gold using induced hyperaccumulation. Ongoing research is investigating the economic potential of this technology. The information contained within this thesis will remain commercially sensitive until this period of research has been completed.

Signed (Candidate): ___________________________ Date: 18/2/00
Endorsed (Chief Supervisor): ___________________________ Date: 18/2/00
Approved/Not Approved (Representative of VC): ___________________________ Date: 20/02/00

Note: Copies of this form, once approved by the representative of the Vice-Chancellor, must be bound into every copy of the thesis.
Abstract

Phytoextraction for heavy metals is an emerging technology that has potential application for the remediation of many contaminated sites around the world. The technology has similar application to the mining of low-grade ore bodies. Several practical aspects of the technology are addressed in this thesis.

Natural and induced-uptake phytoextraction trials have been conducted on two contaminated substrates: an area of industrial pollution in northern France, where base metals are present in an oxide and carbonate mineral phase, and an area of mine tailings in New Zealand, where base metals are present in a sulphide or sulphate mineral phase. The uptake response of several hyperaccumulator and non-accumulator plant species is described. Geochemical models are then presented that explain the observed metal uptake as a function of the predominant chemical form of metal present in the soil. Natural uptake is dependent upon the form of metal. It appears that the relative efficacy of various hyperaccumulator species to accumulate metals is also dependent upon site-specific geochemistry. The efficacy of chelating agents, in particular EDTA, to induce uptake is similarly dependent upon the chemical form of metals in the soil.

A field trial for cadmium phytoextraction was conducted on an area of pastoral land contaminated with this metal due to the application of cadmium to soil through superphosphate fertilisation. Natural uptake at this site by the hyperaccumulator species *Thlaspi caerulescens* could remove the equivalent of 17 years of annual cadmium application in one harvest. The chelating agent EDTA (ethylenediaminetetraacetic acid) did not induce significant uptake by the non-accumulator *Brassica* species. Instead, the action of this chemical was to redistribute 14% of the cadmium initially present in the 0-5 cm soil depth to the 5-10 cm depth, and to leach approximately 4% of the cadmium initially present at the site to below 10 cm in the soil profile, as shown by mass balance calculations. Phytoextraction effected by *T.caerulescens* is proposed as a management tool for cadmium in the pastoral environment.
Phytoextraction for nickel has been investigated at a field site in the central North Island of New Zealand. Hyperaccumulation was effected by two *Alyssum* species and by *Berkheya coddii*. However, the biomass of the harvested plant material was below that reported in the literature. The conclusion from this trial is that substrate modification of ultramafic soil may be necessary before phytoextraction for nickel could be implemented.

A significant obstacle hindering the practical application of phytoextraction in some environments, is the paucity of hyperaccumulator species that are native to some parts of the world. Western Australia has many sites that may benefit from phytoextraction for nickel. However, only one hyperaccumulator species is native to this region, *Hybanthus floribundus*, a species that has in the past been difficult to germinate from seed. This thesis describes a successful approach to germination, involving the use of one-year-old seeds, treated with ‘Regen 2000 smoke water’ and germinated under dark conditions, that may overcome this practical aspect (a limitation) of phytoextraction technology.

The most recent advance of induced phytoextraction technology has been the thioligand-induced uptake of gold by plants. The initial discovery and the geochemical rationale behind the induced uptake of gold is described. The maximum gold uptake presented is accumulation of 57 mg/kg dry weight gold by *Brassica juncea* and it is proposed that this level of uptake could make the phytomining of gold from tailings areas an economic proposition.

The conclusion of this thesis is that potential for the implementation of phytoextraction is large. Globally, the technology could offer an environmentally and economically friendly alternative to the traditional decontamination of metals from some sites. There is also potential for the phytomining of metals from low-grade ores. The social implications of phytoextraction technology in third-world countries could also be large. Phytoextraction for gold, for example, from auriferous tailings in Africa and South America, has the potential to improve both the environment and the standard of living of the local communities who live off contaminated land.
Acknowledgements

I would like to express my sincere thanks to my supervisors. Firstly to Professor Robert Brooks, under whose guidance I feel privileged to have had the opportunity to study metal uptake by plants. Also to Bob Stewart and to Robyn Simcock for keeping me honest and on track to finish within time, and for pulling in the reins when I would slip out of control!

I would like to express my thanks to the Agricultural and Marketing Research and Development Trust (AGMARDT) for funding this project through the award of a doctoral scholarship.

I thank Professor Daniel Petit from the University of Lille in northern France who made possible my time researching metal uptake in Europe. I also express my deepest thanks to Annabelle Deram and Valerie Bert from Lille whose friendship made my time there so enjoyable.

I acknowledge the support of the Western Mining Company Ltd. of Australia, in particular Colin Woolard, Tara Read, Bonny Nicholson and Frances Mills for making possible the Australian part of the project and for showing me the ‘wild’ ways of Western Australia.

I am greatly indebted to other agencies for their financial support of this project. To the New Zealand Vice Chancellors’ Committee for the award of a Claude McCarthy Fellowship which enabled me to attend the ICObTE conference in Vienna and the PACRIM conference in Bali during 1999. To the graduate research fund for making travel and field trials possible. To the Massey University Ag-hort faculty for the award of a Helen E. Akers scholarship in 1998.

I thank most sincerely Mr. Don Adams from Blairlogie, Wairarapa whose assistance made possible the Wairarapa cadmium field trial.

I also thank Mr. Peter Strongman from Rorison Mineral Developments Ltd. of Piopio whose assistance made possible the Piopio nickel field trial.

I say a big thank you to all the staff and students, past and present, who have supported me through my years in the Soil Science Department. Five years ago I swore I was never going to complete Honours let alone a PhD! The value of the advice, encouragement and assistance that goes with being part of a good department cannot be measured.

I would like to thank all my friends outside of Massey, who have put up with me through good times and bad over the course of my studies.

Finally, I would like to acknowledge and express my deepest thanks to my family for their encouragement and support as I became interested in science from an early age.
Table of Contents

Abstract ... i

Acknowledgements ... iii

List of Figures .. viii

List of Tables .. xi

Chapter 1 - Introduction and Overview of the Current Study... 1

Chapter 2 - Phytoextraction: a General Introduction ... 6
 2.1 Contamination vs pollution; sources of heavy metal in soil .. 6
 2.2 Phytoextraction: phytoremediation and phytomining ... 8
 2.3 Natural hyperaccumulation .. 9
 Hyperaccumulation of cadmium ... 11
 Hyperaccumulation of copper and cobalt ... 12
 Hyperaccumulation of lead .. 13
 Hyperaccumulation of manganese .. 13
 Hyperaccumulation of nickel .. 13
 Hyperaccumulation of selenium ... 14
 Hyperaccumulation of thallium ... 14
 Hyperaccumulation of zinc ... 14
 2.4 Induced hyperaccumulation .. 15
 2.5 The distribution of hyperaccumulators and reason for the phenomenon 17
 2.6 The mechanisms for hyperaccumulation ... 20
 2.7 Bioavailability of metals in the soil ... 24

SECTION A - PHYTOEXTRACTION OF CADMIUM, LEAD AND ZINC:
OBSERVED AND MODELLED UPTAKE ... 26

Chapter 3 - Trials on Contaminated Substrates ... 30
 3.1 Introduction .. 30
 3.2 Field trials in northern France ... 31
 3.3 Trials on tailings from the Tui base-metal mine ... 34
 Experimental Design .. 36
 3.4 Hyperaccumulation trials using *Berkheya coddii* .. 37
 3.5 Hyperaccumulation trials using *Cardaminopsis halleri* .. 37
 3.6 Hyperaccumulation trials using other species ... 39
 3.7 Problems with metal uptake ... 39
 Terminology for Chapters 4, 5 and 6 ... 41

Chapter 4 - Geochemical Model for Lead Uptake .. 42
 4.1 Introduction .. 42
 4.2 Experimental Design .. 42
 4.3 Results: *Brassica juncea* .. 43
 4.4 Results: *Thlaspi caerulescens* .. 45
 4.5 Results: total soil lead ... 47
 4.6 Results: plant-available lead .. 47
 4.7 Discussion - a model for lead uptake .. 48
 4.8 Conclusion .. 49
Chapter 5 - Geochemical Model for Cadmium Uptake ... 50
5.1 Introduction .. 50
5.2 Experimental design .. 50
5.3 Results: *Brassica juncea* ... 51
5.4 Results: *Cardaminopsis halleri* .. 54
5.5 Results: *Thlaspi caerulescens* ... 55
5.6 Results: total soil cadmium ... 56
Effect of metal concentration on uptake ... 56
5.7 Results: plant-available cadmium ... 57
5.8 Discussion - a model for cadmium uptake ... 58
Relationship between ammonium acetate and the metal phase 60
5.9 Conclusion .. 63

Chapter 6 - Geochemical Model for Zinc Uptake ... 64
6.1 Introduction .. 64
6.2 Experimental design .. 64
6.3 Results: *Cardaminopsis halleri* .. 65
6.4 Results: *Thlaspi caerulescens* ... 68
6.5 Results: total soil zinc .. 69
6.6 Results: plant-available zinc .. 69
6.7 Discussion - a model for zinc uptake .. 70
Relationship between ammonium acetate and the metal phase 71
6.8 Conclusion .. 73

Chapter 7 - An Integrated Geochemical Model for Cadmium, Lead and Zinc Uptake 75
7.1 Practical aspects of phytoextraction for cadmium, lead and zinc 75
7.2 Application of the geochemical model to results from pot and field trials 79
Auby - northern France ... 79
Tui Mine tailings - New Zealand .. 81
7.3 Conclusion .. 82

Chapter 8 - Phytoremediation: a possible management solution for New Zealand pastoral soils ... 85
8.1 Introduction and literature review of the issue of cadmium in soils 85
Sources of cadmium contamination ... 86
Phosphatic fertilisers ... 86
Cadmium in agricultural land ... 86
8.2 Materials and methods ... 87
Experimental Design ... 87
Analysis of plant samples ... 91
Analysis of soil samples ... 91
8.3 Results ... 93
8.4 Discussion ... 94
Plant metal uptake ... 94
Effect of soil cadmium concentration on metal uptake .. 97
Cadmium redistribution within the soil ... 97
Soil cadmium mass balance calculations ... 99
Zinc accumulation by the hyperaccumulator species .. 99
8.5 Summary – a practical application for phytoextraction .. 101
8.6 Conclusion .. 102

CONCLUSION TO SECTION A ... 105
SECTION B - PHYTOEXTRACTION FOR NICKEL AND GOLD 108

Chapter 9 - A New Zealand Field Trial for Nickel Phytoextraction .. 110
 9.1 Introduction ... 111
 The initial study of Nicks and Chambers .. 111
 Subsequent studies .. 112
 The Ultramafic Belt of New Zealand .. 113
 Geology of the Piopio serpentine exposure 113
 9.2 Materials and Methods .. 114
 Design of the experimental area .. 114
 Analytical procedure .. 116
 9.3 Results .. 117
 Alyssum malacitanum ... 117
 Alyssum bertolonii .. 118
 Berkheya coddii ... 119
 Native species .. 122
 Soil samples .. 123
 9.4 Discussion ... 123
 Reasons for the poor species performance 123
 9.5 Conclusion ... 125

Chapter 10 - Hybanthus floribundus, a Native Australian Nickel Hyperaccumulator 127
 10.1 Introduction ... 127
 Hybanthus floribundus .. 127
 Importance of ‘fire’ to promote seed germination 130
 10.3 Methods and Materials ... 131
 10.4 Results and Discussion .. 132
 10.5 Conclusion ... 134

Chapter 11 - Phytoextraction for Gold ... 135
 11.1 Introduction and review of the solution geochemistry of gold 135
 Solution geochemistry of gold .. 135
 Economic mineralisation within a weathering profile 136
 Geochemical mobility of gold ... 137
 The biogeochemical pathway of gold ... 141
 11.2 Analytical methodology .. 142
 Analysis of substrate samples .. 142
 Analysis of plant samples .. 144
 Contamination ... 145
 11.3 Induced uptake of gold ... 146
 Initial discovery .. 146
 Subsequent work ... 147
 Artificial gold experiment ... 149
 11.4 Model for induced uptake of gold ... 151
 Thiocyanate-induced solubility .. 151
 Thiosulphate-induced solubility ... 156
 Application of the model to induced-uptake results from Waihi gold ore 159
 11.5 Conclusion: the choice of thiocyanate or thiosulphate 161

Chapter 12 - Practical Scenarios for Nickel and Gold Phytoextraction 162
 12.1 Introduction ... 162
 12.2 Nickel .. 162
 Phytoremediation scenario ... 162
 Phytomining scenario .. 165
 Environmental concerns ... 166
 Sustainability of a nickel phytomining operation 167
 12.3 Gold .. 168
 Phytomining scenario .. 168
 Environmental concerns ... 170
SECTION C: CONCLUSION

Chapter 13 - Practical Aspects of Phytoextraction: a General Conclusion

13.1 Conclusions from this research
13.2 Future research
13.3 Concluding remarks

References
Appendices
List of Figures

Chapter 2

Figure 2.1. Sources of metal in soils and sediment. ... 7
Figure 2.2. Diagrammatic representation of the phytoextraction operation. 10
Figure 2.3. *Thlaspi caerulescens*, a hyperaccumulator of cadmium and zinc growing on base-
metal mine tailings, Massey University, New Zealand. .. 12
Figure 2.4. Map showing the locations of the majority of hyperaccumulators and associated
metaliferous soils. ... 19
Figure 2.5. Theoretical uptake response of plants to heavy metal in soils. After Baker (1981). 21
Figure 2.6. Theoretical uptake response of plants to heavy metals in soil. After McGrath (2000) ... 22
Figure 2.7. Modified theoretical uptake response of plants to metals in the soil......................... 22

Chapter 3

Figure 3.1. Map of Central Europe. The red shaded region of France is the Nord Pas de Calais. 32
Figure 3.2. Field-trial site at Auby, northern France. .. 32
Figure 3.3. Map of the North Island of New Zealand showing in detail the location of the Tui
mine tailings. .. 35
Figure 3.4. The Tui mine tailings on the flanks of Mt. Te Aroha, looking northeast across the
rich farmland of the Bay of Plenty ... 35
Figure 3.5. EDTA-Induced uptake of cadmium and lead by *Berkheya coddii* growing on Tui
mine tailings. ... 38
Figure 3.6. Thiocyanate-induced uptake (SCN) of Cd, Pb and Zn by *Brassica juncea* from Tui
mine tailings. ... 40

Chapter 4

Figure 4.1 Natural uptake, and acetic acid-, citric acid- and EDTA-induced uptake of lead by
Brassica juncea (Bj), *Cardaminopsis halleri* (Ch) and *Thlaspi caerulescens* (Tc) growing on artificial 1% lead soils of different metal phases. ... 44
Figure 4.2. Summary: efficacy of EDTA-induced lead uptake by *Brassica juncea* as a
function of the metal phase. ... 46

Chapter 5

Figure 5.1. Natural uptake and EDTA- and citric acid-induced uptake of cadmium by *Brassica
juncena* (Bj), *Cardaminopsis halleri* (Ch) and *Thlaspi caerulescens* (Tc) growing on artificial 200 mg/kg cadmium soils, of different metal phases ... 52
Figure 5.2. Summary: efficacy of EDTA-induced cadmium uptake by *Brassica juncea* as a
function of metal phase ... 53
Figure 5.3 Summary: efficacy of natural cadmium uptake by *Cardaminopsis halleri* as a function of metal phase .. 54
Figure 5.4. Summary: efficacy of natural cadmium uptake by *Thlaspi caerulescens* as a
function of metal phase ... 56
Figure 5.5. *Brassica juncea* growing on an artificial, carbonate phase, cadmium-contaminated
soil shortly before harvesting ... 59
Figure 5.6. Plot of the cadmium concentration in *Brassica juncea* as a function of the plant-available cadmium concentration in the soil for each metal phase. ... 60
Figure 5.7. Plot of the cadmium concentration in *Cardaminopsis halleri* as a function of the plant-available cadmium concentration in the soil for each metal phase. 61
Figure 5.8. Plot of the cadmium concentration in *Thlaspi caerulescens* as a function of the plant-available cadmium concentration in the soil for each metal phase. 62

Chapter 6

Figure 6.1. Natural uptake and EDTA-induced uptake of zinc by *Cardaminopsis halleri* (Ch) and *Thlaspi caerulescens* (Tc) growing on artificial 0.2% Zn soils of different metal phases. ... 66
Figure 6.2. Summary: efficacy of natural zinc uptake by *Cardaminopsis halleri* as a function of metal phase. ... 67
Figure 6.3. Summary: efficacy of natural zinc uptake by *Thlaspi caerulescens* as a function of metal phase. ... 68
Figure 6.4. Plot of the zinc concentration of *Thlaspi caerulescens* as a function of the plant-available zinc concentration in the soil for each metal phase. 71
Figure 6.5. Plot of the zinc concentration of *Thlaspi caerulescens* as a function of the plant-available zinc concentration in the soil for each metal phase. 72

Chapter 8

Figure 8.1. Map of the North Island of New Zealand, showing in detail the location of the cadmium phytoextraction field-trial site. ... 88
Figure 8.2. Schematic plan of the experimental-trial set up. ... 89
Figure 8.3. View of two *Brassica* species in flower, growing at the Wairarapa experimental trial site shortly before treatment with EDTA. ... 90
Figure 8.4. View of *Thlaspi caerulescens* (T) and *Cardaminopsis halleri* (C) growing at the Wairarapa trial site. ... 90
Figure 8.5. Comparison of two methods to determine the cadmium concentration of soil. 92
Figure 8.6. Surface plot (0-5 cm) showing the change in soil cadmium concentration effected by the trial. ... 95
Figure 8.7. Surface plot (5-10 cm) showing the change in soil cadmium concentration effected by the trial. ... 96
Figure 8.8. Plot of the cadmium concentration in *Thlaspi caerulescens* as a function of the cadmium concentration in the soil. ... 98
Figure 8.9. Zinc accumulation by *T.caerulescens* and *C.halleri* from the Wairarapa trial site. 100
Figure 8.10. Phyto remediation of cadmium from New Zealand soils: a poster summary of a practical application. ... 103

Chapter 9

Figure 9.1. Map of the North Island of New Zealand showing in detail the location of the nickel phytoextraction trial site. ... 110
Figure 9.2. North facing perspective of the Piopio serpentine quarry. 114
Figure 9.3. Schematic plan of the Piopio experimental trial set up. ... 115
Figure 9.4. Photograph of the Piopio trial site before harvest of *B.codii* in May 1999, looking towards the northeastern corner of the site. ... 116
Figure 9.5. Flowering specimen of *Alyssum bertolonii* growing at the Piopio trial site. 118
Figure 9.6. Nickel concentration in *Alyssum bertolonii* as a function of the soil fertiliser treatments. ... 119
Figure 9.7. The author with a flowering stem of *Berkheya codii*, growing at the Piopio site. 120
Figure 9.8. Nickel concentration in *Berkheya coddii* as a function of the soil fertiliser treatments. ... 121

Figure 9.9. Nickel concentration in *Berkheya coddii* as a function of the plant nitrogen concentration. .. 121

Figure 9.10. Plot of the cobalt concentration in *Berkheya coddii* as a function of the nickel concentration. .. 122

Chapter 10

Figure 10.1. *Hybanthus floribundus*, F. Muell. ... 128

Figure 10.2. Germination experiment for *Hybanthus floribundus* showing a final germination rate of 56% for replicate 1 and 47% for replicate 2. .. 133

Chapter 11

Figure 11.1. Thiocyanate-induced uptake of gold by *Brassica juncea* (Indian mustard) from finely disseminated and native 5 mg/kg synthetic gold ores. 150

Figure 11.2. Eh-pH diagram of the Au-SCN-H₂O system at 25°C and 1 bar pressure. 154

Figure 11.3. Effect of increasing pH, through the addition of incremental amounts of lime, on the thiocyanate-induced solubility of gold. .. 155

Figure 11.4. Thiosulphate-induced solubility of gold. .. 157

Figure 11.5. Eh-pH diagram of the Au-S-H₂O system at 25°C and 1 bar pressure. 158

Chapter 12

Figure 12.1. Nickel yields (kg/ha) of successive crops of a theoretical hyperaccumulator plant growing over various ultramafic soils. ... 167

Figure 12.2. The possible economic value of a phytomined crop of gold as a function of the concentration in a plant with a biomass of 20 t/ha. .. 169

Figure 12.3. Mine tailings at the now closed Paris gold mine, on the mining lease of the Western Mining Company Ltd., near Kambalda, Western Australia. 172

Figure 12.4. The author, Robert Brooks, and a local security guard surveying gold-mine tailings in the suburb of Germinston, Johannesburg, South Africa. 174

Figure 12.5. Growing a Crop of Gold: summary poster describing the steps involved with the phytoextraction for gold. ... 175
List of Tables

Chapter 2

Table 2.1. The relative abundance of a selection of biologically significant trace elements 6
Table 2.2. Normal elemental concentration, hyperaccumulation criterion concentration and number of known representative hyperaccumulator species ... 11

Section A

Table A.1. Composition of lead aerosols originating from different pollutant sources 26
Table A.2. Relative abundance of the chemical forms of airborne lead collected from an urban site .. 27

Chapter 3

Table 3.1. Selected geochemical properties of the Auby soil used in this study 31
Table 3.2. Metal concentration (DW) in field plants 21 days after EDTA treatment 33
Table 3.3. Selected geochemical properties of the Tui tailings material used in this study 36
Table 3.4. Natural and induced accumulation of cadmium, lead, and zinc by Cardaminopsis halleri growing on Tui mine tailings .. 38
Table 3.5. The dominant chemical form of metal present at 3 contaminated sites 41

Chapter 4

Table 4.1. Total soil lead and pH for the control treatment soils of each metal phase 47
Table 4.2. Plant-available lead for the control treatment soils of each metal phase 47

Chapter 5

Table 5.1. Total soil cadmium and pH for the control treatment soils of each metal phase 56
Table 5.2. Percentage total cadmium that is plant-available from each metal phase 57

Chapter 6

Table 6.1. Total soil zinc and pH for the control treatment soils of each metal phase 69
Table 6.2. Percentage zinc that is plant-available from each metal phase 70

Chapter 7

Table 7.1. Summary of the mean plant-available metal concentrations (ammonium acetate) extracted from each metal phase .. 79

Table 8.1. Summary of the metal concentrations found in the harvested plant material.

Table 8.2. Biomass and extrapolated uptake figures over a one-hectare area for the plant species used in this trial.

Table 8.3. Average soil-cadmium concentrations across plot area.

Table 8.4. Average total-soil cadmium levels for plot area.

Table 9.1. Piopio wet-serp geochemical properties.

Table 9.2. Mean Alyssum bertolonii nickel concentration for each fertiliser treatment.

Table 9.3. Mean Berkheya coddii nickel concentration for each fertiliser treatment.

Table 10.1. Mean nickel concentrations (mg/kg DW) of species and subspecies of Hybanthus together with their locations in Western Australia.

Table 10.2. End of experiment results of germination test 7 on seeds of Hybanthus floribundus.

Table 11.1. Gold concentrations (mg/kg DW) in Impatiens balsamina and I.holstii immersed for 48 hours in gold solutions of different anionic composition.

Table 11.2. Digestion methodology test for replicate subsamples of an adopted herbage standard.

Table 11.3. Induced uptake of gold by Brassica juncea grown on Waihi gold ore.

Table 11.4. Selected summary of thiocyanate (SCN')-induced uptake of gold for various plant/substrate combinations.

Table 11.5. Comparison of Tui tailings samples collected from three locations within the TSF illustrating the broad range of SCN-extractable gold values that can be observed.

Table 11.6. Comparison of the total and extractable gold concentrations for Tui JWM with selected substrates on which plant trials have been conducted.

Table 11.7. pH and micronutrient concentrations of bulk and rhizosphere soil of white lupin (Lupinus albus) grown in a phosphorus deficient soil.

Table 12.1. Number of crops of Berkheya coddii required to reduce the nickel contamination in soil to the European Union guideline of 75 mg/kg.

Table 12.2. Comparative toxicity of 4 sodium salts that can solubilise gold and may be used for induced hyperaccumulation.