Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
STUDIES ON THE DYNAMICS OF ORGANIC SULPHUR AND CARBON
IN
PASTORAL AND CROPPING SOILS

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Soil Science at Massey University

BHUPINDER-PAL SINGH
2000
ABSTRACT

Soil organic matter (SOM) can be depleted or regenerated by altering land management practices. Soil tests capable of reporting the size of dynamic SOM fractions may be useful for indicating the environmental cost of land use and management practices. Information on the effect of land management practices on soil organic S content and turnover is scarce. This study evaluated the ability of a sequential chemical fractionation procedure to characterise changes in soil S and C organic fractions on a range of pasture and cropping soils with different management histories. The fractionation involved an initial extraction with ion exchange resins followed by dilute (0.1 M NaOH) and concentrated (1 M NaOH) alkali. In addition, recently rhizodeposited 14C (root+exudate derived) produced during a short-term (one week) 14CO$_2$ pulse-labelling study of intact soil cores growing ryegrass/clover pastures, was used to trace the fate of root-derived C in both chemical and density fractionation procedures.

In pasture and cropped topsoils, the major amounts of soil S and C were either extracted in 0.1 M NaOH (49–69% S and 38–48% C) or remained in the alkali-insoluble residual fraction (17–38% S and 46–53% C). These two fractions were more sensitive to change caused by different land use and management practices than the resin and 1 M NaOH fractions. With a large amount of dynamic soil C remaining in the residual fraction it was concluded that increasing strengths of alkali were not capable of sequentially fractionating S and C in SOM into decreasingly labile fractions.

The chemical fractionation allocated recent root and root-released 14C amongst all the fractions. Again, most root 14C appeared in the 0.1 M NaOH and residual fractions. Although small in amount, C of higher specific activity (more recently synthesised root C) was preferentially extracted by resin and 1 M NaOH extracts.

Density separation was not capable of recovering recent root and root-released 14C in a single fraction. Root-derived 14C was distributed between light (mostly fibrous root debris) (42%) and heavy (organics attached to clay and silt) (45%) fractions. The dispersing reagent soluble fraction recovered <13% of the 14C. An anaerobic incubation and various acids and oxidising agents were tried, in order to recover a greater proportion of root and root-released 14C as a single identity. These were not very successful in either
extracting or increasing the alkali solubility of the root C fraction. A 30% \(\text{H}_2\text{O}_2 \) pre-treatment of soil plus roots, or hot 1 M \(\text{HNO}_3 \) treatment of the residual fraction, were more efficient extractants of the root C fraction and should be investigated further to check their ability to better characterise soil organic S and C fractions with a change in management practices.

The \(^{14}\text{C} \) pulse labelling study of pasture swards showed a greater allocation of recently photo-assimilated \(^{14}\text{C} \) to the topsoil layer with a greater proportion of \(^{14}\text{C} \) recovered in roots than in the soil. An \textit{in situ} soil solution sampling technique with mini Rhizon Soil Moisture SamplersTM effectively monitored the rapid appearance of a \(^{14}\text{CO}_2 \) pulse in soil water at various depths. A comparison of the \(^{14}\text{CO}_2 \) pulse labelling study under light and dark conditions indicated that, in the light lysimeters, \(^{14}\text{CO}_2 \) photo-assimilation/translocation/rhizosphere respiration was the main pathway for \(\text{CO}_2 \) generation at various soil depths. In the dark lysimeters, \(^{14}\text{CO}_2 \) diffusion was the main mechanism and \(^{14}\text{C} \) assimilation (either photo-assimilation or assimilation by chemolithotrophs in rhizosphere soil) was small.

The \(^{14}\text{CO}_2 \) activity in soil water from four soil depths of dark and light soil cores, and a \(\text{CO}_2 \) diffusion model, were used to identify the \(^{14}\text{CO}_2 \) contribution from rhizosphere respiration in the light lysimeters. A model was developed, but the unknown geometry of the air-filled pore space in the undisturbed soil cores made it impossible to precisely calculate the contribution made by root respiration to soil water \(^{14}\text{CO}_2 \) activity.
ACKNOWLEDGEMENTS

I am extremely grateful to:

Dr. Michael J. Hedley for his supervision, encouragement, patience, guidance, and friendship during my study.

Dr. Surinder Saggar for his supervision, valuable suggestions, constructive criticism, and friendship during my study.

Dr. David Scotter for his readiness to help, valuable suggestions, and supervision with the modelling part of this thesis.

Landcare Research, Palmerston North for using tracer laboratory and equipments, Carolyn Hedley for technical assistance and suggestions, and Dr. Graham Shepherd (Landcare Research) and Dr. Glyn Francis (Crop and Food) for soil samples.

All past and present staff in the Soil and Earth Sciences group, Bob Toes, Ian Furkert, Anne West and Glenys Wallace for technical assistance, Mike Bretherton for computer related assistance, and secretary Hera Kennedy for her cooperation.

Stephen Trolove for valuable discussion, English suggestions, and friendship, and other fellow postgraduate students, Tin Aye Maung, Afiquur Khan, Jim Moir, Asoka Senereth, Sumanasena, and Saman Bowatte for their friendship and support.

Lyall Domney and Ian Furkert for proof-reading part of this thesis.

The New Zealand Ministry of Foreign Affairs and Trade for granting NZODA–PGS scholarship, and the Punjab Agricultural University, India for allowing study leave.

All past and present Indian and Pakistani friends in Palmerston North, and my landlord Mrs Noelene Domney, for making my stay in New Zealand extremely enjoyable.

My parents, grandmother, brothers, sisters-in-law, brothers-in-law, nephews and nieces for their love, encouragement and support.

Lastly, but most importantly, my wife (Rosy) and our daughters (Harika and Amita), for their continued patience, support, love and encouragement during my study.
TABLE OF CONTENTS

ABSTRACT .. II

ACKNOWLEDGEMENTS ... IV

TABLE OF CONTENTS ... V

LIST OF FIGURES .. XIII

LIST OF TABLES .. XVII

LIST OF PLATES ... XIX

CHAPTER 1 INTRODUCTION ... 1

CHAPTER 2 LITERATURE REVIEW .. 4

2.1 CHARACTERISATION OF SOIL ORGANIC MATTER RELATIVE TO ITS
TURNOVER AND NUTRIENT AVAILABILITY ... 4

2.1.1 Chemical characterisation of SOM ... 4

2.1.1.1 Identification of a labile fraction(s) .. 6

2.1.1.2 Acid hydrolysis ... 7

2.1.1.3 Oxidation techniques .. 9

2.1.2 Physical characterisation of SOM ... 10

2.1.2.1 Mechanical disruption .. 13

2.1.2.2 Sieving .. 14

2.1.2.3 Sedimentation .. 14

2.1.2.4 Density separation .. 15

2.1.3 Chemical characterisation of SOM in physical fractions 17

2.1.4 Nutrients (N, P and S) in soil organic matter .. 19

2.1.4.1 The nature of S in soils and organic S fractionation 19

2.1.5 Tracer use in SOM studies ... 21

2.1.6 The importance of measurable pools in SOM modelling studies 23

2.2 CONCLUSIONS .. 26

CHAPTER 3 METHODS FOR ANALYSING SULPHUR AND CARBON IN
SOIL AND SOIL EXTRACTS ... 28
3.1 INTRODUCTION .. 28
3.2 METHODS AND MATERIALS ... 31
 3.2.1 A sequential soil S and C fractionation technique 31
 3.2.2 Analysis of resin extractable S ... 32
 3.2.3 Analysis of total S in alkaline extracts 32
 3.2.3.1 Preparation of standard organic S solutions 32
 3.2.3.2 In situ production of NaOBr ... 33
 3.2.3.3 Tabatabai and Bremner wet oxidation technique with some
 modifications .. 35
 3.2.4 Analysis of total S in soil and residual fraction 36
 3.2.5 Analysis of C in different fractions .. 36
 3.2.5.1 Chloride (Cl) interference in the resin extract 37
3.3 RESULTS AND DISCUSSION ... 38
 3.3.1 Calibration of methionine and sulphanilamide organic S standards
 against standard K₂SO₄ solution ... 38
 3.3.1.1 In situ production of NaOBr ... 38
 3.3.1.2 Tabatabai and Bremner wet oxidation technique with some
 modifications .. 40
 3.3.2 A wet digestion procedure for C estimation 41
 3.3.2.1 Calibration of neoprene seal against original seal in
 Kimax tube screw cap .. 41
 3.3.2.2 Applicability of the digestion procedure to soil extracts 42
 3.3.2.3 Correction in the measured C for chloride interference 43
3.4 CONCLUSIONS .. 43

CHAPTER 4 CHEMICAL FRACTIONATION TO CHARACTERISE
CHANGES IN SOIL SULPHUR AND CARBON ... 45

4.1 INTRODUCTION ... 45
4.2 MATERIALS AND METHODS ... 47
 4.2.1 Description of field sites .. 47
 4.2.1.1 Mt. Thomas site (fertilised pasture) 47
 4.2.1.2 Kairanga site (short- to long-term cultivation) 49
 4.2.1.3 Wakanui site (short-term pasture cropping) 49
4.2.2 Preparation of soil samples ... 49
4.2.3 A sequential soil S and C fractionation technique 49
4.2.4 Analysis of S in different fractions .. 50
4.2.5 Analysis of C in different fractions .. 50
4.2.6 Statistics .. 50
4.3 RESULTS .. 50
 4.3.1 Changes in soil S and C .. 51
 4.3.1.1 Mt. Thomas site (fertilised pasture) ... 51
 4.3.1.2 Kairanga site (short- to long-term cultivation) 54
 4.3.1.3 Wakanui site (short-term pasture cropping) 56
4.4 DISCUSSION ... 58
 4.4.1 Organic matter accumulation and depletion 58
 4.4.2 Sulphur and carbon fractions sensitive to changes in management
 practices ... 59
4.5 SUMMARY .. 62

CHAPTER 5 PRELIMINARY EVALUATION OF 14CO$_2$ PULSE LABELLING
AND SOIL, ROOTS AND SOIL SOLUTION SAMPLING
TECHNIQUES TO STUDY THE FATE OF RECENTLY FIXED
C IN INTACT SOIL CORES GROWING PREDOMINANTLY
RYEGRASS SWARDS .. 63

5.1 INTRODUCTION ... 63
5.2 METHODS AND MATERIALS .. 65
 5.2.1 Soil .. 65
 5.2.2 Soil core collection ... 65
 5.2.3 Preparation and placement of RSMS in the soil cores 65
 5.2.4 Pulse labelling technique .. 67
 5.2.5 Soil water potential (SWP) measurements at the soil solution sampling
 depths using RSMS's ... 69
 5.2.6 Sampling and harvesting ... 69
 5.2.6.1 Soil solution sampling ... 69
 5.2.6.2 Herbage, root and soil sampling and their preparation for analysis .. 70
 5.2.7 Analysis .. 71
CHAPTER 6 CHARACTERISATION OF RECENT ROOT AND ROOT-
RELEASED CARBON BY SOIL ORGANIC MATTER
FRACTIONATION...89

6.1 INTRODUCTION...89

6.2 MATERIALS AND METHODS..91

6.2.1 Soil..91

6.2.2 Soil core collection..91

6.2.3 Production of ¹⁴C labelled rhizodeposited soil C................91

6.2.4 Sampling and harvesting...92

6.2.4.1 Root and soil sampling and their preparation for analysis92

6.2.5 Evaluation and modification of SOM fractionation procedures..........92

6.2.5.1 Chemical fractionation of soil+roots and roots alone (Experiment 1)92

6.2.5.2 Modifications to the chemical fractionation of soil+roots (Experiment 2)...94

6.2.5.3 Density separation of soil+roots (Experiment 3)..................94

6.2.5.4 Density separation of roots, and roots remixed with non-radioactive
soil (Experiment 4)...97

6.2.5.5 Chemical fractionation of density fractions (Experiment 5)........98
6.2.6 Further attempts to modify the chemical fractionation procedure
(Experiments 6 and 7) ... 98

6.2.6.1 Pre-treatments followed by chemical fractionation of soil+roots
(Experiment 6) ... 98

6.2.6.2 Treatments of the residual fraction of soil+roots (Experiment 7) 101

6.2.7 Analysis .. 103

6.2.7.1 Total C analysis ... 103

6.2.7.2 Total 14C analysis ... 103

6.2.8 Chloride ion interference in the 5% NaCl extract for total C
determination .. 106

6.3 RESULTS AND DISCUSSION ... 107

6.3.1 Total C and 14C activity in samples of soil+roots and roots from different
soil depths ... 107

6.3.2 Experiment 1: Chemical fractionation 110

6.3.2.1 Chemical fractionation of soil+roots 110

6.3.2.2 Chemical fractionation of roots alone 112

6.3.2.3 Conclusions .. 114

6.3.3 Experiment 2: Attempts to recover root C in fewer fractions 115

6.3.3.1 Part a, acid hydrolysis of soil+roots prior to alkali extraction 115

6.3.3.2 Part b, acid hydrolysis of the alkali-insoluble residual fraction 116

6.3.3.3 Conclusions .. 117

6.3.4 Experiment 3: Density separation of soil+roots 119

6.3.4.1 Conclusions .. 124

6.3.5 Experiment 4: Density separation of roots alone, and roots remixed with
non–radioactive soil .. 125

6.3.5.1 Conclusions .. 126

6.3.6 Experiment 5: Chemical fractionation of density (heavy and light)
fractions .. 127

6.3.6.1 Conclusions .. 128

6.3.7 Experiments 6 and 7: Further attempts to modify the chemical
fractionation procedure ... 129

6.3.7.1 Pre-treatments followed by chemical fractionation of soil+roots
(Experiment 6) .. 129

6.3.7.2 Treatments of the residual fraction of soil+roots (Experiment 7) ... 134
CHAPTER 7 A STUDY OF PROCESSES (DIFFUSION AND PHOTOOASSIMILATION) INVOLVED IN THE TRANSLOCATION OF 14CO$_2$ BELOW GROUND IN PASTORAL SOIL SYSTEM......138

7.1 INTRODUCTION

7.2 METHODS AND MATERIALS

- **7.2.1** Soil
- **7.2.2** Soil core collection
- **7.2.3** Preparation and placement of RSMS in the soil cores
- **7.2.4** Pulse labelling canopy
- **7.2.4.1 For dark lysimeters**
- **7.2.4.2 For light lysimeters**
- **7.2.5** 14CO$_2$ generation and injection for pulse labelling
- **7.2.5.1 Dark lysimeters**
- **7.2.5.2 Light lysimeters**
- **7.2.6** Sampling
- **7.2.6.1 Air sampling**
- **7.2.6.2 Soil solution sampling**
- **7.2.6.3 Herbage, soil and root sampling and their preparation for analysis**
- **7.2.7** Analysis
 - **7.2.7.1** 14C in air samples
 - **7.2.7.2** 14C in soil solution
 - **7.2.7.3** Total C and 14C in plant and soil samples
- **7.2.8** Methods for estimating possible plant uptake of H14CO$_3^-$ by transpiration

7.3 RESULTS AND DISCUSSION

- **7.3.1** 14C activity in air above the pasture swards
- **7.3.2** 14C distribution in plant top herbage, roots and soil at harvest
- **7.3.3** 14C activity in soil solution
- **7.3.4** Attempting a 14C balance in lysimeters
- **7.3.5** Factors affecting below ground allocation of 14C

7.4 CONCLUSIONS
CHAPTER 8 MODELLING 14CO$_2$ DIFFUSION AND ACTIVITY IN THE SOIL SOLUTION OF UNDISTURBED SOIL CORES............171

8.1 INTRODUCTION..171
8.2 METHODS AND MATERIALS ..172
 8.2.1 Experimental procedures and analysis...172
 8.2.2 List of symbols, their definitions and units...172
8.3 MODEL DEVELOPMENT ..174
 8.3.1 Model assumptions..174
 8.3.2 Basic transport equations...176
 8.3.2.1 Transport equations in the absence of photo-assimilation.................177
 8.3.2.2 Transport equation in the presence of photo-assimilation.................178
 8.3.3 Surface boundary conditions for dark and light lysimeters.......................178
 8.3.4 Optimisation of diffusion parameters..179
 8.3.5 Simulation of 14C activity in soil water as a function of depth in light lysimeters..179
 8.3.6 Chemical consideration (dissolution of 14CO$_2$) in the diffusion model.181
8.4 MODEL OUTPUT AND EVALUATION ...185
 8.4.1 14CO$_2$ diffusion in the absence of photo-assimilation..............................185
 8.4.2 14CO$_2$ diffusion and production in the presence of photo-assimilation.186
8.5 CONCLUSIONS ..189
8.6 PROGRAM MODULES FOR 14CO$_2$ DIFFUSION IN DARK AND LIGHT LYSIMETERS ..191
 8.6.1 Dark lysimeters..191
 8.6.2 Light lysimeters...192

CHAPTER 9 SUMMARY AND CONCLUSIONS, AND IMPLICATIONS FOR FUTURE RESEARCH...194

9.1 SUMMARY AND CONCLUSIONS...194
 9.1.1 Literature review..194
 9.1.2 Standardising analytical procedures for S and C fractions.......................195
 9.1.3 Characterisation of changes in S and C fractions195
9.1.4 Distribution of recently fixed 14C by depth in intact pasture–soil system...

9.1.5 Characterisation of recent root and root–released 14C

9.1.6 14CO$_2$ diffusion and photo–assimilation in pasture–soil system

9.1.7 Modelling 14CO$_2$ diffusion and activity in intact pasture soils

9.2 IMPLICATIONS FOR FUTURE RESEARCH

REFERENCES
LIST OF FIGURES

Figure 2.1: A scheme for the physical fractionation of soil organic matter (after Stevenson and Elliott, 1989) ... 12

Figure 3.1: A soil S and C sequential fractionation technique .. 31

Figure 3.2: Relationship between volume (ml) of 0.1 M HCl used during titration of the unused NaOH and concentration of chloride present in the solution to be analysed for total C ... 43

Figure 4.1: Relationship between total soil S and soil C as influenced by different management practices. The total soil S at Wakanui site is the sum of all the S fractions recovered by the sequential fractionation procedure. Treatment codes are given in Table 4.1. 51

Figure 4.2: Changes in amounts of S fractions as total soil S increases from increasing amounts of fertiliser application to the permanent pasture soil (Mt. Thomas) over a six–year period ... 52

Figure 4.3: Effect of S fertiliser application to pasture on different S fractions in the 0–7.5 cm depth of Mt. Thomas soil. Treatment codes are given in Table 4.1. Error Bars: SE of treatment mean .. 53

Figure 4.4: Effect of short– to long–term cultivation on different (a) S and (b) C fractions in the 0–10 cm depth of Kairanga soils. Treatment codes are given in Table 4.1. Error Bars: SE of sample mean .. 54

Figure 4.5: Comparison of S and C recovered in 0.1 M NaOH and residual fractions from 0–10 cm depth of Kairanga soils. Treatment codes are given in Table 4.1. 56

Figure 4.6: Effect of short–term pasture cropping on different S fractions in the 0–5 cm depth of Wakanui soil. Treatment codes are given in Table 4.1. Error Bars: SE of treatment mean .. 57

Figure 5.1: Rhizon soil moisture samplers placed at different depths of undisturbed soil cores growing pasture swards ... 66

Figure 5.2: A rhizon soil moisture sampler (RSMS) .. 67

Figure 5.3: Changes in glasshouse temperature (°C), PAR (μmoles s⁻¹ m⁻²), and SWP (− cm) at the root–soil interface over time (h) at different soil depths. Pulse labelling was done at time 0 i.e. at 0930 h ... 74
Figure 5.4: 14C activity in soil water extracted from different depths (see legends) below ryegrass/clover swards at different times after injection of a 14CO$_2$ pulse into the atmosphere above ground. Error Bars: \pmSE of mean of two cores.

Figure 5.5: Root mass distribution (a), % of injected 14C recovered in soil+roots and roots alone (b), and specific activity (Bq mg$^{-1}$C) of soil+roots and roots alone, at different soil depths. The legend points are plotted at the mean depth of various soil slices. Error Bars: \pmSE of mean of two cores.

Figure 5.6: Initial 14C activity in soil solution versus root mass distribution at different soil depths. The numbers shown are soil solution sampling depths.

Figure 5.7: Change in specific activity (Bq mg$^{-1}$C) and 14C activity (Bq mg$^{-1}$) of ryegrass/clover sward shoots at different times after injection of a 14CO$_2$ pulse into the atmosphere above ground. Error Bars: \pmSE of mean of two cores.

Figure 6.1: Comparison of 14C counts recovered by ion exchange resin extraction from <2 mm sieved soil (a) with resin in the hydroxide and bicarbonate form and (b) 14C counts recovered from either <2 mm soil or ring-ground soil. Soil samples were taken from different depths below a 14CO$_2$ pulse labelled pasture sward. Error Bars: SE of mean of two cores.

Figure 6.2: A range of modifications to the chemical fractionation technique that attempt to recover recently synthesised root carbon by one of four pre-alkali extraction treatments (a, b, c or d) or one of five treatments of the alkali-insoluble residue (e, f, g, h or i).

Figure 6.3: A soil organic matter density fractionation procedure followed by chemical fractionation.

Figure 6.4: Distribution with soil depth of (a) total 14C activity, (b) total C, and (c) specific activity (Bq 14C mg$^{-1}$ C) in whole soil+roots, roots and soil alone, a week after 14CO$_2$ pulse labelling of a pasture sward. The legend points are plotted at the mean depth of various soil slices. Error Bars: \pmSE of mean of two cores.

Figure 6.5: Percent distribution of (a) total 14C activity and (b) total C in different fractions obtained during chemical fractionation of soil+root samples from different soil depths.

Figure 6.6: The amount of (a) total 14C activity and (b) total C recovered from soil+roots in different chemical fractions, and (c) specific activity of these fractions at different soil depths. The insert in Figure (c) is comparing specific activity of chemical fractions with specific activity of roots at various soil layers. Error Bars: \pmSE of mean of two cores.
Figure 6.7: Percentage of total 14C activity and total C recovered in acid hydrolysed fractions of (a) whole soil+roots and (b) residual fraction at different soil depths. *Error Bars: SE of mean of two cores.*

Figure 6.8: Specific activity of the acid hydrolysed fractions from whole soil+roots and residual fraction at different soil depths. *Error Bars: \pm SE of mean of two cores.*

Figure 6.9: Percent distribution of (a) total 14C activity and (b) total C in different fractions obtained during density separation of soil+root samples from different soil depths.

Figure 6.10: The amount of (a) total 14C activity and (b) total C recovered from soil+roots in soluble (NaCl) and density (light and heavy) fractions, and (c) specific activity of these fractions at different soil depths. The insert in Figure (c) is comparing specific activity of soluble and density fractions with specific activity of roots at various soil layers. *Error Bars: \pm SE of mean of two cores.*

Figure 6.11: Percent distribution of 14C activity, recovered from roots alone and roots remixed with non-radioactive soil, in different density fractions at 2 and 4 cm soil depths. *Error Bars: SE of mean of two cores.*

Figure 6.12: Percentage of (top - a,c) total 14C activity and (bottom - b,d) total C recovered in each chemical fraction of the light and heavy density fractions of soil+root samples from different soil depths.

Figure 6.13: The amount of 14C labelled gases evolved during sampled (i.e. measured between different sampling periods) and full (i.e. measured at the end of incubation) anaerobic incubations of soil+roots. *Error Bars: SE (sampling errors).*

Figure 7.1: The fitted curves represent the 14C activity (MBq m$^{-3}$) in the enclosed surface air (surface boundary conditions for the diffusion model) above the pasture swards of both dark and light lysimeters as a function of time after the 14CO$_2$ pulse was first introduced.

Figure 7.2: Percent 14CO$_2$ activity (of the total initial injected activity) at different times (minutes) after injection of 14CO$_2$ pulse above the pasture swards of both light and dark lysimeters.

Figure 7.3: Change in (a) 14C activity (Bq mg$^{-1}$) and (b) specific activity (Bq mg$^{-1}$C) of pasture shoot at different times after 14CO$_2$ pulse labelling under both dark (symbols only) and light conditions (line plus symbols).

Figure 7.4: Percent distribution by depth of the total 14C recovered below ground at harvest in roots and soil+roots of both (a) dark and (b) light lysimeters. The data points are plotted at mean depth of a soil slice.

Figure 7.5: 14C activity (Bq mg$^{-1}$) and specific activity (Bq mg$^{-1}$C) of soil+roots and only roots at different soil depths in both (a,b) dark and (c,d) light lysimeters at harvest i.e.
30 h after pulse labelling for dark and 190 h after for light lysimeters. The data points are plotted at mean depth of a soil slice.

Figure 7.6: Specific activity (Bq mg⁻¹ C) of only white roots from both (a) dark and (b) light lysimeters at different soil depths. The data points are plotted at mean depth of a soil slice.

Figure 7.7: ¹⁴C activity (MBq m⁻³) in soil solution from (a) dark1 and (b) dark2 lysimeters at different soil depths (see legends) and times (h) after ¹⁴CO₂ pulse application to pasture swards.

Figure 7.8: ¹⁴C activity (MBq m⁻³) in soil solution from (a) light1 and (b) light2 lysimeters at different soil depths (see legends) and times (h) after ¹⁴CO₂ pulse application to pasture swards.

Figure 7.9: Root mass (g) at different soil depths in both dark and light lysimeters.

Figure 7.10: The simulated effect of change in air-filled porosity (m³ m⁻³ of soil) on the oxygen concentration in soil air with depth.

Figure 8.1: The enlarged conceptual view of the local water and gas geometry adjacent to a RSMS – (a) relatively dry soil with thin water films rapidly reaching equilibrium with the gas phase, and (b) relatively wet soil with large diffusion distances meaning that disequilibrium between the gaseous and dissolved CO₂ is likely.

Figure 8.2: Log normal function (Equation 8.17) parameter values fitted for different soil depths of both light1 (e,g) and light2 (f,h) lysimeters.

Figure 8.3: The effect of soil pH (≤ 8) on the activities of carbonate species (adapted from Lindsay, 1979) and solubility coefficient of CO₂ in soil solution (K) in equilibrium with two different partial pressure of CO₂ (i.e. 0.021 and 0.0003 atm) in the gas phase. The ΔP_{CO₂} indicates the change in log activities of carbonate species (i.e. log of moles per litre) with change in partial pressure of CO₂ from 0.021 to 0.0003 atm and vice versa at different pH values.

Figure 8.4: The measured versus modelled ¹⁴C activity (MBq m⁻³) in soil solution from (a) dark1 and (b) dark2 lysimeters at different soil depths (see against legends and dotted lines) and times (h) after ¹⁴CO₂ pulse labelling of pasture swards.

Figure 8.5: The measured versus modelled ¹⁴C activity (MBq m⁻³) in soil solution from (a) light1 and (b) light2 lysimeters at different soil depths (see legends) and and times (up to 30 h) after ¹⁴CO₂ pulse labelling of pasture swards.

Figure 8.6: The predicted ¹⁴C activity (MBq s⁻¹ m⁻³ soil) of the source/sink term in soil from (a) light1 and (b) light2 lysimeters at different soil depths (see legends) and times (h) after ¹⁴CO₂ pulse application to pasture swards.
LIST OF TABLES

Table 2.1: Comparison of mean residence times of C in theoretical pools of SOM and in soil physical fractions (adapted from Buyanovsky et al., 1994). ... 25

Table 3.1: Sulphur recovery from organic S compounds dissolved in alkaline extracting reagents by the NaHCO₃ fusion technique. ... 38

Table 3.2: Sulphur recovery by different methods of in situ production of NaOBr............. 39

Table 3.3: Sulphur recovery from K₂SO₄ digestion in NaOBr at 160°C............................ 40

Table 3.4: Sulphur recovery from digests (Method 1) of sulphanilamide dissolved in ethanol or hot water. .. 40

Table 3.5: Sulphur recovery by two different addition methods of freshly prepared NaOBr. .. 41

Table 3.6: Calibration of neoprene seal against original seal in the screw cap of the Kimax digestion tube for better C recovery ... 42

Table 3.7: Carbon recovery from glucose dissolved in different extracting reagents by the dichromate digestion procedure ... 42

Table 4.1: Soil classification and treatment description for the Mt. Thomas, Kairanga and Wakanui sites... 48

Table 5.1: Soil pH, total C, N, P and S, and Olsen P values of different depths of Tokomaru silt loam soil .. 65

Table 5.2: ¹⁴C activity in soil solution before and after acidification, and % ¹⁴C lost upon acidification, at different depths and times after ¹⁴CO₂ pulse–labelling. The values of ¹⁴C counts recovered after acidification (along with standard error values, shown in brackets) are given up to 2 decimal places to show the clear differences between two cores... 79

Table 5.3 Distribution of total injected ¹⁴C (12.17 MBq) in different components of pasture shoot–root–soil system a week after pulse labelling (i.e. harvest time). 85

Table 6.1: Change in ¹⁴C counts and counting efficiency with the addition of different amounts of 0.1 M NaOH soil extract .. 104

Table 6.2: Percentage of total root ¹⁴C and root C recovered by the chemical fractionation of roots (from 2 cm soil depth) .. 114
Table 6.3: Effect of anaerobic incubation of soil+roots on the recovery of 14C and C, and the specific activity of different fractions with the specific purpose of looking at the fractions used by soil anaerobic microbes during 14 days of incubation period. 131

Table 6.4: Effect of different H$_2$O$_2$ and Na-perborate pre-alkali extraction treatments of soil+roots on the recovery of 14C and C in different chemical fractions, and the specific activity (Bq mg$^{-1}$C) of these fractions with the specific purpose of looking at the treatments that reduce the size of the alkali-insoluble residual fraction having a greater proportion of root (structural) C. 133

Table 6.5: Different treatments of the alkali-insoluble residual fraction of soil+roots to recover a fraction with greater proportions of the recently synthesized root 14C and a high specific activity. 135

Table 7.1: Distribution of total injected 14C (as MBq and %) in different components of pasture shoot-root-soil system under both dark and light conditions at harvest. 155

Table 7.2: A comparison of some key properties of soil cores of two 14C pulse labelling studies (present study and study described in Chapter 5) taken from the same pasture field – one is relatively wet than the other. 167

Table 8.1: List of symbols and parameters used in modelling 14CO$_2$ transport and production in the pasture-soil system. 173
LIST OF PLATES

Plate 5.1: Dr. Surinder Saggar carrying out 14CO$_2$ production inside the body of 60-ml syringe fitted with a 3-way stopcock. ... 68

Plate 7.1: The 14CO$_2$ pulse labelling system. Dark (A) and light (B) lysimeters placed in sand baths (on the left hand side) and connected to a water bath (on the right hand side). Also showing (C) thermometer for noting glasshouse temperature, (D) quantum sensor for PAR measurements, and (E) 3-way stopcock on the dark bag for sampling and injecting 14CO$_2$. .. 142

Plate 7.2: The 14CO$_2$ pulse labelling system, after injection of 14CO$_2$ pulse. Aluminium foil cover is in place over the dark polyethylene bags on ‘dark’ soil cores to control temperature rise inside the bag. .. 143

Plate 7.3: Monitoring temperature fluctuations inside of the dark canopy placed over another soil core (i.e. not used for pulse labelling study) in the open environment. 144

Plate 7.4: The author sampling of soil solution from one of the light lysimeters by creating vacuum using 1 ml syringe. Transparent polyethylene bag isolates 14CO$_2$-enriched atmosphere above soil core .. 147