“With regard to general problems of biogeography, the biota of New Zealand has been, perhaps, the most important of any in the world. It has figured prominently in all discussions of austral biogeography, and all notable authorities have felt obliged to explain its history: explain New Zealand and the world falls into place around it.”

Gareth Nelson (1975)
Evolution of the New Zealand Alpine Flora:
Origins, Diversification and Dispersal

A thesis presented in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
in
Plant Biology and Biotechnology
at Massey University, Palmerston North, New Zealand.

Richard Charles Winkworth
2000
This thesis describes molecular systematic studies that test hypotheses concerning the age and origins of the New Zealand alpine flora. Analyses of nuclear and chloroplast DNA markers for two plant groups that have radiated extensively in the alpine zone of New Zealand – the genus *Myosotis* (Boraginaceae) and the Australasian apioid Umbelliferae – are reported. The molecular results suggest that the diversification of these groups in New Zealand has occurred since the late Tertiary. This finding corroborates recent molecular systematic studies on other New Zealand plant groups. Taken together, these studies suggest that New Zealand's modern floristic diversity was greatly influenced by dramatic global climate change during the late Tertiary and Quaternary. These results are also consistent with those reported for plant groups overseas. In these, recent diversification has occurred with Quaternary climatic fluctuations (Comes & Kadereit, 1998) and colonisation of insular environments (Crawford & Stuessy, 1997).

The molecular analyses also suggest that since the late Tertiary, *Myosotis* and the Australasian Apioideae have been involved in transoceanic dispersal events both to and from New Zealand. However, while most other molecular studies have provided evidence for the importance of circum-polar westerly winds, the present data suggests that, for *Myosotis* and with less confidence the apioid genera, some dispersal events have been in a westerly direction. Since this finding was made, late Tertiary and Quaternary westward dispersal has also been inferred for other New Zealand alpine plants. These observations suggest that passive eastward wind dispersal cannot explain the distributions of all southern Pacific plant groups.

The present study, as well as other recent studies, has highlighted the need to develop molecular tools and analytical approaches for describing the potentially complex evolutionary relationships between taxa that have originated since the late Tertiary. Here, the amplified fragment length polymorphism (AFLP) method was investigated as a means of identifying fast evolving genome regions in New Zealand *Myosotis*. Preliminary analyses suggest that this is a useful approach for locating highly variable molecular markers. However, like other rapidly evolving regions (e.g. Buckler *et al.*, 1997) some of the derived markers were multiple copy and polymorphic at different loci within a single genome. This feature of fast evolving genome regions is problematical since bifurcating evolutionary analysis models will poorly represent such complex data. For this reason split-decomposition was investigated as an alternative method for data representation. This approach was found to have both advantages and limitations for studying late Tertiary or Quaternary radiations.
ACKNOWLEDGEMENTS

First and foremost, I would like to thank my “official” supervisors Peter Lockhart, Alastair Robertson and Phil Garnock-Jones. Without their patience, guidance and encouragement I doubt I would have made it this far.

I gratefully acknowledge those groups that have provided funding for this research project – the New Zealand Marsden Fund and Massey University (GRIF and MURF). Thanks also to the Ecology Department Development Fund and IMBS Travel Fund for contributions towards travel to the International Botanical Congress during 1999. I also acknowledge Prof. Dr. Uwe Jensen for sponsoring my stay at the Lehrstuhl Pflanzenökologie und Systematik (Universität Bayreuth) during the early part of this project.

I am very grateful to the many people who have supplied plant samples, especially Prof. Dr. Jürke Grau (Staatsherbarium München) for providing a large number of tissue samples from Northern Hemisphere *Myosotis*.

I have benefited from having many “unofficial” advisors in the DEBLab and “Boffin Lounge” – thanks for always putting the “official” advice into perspective. I wish all of you the best for the future, no matter where that might be.

A special thank you to Pete and Trish, you have made the last four years a wonderful experience. Thanks for your friendship and support.

I would also like to thank my friends throughout IMBS, those I have met here and those who “invaded” from Victoria. You have made working here an enjoyable experience.

Thanks to my family for providing motivation and support over the last four years. A special note to my Dad, in answer to your favourite question I can now say, “yes, it’s finally finished”.

My last thank you is for Cynthia, to whom this thesis is dedicated. Your love and support has played a large part in the completion of this thesis. Thank you.
TABLE OF CONTENTS

ABSTRACT ... i
ACKNOWLEDGEMENTS .. ii
TABLE OF CONTENTS .. iii
LIST OF FIGURES ... viii
LIST OF TABLES ... x

CHAPTER 1: INTRODUCTION

1.1 GEOLOGICAL AND CLIMATIC CHANGE IN NEW ZEALAND 1
 1.1.1 The Cretaceous and early Tertiary .. 1
 1.1.2 The middle Tertiary .. 2
 1.1.3 The Pliocene and Pleistocene ... 4
 1.1.4 The post-glacial period .. 5

1.2 THE CONTEMPORARY ALPINE ZONE ... 6
 1.2.1 The New Zealand mountains ... 6
 1.2.2 Alpine climates ... 7

1.3 THE NEW ZEALAND ALPINE FLORA ... 8
 1.3.1 Diversity and endemism .. 8
 1.3.2 Alpine plant communities .. 9
 1.3.3 Specialised forms in the alpine flora ... 9

1.4 HYPOTHESES CONCERNING THE ORIGINS OF THE ALPINE FLORA 11
 1.4.1 A long history in New Zealand ... 11
 1.4.2 Recent dispersal from southern origins ... 12
 1.4.3 Recent immigration of northern ancestors .. 13

1.5 OUTLINE OF THE THESIS ... 13

CHAPTER 2: MATERIALS AND METHODS .. 15

2.1 PLANT MATERIAL AND COLLECTION .. 15
 2.1.1 Sources and collection of Myosotis and outgroup taxa tissue samples 15
 2.1.2 Sources and collection of Aciphylla, Anisotome and Gingidia tissue samples . 16

2.2 NUCLEIC ACID EXTRACTION ... 16

2.3 AGAROSE GEL ELECTROPHORESIS ... 18
Table of Contents

2.4 GENOMIC DNA PURIFICATION FOR THE POLYMERASE CHAIN REACTION 18

2.5 AMPLIFICATION OF DNA MARKERS BY PCR ... 19
 2.5.1 Double-stranded PCR amplifications of DNA marker loci using Q-solution 19
 2.5.2 Semi-nested PCR amplifications of chloroplast matK, JSAD and ndhF loci 21
 2.5.3 Double-stranded DNA amplification of the nuclear ITS locus using Enhancer solution 21

2.6 PURIFICATION AND QUANTIFICATION OF PCR AMPLIFIED FRAGMENTS FOR AUTOMATIC SEQUENCING OR CLONING ... 22

2.7 CLONING OF PCR PRODUCTS ... 23
 2.7.1 Blunt-end ligation of purified PCR products into the pGEM-T vector or pGEM-T Easy vector ... 23
 2.7.2 Preparation of selective agar plates ... 23
 2.7.3 Transformation of ligated vector and insert into E. coli cells and plating out of cells 24
 2.7.4 Isolation and culturing of transformant colonies ... 25
 2.7.5 Extraction of plasmid DNA from E. coli cell culture by the rapid boil technique 25
 2.7.6 Characterisation of cloned inserts by restriction enzyme digestion 26
 2.7.7 Characterisation of cloned inserts by PCR ... 27

2.8 DIRECT AUTOMATIC SEQUENCING OF DNA TEMPLATES ... 27
 2.8.1 Automatic sequencing reactions .. 27
 2.8.2 Electrophoresis of automatic sequencing reactions .. 28

2.9 PHYLOGENETIC ANALYSIS OF DNA SEQUENCES ... 29
 2.9.1 The data alignment ... 29
 2.9.2 Tree reconstruction methods ... 30
 2.9.3 Evaluating the recovered tree(s) ... 33
 2.9.4 Molecular clock analysis ... 35

2.10 DNA FINGERPRINTING USING THE AFLP SYSTEM .. 36
 2.10.1 Restriction enzyme digestion of genomic DNA ... 36
 2.10.2 Preparation of oligonucleotide adapters .. 38
 2.10.3 Addition of adapter sequences to genomic DNA fragments 38
 2.10.4 Pre-selective PCR amplifications ... 38
 2.10.5 Selective PCR amplifications .. 39

2.11 PREPARATION, ELECTROPHORESIS AND SILVER-STAINING OF DENATURED POLYACRYLAMIDE GELS ... 39
 2.11.1 Preparation of polyacrylamide gels .. 39
 2.11.2 Preparation of a DNA size standard for electrophoresis on polyacrylamide gels 41
 2.11.3 Preparation of samples for electrophoresis on polyacrylamide gels 41
 2.11.4 Sample loading and electrophoresis ... 41
 2.11.5 Detection of DNA fragments by silver staining of polyacrylamide gels 42
2.12 ISOLATION, CHARACTERISATION AND USE OF NOVEL DNA MARKER SYSTEMS

2.12.1 Isolation of polymorphic bands from silver stained polyacrylamide gels ... 43
2.12.2 PCR amplification of polymorphic bands isolated from silver stained polyacrylamide gels ... 43
2.12.3 Purification of PCR amplified polymorphic bands ... 43
2.12.4 Cloning of re-amplified polymorphic AFLP bands ... 44
2.12.5 Characterisation of cloned polymorphic AFLP bands ... 44
2.12.6 Primer design ... 44
2.12.7 PCR amplification and characterisation of AFLP derived marker loci ... 45

CHAPTER 3: THE EVOLUTION AND BIOGEOGRAPHY OF THE GENUS *MYOSOTIS* L. (BORAGINACEAE) ... 46

3.1 INTRODUCTION ... 46
3.1.1 The family Boraginaceae (A. L. de Jussieu) ... 46
3.1.2 The genus *Myosotis* ... 47

3.2 MATERIALS AND METHODS ... 52
3.2.1 Collection of DNA sequence ... 52
3.2.2 Phylogenetic analysis of DNA sequence ... 52
3.2.3 Morphological analysis ... 53

3.3 DATA ANALYSIS ... 53
3.3.1 Aligned sequence data ... 53
3.3.2 Phylogenetic gene trees ... 54
3.3.3 Relative genetic diversity and outgroup rooting ... 58
3.3.4 Morphological diversity ... 59
3.3.5 Age of the Australasian lineage in the Southern Hemisphere ... 59
3.3.6 Dispersal in the Southern Hemisphere ... 62
3.3.7 Dispersal in the Northern Hemisphere ... 63

3.4 DISCUSSION ... 63
3.4.1 Aligned sequence data ... 63
3.4.2 The similarity between gene trees: phylogeny? ... 64
3.4.3 Relative genetic diversity and outgroup rooting ... 64
3.4.4 Morphological diversity ... 65
3.4.5 Age of the Australasian lineage in the Southern Hemisphere ... 65
3.4.6 Dispersal in the Southern Hemisphere ... 66
3.4.7 Dispersal in the Northern Hemisphere ... 66
3.4.8 Implications of molecular analyses for the intrageneric classification of *Myosotis* ... 67
3.4.9 Taxon sampling ... 67
Table of Contents

3.4.10 Other recent studies .. 67

CHAPTER 4: DIVERSIFICATION OF THE AUSTRALASIAN APIOID UMBELLIFERAE (JUSS.) ... 68

4.1 INTRODUCTION ... 68
 4.1.1 The Umbelliferae ... 68
 4.1.2 The Australasian apioid Umbelliferae ... 71

4.2 MATERIALS AND METHODS ... 78
 4.2.1 Data collection from Aciphylla, Anisotome and Gingidia ... 78
 4.2.2 Additional DNA sequences ... 78
 4.2.3 Phylogenetic analysis .. 78

4.3 DATA ANALYSIS ... 79
 4.3.1 Aligned sequence data .. 79
 4.3.2 Phylogenetic gene trees ... 80
 4.3.3 The level of genetic diversity .. 81
 4.3.4 Age of the Australasian lineage in the Southern Hemisphere .. 83
 4.3.5 Dispersal in the Southern Hemisphere .. 83

4.4 DISCUSSION ... 84
 4.4.1 Aligned sequence data .. 84
 4.4.2 Phylogenetic gene trees ... 84
 4.4.3 The level of genetic diversity and outgroup rooting ... 85
 4.4.4 Age of the Australasian lineage in the Southern Hemisphere .. 85
 4.4.5 Dispersal in the Southern Hemisphere .. 86
 4.4.6 Implications of molecular analyses on the generic level taxonomy of the Australasian Apioideae ... 86
 4.4.7 Taxon sampling ... 87
 4.4.8 Other recent studies .. 87

CHAPTER 5: PHYLOGENETIC ANALYSIS OF LATE TERTIARY AND QUATERNARY PLANT RADIATIONS 88

5.1 OBSERVATIONS ON RECENT SPECIES RADIATIONS ... 88

5.2 RECONSTRUCTING PHYLOGENY IN RECENT SPECIES RADIATIONS ... 89
 5.2.1 Are bifurcating methods useful for studying recent radiations? ... 89
 5.2.2 Networks: an alternative method ... 89
 5.2.3 Desirable properties of split-decomposition representation .. 90
 5.2.4 Edge length estimation in split-decomposition representation ... 91
 5.2.5 Heteroplasmic sites .. 96
Table of Contents

5.3 DEVELOPING NOVEL MOLECULAR MARKERS FOR STUDYING RECENT SPECIES RADIATIONS ... 99
5.3.1 Using DNA fingerprint profiles to locate sequence specific markers 99
5.3.2 Conversion of AFLP markers to sequence specific PCR markers 100
5.3.3 Characteristics of AFLP derived markers in Myosotis .. 100
5.3.4 Potential limitations of this approach ... 102
5.3.5 Future development of approaches to locating sequence specific PCR markers for studying recent species radiations ... 103

CHAPTER 6: SYNTHESIS OF MOLECULAR STUDIES CONCERNING THE EVOLUTION OF THE NEW ZEALAND ALPINE FLORA ... 104

6.1 THE AGE AND ORIGINS OF THE NEW ZEALAND ALPINE FLORA ... 104
6.1.1 The age and origins of New Zealand alpine lineages .. 104
6.1.2 Could dispersal account for the presence of all extant plant groups in New Zealand? 105
6.1.3 The importance of New Zealand in Southern Hemisphere dispersal 107

6.2 RAPID MORPHOLOGICAL DIFFERENTIATION IN GENERA OF THE NEW ZEALAND ALPINE FLORA .. 109
6.2.1 Recent evolution of plant biodiversity in insular environments .. 109
6.2.2 Evolution of specialised forms in the New Zealand alpine flora .. 110
6.2.3 Plant developmental genetics: A basis for understanding Pliocene and Pleistocene speciations .. 111
6.2.4 Have hybridisation and polyploidy had roles in the rapid evolution of the New Zealand alpine flora? .. 111
6.2.5 The importance of environmental change in the evolution of alpine biodiversity in New Zealand .. 113

REFERENCES .. 115

APPENDIX I: Myosotis and outgroup accessions .. 127
APPENDIX II: Australasian Apioideae and outgroup accessions .. 129
APPENDIX III: Oligonucleotide primers .. 131
APPENDIX IV: Oligonucleotides used in AFLP ... 132
APPENDIX V: DNA primers for AFLP derived markers ... 132
APPENDIX VI: Data files and analyses ... 133
APPENDIX VII: Morphological data set for Myosotis ... 134
MANUSCRIPTS ... After page 138
DISC APPENDIX I ... Inside Back Cover
LIST OF FIGURES

Figure 1.1 The changing geographic outline of New Zealand during the Tertiary and Quaternary Periods (modified from Suggate et al., 1978).

Figure 1.2 Alpine areas of New Zealand (from Fisher, 1965)

Figure 2.1 A comparison of the amounts of information evaluated by different phylogenetic methods.

Figure 2.2 Split-decomposition.

Figure 2.3 Path length comparison for the relative rates test of Steel et al. (1996).

Figure 2.4 Example of the AFLP procedure using one primer pair (modified from the AFLP™ Analysis System I instruction manual [Gibco BRL])

Figure 3.1 Bootstrap consensus trees using parsimony, edge lengths estimated under ACCTRAN (using PAUP 4.0b3a).

Figure 3.2 Quartet Puzzle trees with edge lengths estimated using maximum likelihood (using Swofford, 199X; PAUP 4.0b3a).

Figure 3.3 Scattergraph for a Principal Components Analysis (PCA) involving 17 morphological characters which could be scored for 16 representative taxa.

Figure 3.4 Estimating the possible age of the Southern Hemisphere ancestor.

Figure 3.5 Quartet puzzle tree with edge lengths estimated using maximum likelihood (PAUP 4.0b3a), made using a data set of 634 nucleotides from the nITS locus for 22 Myosotis taxa.

Figure 4.1 Inflorescence types in the New Zealand apioid Umbelliferae.

Figure 4.2 Parsimony bootstrap consensus tree of ITS1 and ITS2 regions of the nrDNA (374 nucleotides) for 30 Apioidae, edge lengths estimated under ACCTRAN (using PAUP 4.0b3a).

Figure 4.3 Quartet Puzzle trees with edge lengths estimated using maximum likelihood (using PAUP 4.0b3a) for Aciphylla, Anisotome and Gingidia.

Figure 5.1 A comparison of the information that can be represented by different types of tree building procedure.

Figure 5.2 Splits-graphs (using Huson, 1998; SplitsTree 3.1) made using nuclear ITS data sets from representatives of the Southern Hemisphere radiation of Myosotis and the most closely related Northern Hemisphere taxa.

Figure 5.3 Splitsgraphs (using Huson, 1998; SplitsTree 3.1) made using nuclear ITS data sets from representatives of the Australasian apioid Umbelliferae and outgroup genera.

Figure 5.4 Splits-graphs (using Huson, 1998; SplitsTree 3.1) made using nuclear ITS data sets from representatives of the Hawaiian silversword alliance and outgroup genera.

Figure 5.5 Splits-graphs (using Huson, 1998; SplitsTree 3.1) made using nuclear ITS data sets from representatives of the Juan Fernandez Island endemic genus Dendroseris and outgroup genera.
<p>| Figure 5.6 | An example of the calculation of isolation indices for internal edges of a splits-graph. | 96 |
| Figure 5.7 | Splits-graphs (using Huson, 1998; SplitsTree 3.1) made using a data set of 610 nucleotides from the ITS region of the nuclear ribosomal DNA for 34 Myosotis taxa. | 97 |
| Figure 5.8 | Splits-graphs (using Huson, 1998; SplitsTree 3.1) made using a data set of 867 nucleotides from the 3' region of the chloroplast maturase K gene locus for 34 Myosotis taxa. | 98 |
| Figure 5.9 | Electrophoretic profiles of amplified alleles from the AFLP derived markers MYOAT3 and MYOGC5. | 101 |</p>
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>General patterns in the composition of mid Tertiary to Quaternary floras of New Zealand.</td>
<td>4</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Plant communities of the New Zealand alpine zone (following Dawson, 1998; Mark & Adams, 1995).</td>
<td>10</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Oligonucleotide primers and thermocycling conditions used in the PCR amplification of established DNA marker loci.</td>
<td>20</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Oligonucleotide primers and thermocycling conditions used in the nested PCR amplification of established DNA marker loci.</td>
<td>22</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Combinations of selective amplification primers used for AFLP analysis.</td>
<td>40</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Outline of de Candolle’s (1846) infrageneric classification of Myosotis (following Grau & Schwab, 1982).</td>
<td>49</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Outline of the infrageneric classification of Myosotis proposed by Grau & Schwab (1982).</td>
<td>51</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Statistics from the aligned data matrices of Myosotis DNA sequences.</td>
<td>54</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Major groupings of Myosotis sequences indicated by gene trees derived from chloroplast and nuclear DNA markers.</td>
<td>55</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>P values from partition homogeneity test with 1000 replicates for various partitions in the combined data set.</td>
<td>59</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Age estimates for the origin and diversification of the austral lineage of Myosotis.</td>
<td>61</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Characteristic features of the Apiaceae (from Heywood, 1993; Downie et al., 1998).</td>
<td>69</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Outline of Drude’s (1897-1898) classification of the Umbelliferae (modified from Heywood, 1993).</td>
<td>70</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Broad groupings of the Australasian genera of the subfamily Apioideae (following Dawson, 1971).</td>
<td>72</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Taxonomic history of the Australasian apioid Umbelliferae (following Dawson & Webb, 1978).</td>
<td>75</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Statistics from the aligned data matrices of DNA sequences from the Australasian apioid genera Aciphylla, Anisotome and Gingidia.</td>
<td>79</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Age estimates for the origin and diversification of the austral lineage of the Apioideae.</td>
<td>84</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Recent molecular studies that have inferred long distance dispersal in the Southern Hemisphere.</td>
<td>108</td>
</tr>
</tbody>
</table>