Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
MECHANISMS OF COPPER UPTAKE AND TRANSPORT IN PLANTS

A thesis presented in partial fulfilment of the requirements of the degree of Doctor of Philosophy in Soil Science at Massey University, New Zealand

Mingtan Liao
2000
The Cu concentration in plants varies considerably between species. This suggests different abilities to either absorb Cu from soils or translocate Cu from root to shoot. The main objective of the thesis was to provide a fuller understanding of the mechanisms of Cu uptake and transport in plants which may lead to the development the strategies to improve Cu uptake by pasture crops.

Glasshouse experiments with the Cu hyperaccumulator *Haumaniastrum katangense* showed that Cu hyperaccumulation in shoots was not found. It was concluded that *H. katangense* plants tested in these experiments were Cu tolerant rather than having hyperaccumulator status. The mechanism of high tolerance to Cu could be due to the restriction of Cu transport from roots to shoots.

Nutrient solution culture experiments with the Ni hyperaccumulator plants *Alyssum bertolonii* and *Berkheya coddii* showed that co-hyperaccumulation of Cu and Ni did not exist. *Alyssum bertolonii* was not a Cu-tolerant plant, whereas *B. coddii* exhibited a much greater degree of tolerance to this metal, and the tolerance of *B. coddii* to Cu was not at the expense of Ni uptake. It was concluded that *B. coddii* should be considered as a possible plant for phytoremediation of soils contaminated with both Cu and Ni and it is recommended that field trials be carried out to establish this potential.

NFT nutrient solution culture experiments showed that a large proportion of total Cu uptake by chicory and tomato plants was retained by roots except when plants were grown in the basal nutrient solution (0.05 mg Cu L\(^{-1}\)). Copper retention by roots, limited Cu translocation to xylem and shoots. Large differences between measured and predicted Cu accumulation by shoots of tomato and chicory suggested that some xylem-transported Cu is recirculated to roots via the phloem.

A Cu speciation study showed that more than 99.7% of total Cu in tomato and chicory xylem sap was in a bound form. Increased Cu concentrations in the rooting media induced selective synthesis of certain amino acids which include NA, His, Asn and Gln, all of which have high stability constants with Cu.
Nicotianamine and His have the highest binding constants for Cu and the concentrations of NA and His in chicory and tomato xylem saps can account for all the bound Cu carried in the sap.

Copper recirculation within plants was demonstrated by an experiment with hydroponically grown tomato plants in a split-root system. Significant amounts of Cu were translocated from roots bathed in a solution of high Cu concentration to another half root system exposed to low Cu. Shoot Cu concentrations were positively correlated to plant water use (mL g\(^{-1}\) DM). A Cu recirculation model was suggested.

Efforts have been made to develop the strategies to improve Cu uptake by pastures. The initial uptake of Cu from CuSO\(_4\)-fertilised soil can be increased by 10-21 % by addition of His and casein. Casein was generally more effective at increasing plant Cu uptake than His and other amino acids.

The Cu(OH)\(_2\)-based fertiliser was less effective than the CuSO\(_4\)-based fertilisers in supplying Cu to ryegrass grown in pots of Ashhurst stony silt loam and Wairoa pumice soil. In general, among the three CuSO\(_4\) fertilisers, Ca-caseinate-CuSO\(_4\) resulted in higher Cu uptake by ryegrass grown in both soils.

The factors constraining Cu uptake by ryegrass plants from Cu-fertilised soils were elucidated. Linear relationships between ryegrass Cu uptake and total soil solution Cu concentration were soil type dependent, despite each soil having similar soil solution Cu concentrations. Between 98.5-99.5% of the soil solution Cu was in complexed forms. No relationship between the Cu\(^{2+}\) concentration in soil solution (expressed as pCu\(^{2+}\)) and Cu concentration in plants was found. Free Cu\(^{2+}\) concentrations in soil solution were sensitive to pH change. The extent of the increase in free Cu\(^{2+}\) concentration per unit decrease in pH was dependent on soil type. It is suggested that the rate of Cu uptake by plants is likely to be dependent on both the concentration of organically complexed Cu in the soil solution and the stability of this complex to pH change.
ACKNOWLEDGEMENTS

My sincere thanks go to my chief supervisor, Associate Professor Mike J. Hedley, for his great supervision, guidance, advice and patience throughout this study, and to my cosupervisors, Dr. Dave J. Woolley, Professor Robert R. Brooks and Dr. Mike A. Nichols, for their advice, encouragement, constructive suggestions and critical comments on experimental proposals, papers, and thesis.

I also thank everyone in the Soil and Earth Science Group and Horticulture Science Group (former Soil Science Department, and Plant Science Department) of Institute of Natural Resources, for making this work possible, especially the technicians from both groups for their advice and technical assistance.

My special thanks are extended to Dr J. Lee and Mr B. Tralord from AgResearch, CRI, Mr C. Rawlingson and Ms J. Kidd from Institute of Natural Resources, and Mr S. Rutherfurd from Institute of Milk and Human Health Research, Massey University, for their advice on HPLC amino acid analysis. I gratefully acknowledge Dr T. Shioiri, Faculty of Pharmaceutical Science, Nagoya City University, Japan for the nicotianamine (NA) standard sample that made NA analysis possible.

I particularly appreciated the financial assistance from a Helen E. Akers Scholarship and a Massey Doctoral Scholarship for my study.

Many thanks to my fellow postgraduates both graduated and at present studying in the Soil and Earth Science and the Horticulture Science Groups in the Institute of Natural Resources at Massey University, and all my Chinese friends for their friendship and help during my study at Massey University.

Finally, my immense gratitude to both my parents and parents-in-law for their encouragement and support of my study in a number of ways, and to my wife, Anna M. Huang, for her love, support and understanding during my PhD study. Special thanks to my children, George Liao and Angela Liao, who always bring us cheer and happiness.
TABLE OF CONTENTS

ABSTRACT .. I
ACKNOWLEDGEMENTS .. III
TABLE OF CONTENTS .. IV
LIST OF TABLES .. XI
LIST OF FIGURES ... XVI
LIST OF ABBREVIATIONS .. XXI

CHAPTER 1
GENERAL INTRODUCTION

1.1 COPPER IN SOIL-PLANT-ANIMAL SYSTEMS .. 1
1.2 HYPOTHESIS .. 6
1.3 AIMS OF THE STUDY ... 6
1.4 STRUCTURE OF THIS THESIS .. 6

CHAPTER 2
COPPER UPTAKE BY THE HYPERACCUMULATOR PLANT
Haumaniastrum katangense

2.1 INTRODUCTION ... 10
2.2 EXPERIMENT ONE ... 13
 2.2.1 Materials and Methods .. 13
 2.2.1.1 Plant culture and harvest ... 13
 2.2.1.2 Plant analysis ... 14
 2.2.1.3 Extraction of potting mixture solution and analysis 14
 2.2.1.4 Data analysis ... 15
 2.2.2 Results and Discussion .. 15
 2.2.2.1 Copper concentrations in shoots and roots .. 15
 2.2.2.2 The pH and total Cu concentration in potting mixture solution 16
 2.2.3 Summary ... 16
2.3 EXPERIMENT TWO .. 17
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1 Materials and Methods</td>
<td>17</td>
</tr>
<tr>
<td>2.3.1.1 Plant culture</td>
<td>17</td>
</tr>
<tr>
<td>2.3.1.2 Analysis</td>
<td>18</td>
</tr>
<tr>
<td>2.3.1.2.1 Plants</td>
<td>18</td>
</tr>
<tr>
<td>2.3.1.2.2 Nutrient solution</td>
<td>18</td>
</tr>
<tr>
<td>2.3.1.3 Data analysis</td>
<td>18</td>
</tr>
<tr>
<td>2.3.2 Results and Discussion</td>
<td>18</td>
</tr>
<tr>
<td>2.3.2.1 Plant growth</td>
<td>18</td>
</tr>
<tr>
<td>2.3.2.2 Copper uptake</td>
<td>19</td>
</tr>
<tr>
<td>2.3.3 Summary</td>
<td>21</td>
</tr>
<tr>
<td>2.4 EXPERIMENT THREE</td>
<td>21</td>
</tr>
<tr>
<td>2.4.1 Materials and Methods</td>
<td>21</td>
</tr>
<tr>
<td>2.4.2 Results and Discussion</td>
<td>21</td>
</tr>
<tr>
<td>2.5 CONCLUSIONS</td>
<td>22</td>
</tr>
</tbody>
</table>

CHAPTER 3

COPPER UPTAKE BY THE NICKEL HYPERACCUMULATORS

Berkheya coddii AND *Alyssum bertolonii*

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 INTRODUCTION</td>
<td>23</td>
</tr>
<tr>
<td>3.2 MATERIALS AND METHODS</td>
<td>24</td>
</tr>
<tr>
<td>3.2.1 Experiment one</td>
<td>24</td>
</tr>
<tr>
<td>3.2.1.1 Plant culture</td>
<td>24</td>
</tr>
<tr>
<td>3.2.1.2 Plant harvest</td>
<td>25</td>
</tr>
<tr>
<td>3.2.2 Experiment two</td>
<td>25</td>
</tr>
<tr>
<td>3.2.3 Analysis</td>
<td>25</td>
</tr>
<tr>
<td>3.2.3.1 Nutrient solution</td>
<td>25</td>
</tr>
<tr>
<td>3.2.3.2 Plants</td>
<td>25</td>
</tr>
<tr>
<td>3.2.4 Data analysis</td>
<td>26</td>
</tr>
<tr>
<td>3.3 RESULTS AND DISCUSSION</td>
<td>26</td>
</tr>
<tr>
<td>3.3.1 Effect of Cu on plant growth and biomass production</td>
<td>26</td>
</tr>
<tr>
<td>3.3.2 Copper uptake by plants</td>
<td>28</td>
</tr>
<tr>
<td>3.3.3 Total Cu accumulation and distribution in plant organs</td>
<td>29</td>
</tr>
<tr>
<td>3.3.4 Co-tolerance of B. coddii to Cu and Ni</td>
<td>30</td>
</tr>
</tbody>
</table>
3.3.5 The potential role of B. coddii in phytoremediation of soils contaminated with both Cu and Ni .. 31
3.4 CONCLUSIONS .. 34

CHAPTER 4
COPPER UPTAKE AND TRANSLOCATION IN CHICORY (Cichorium intybus L. cv Grasslands Puna) AND TOMATO (Lycopersicon esculentum Mill. cv Rondy) PLANTS GROWN IN NFT SYSTEM. I. COPPER UPTAKE AND DISTRIBUTION IN PLANTS

4.1 INTRODUCTION .. 35
4.2 MATERIALS AND METHODS .. 36
 4.2.1 Plant culture ... 36
 4.2.2 Harvest .. 36
 4.2.2.1 Plant harvest .. 36
 4.2.2.2 Xylem sap collection ... 36
 4.2.3 Analysis ... 37
 4.2.3.1 Plants .. 37
 4.2.3.2 Copper in xylem sap ... 37
 4.2.4 Data analysis .. 37
4.3 RESULTS .. 38
 4.3.1 Plant growth ... 38
 4.3.2 Plant Cu concentration .. 38
 4.3.3 Plant Cu accumulation ... 38
 4.3.4 Copper distribution in plants .. 39
 4.3.5 Cu in xylem sap .. 43
 4.3.5.1 Total Cu concentration ... 43
 4.3.5.2 Copper forms in xylem sap ... 43
4.4 DISCUSSION .. 47
4.5 CONCLUSIONS ... 50
CHAPTER 5
COPPER UPTAKE AND TRANSLOCATION IN CHICORY (Cichorium intybus L. cv Grasslands Puna) AND TOMATO (Lycopersicon esculentum Mill. cv Rondy) PLANTS GROWN IN NFT SYSTEM. II. THE ROLE OF NICOTIANAMINE AND HISTIDINE IN XYLEM SAP COPPER TRANSPORT

5.1 INTRODUCTION ... 51
5.2 MATERIALS AND METHODS ... 54
 5.2.1 Xylem sap collection .. 54
 5.2.2 Xylem sap analysis ... 54
 5.2.3 Free Cu$^{2+}$ concentration/pH titration 55
 5.2.4 Data analysis .. 56
5.3 RESULTS ... 56
 5.3.1 Amino acids in xylem sap .. 56
 5.3.2 Free Cu$^{2+}$ concentration/pH titration signatures 57
 5.3.2.1 Tomato xylem sap and simulated saps 57
 5.3.2.2 Chicory xylem sap and simulated saps 62
 5.3.3 Effect of competing cations on Cu complexation 62
 5.3.4 Effect of Cu treatment on xylem sap His and NA concentrations 64
 5.3.5 The relationships between Cu and His, NA concentrations in xylem saps of chicory and tomato 64
5.4 DISCUSSION .. 68
5.5 CONCLUSIONS ... 72

CHAPTER 6
AN INVESTIGATION OF COPPER UPTAKE AND REDISTRIBUTION WITHIN TOMATO (Lycopersicon esculentum Mill. cv Rondy) PLANTS

6.1 INTRODUCTION ... 73
 6.1.1 Hypothesis ... 76
 6.1.2 Objective ... 76
6.2 MATERIALS AND METHODS ... 76
 6.2.1 Experimental design .. 76
CHAPTER 7
EFFECTS OF AMINO ACIDS AND CASEIN ON COPPER UPTAKE
FROM SOIL BY CHICORY (Cichorium intybus L. cv. Grasslands Puna)

7.1 INTRODUCTION ... 100
7.2 MATERIALS AND METHODS 102
 7.2.1 Soil preparation ... 102
 7.2.2 Plant culture and harvest 102
 7.2.3 Sample analysis ... 103
7.2.4 Data analysis ... 103
7.3 RESULTS AND DISCUSSION ... 103
7.3.1 Plant growth ... 103
7.3.2 Shoot Cu concentration .. 103
7.3.3 Cumulative Cu uptake .. 107
7.3.4 Efficacy of additives .. 110
7.3.5 Recovery of fertiliser Cu .. 110
7.4 CONCLUSIONS AND IMPLICATIONS 111

CHAPTER 8
AGRONOMIC EFFECTIVENESS OF SELECTED FERTILISERS IN
SUPPLYING COPPER TO PERENNIAL RYEGRASS
(Lolium perenne cv. Nui)

8.1 INTRODUCTION ... 113
8.2 MATERIALS AND METHODS .. 114
 8.2.1 Soil preparation .. 114
 8.2.2 Experimental design and treatment 114
 8.2.3 Plant culture and harvest ... 115
 8.2.4 Recovery of fertiliser granules from soil 115
 8.2.5 Analysis .. 116
 8.2.5.1 Plants ... 116
 8.2.5.2 Fertiliser .. 116
 8.2.6 Data analysis .. 116
8.3 RESULTS AND DISCUSSION ... 116
 8.3.1 Cu fertiliser solubility ... 116
 8.3.2 Ryegrass dry matter production .. 119
 8.3.3 Shoot Cu concentration ... 121
 8.3.4 Cumulative shoot Cu uptake .. 122
 8.3.5 Recovery of fertiliser Cu .. 127
8.4 CONCLUSIONS AND FUTURE STUDIES 130
CHAPTER 9
LINKING PLANT COPPER UPTAKE AND SOIL SOLUTION COPPER POOLS IN COPPER-FERTILISED SOILS

9.1 INTRODUCTION... 131
9.2 MATERIALS AND METHODS... 135
 9.2.1 Origin of soils .. 135
 9.2.2 Extraction of soil solution .. 135
 9.2.3 Chemical characteristics of soil solutions .. 135
 9.2.4 Free Cu2+/total solution Cu equilibrium in soil solutions 136
 9.2.5 Data analysis ... 136
9.3 RESULTS AND DISCUSSION... 136
 9.3.1 Soil solution pH and total dissolved Cu concentrations 136
 9.3.2 Soil solution free Cu2+ concentrations .. 139
 9.3.3 Relationship between soil solution pH, total dissolved Cu and free Cu2+ concentrations .. 139
 9.3.4 Soil solution Cu activity (pCu2+), total dissolved soil solution Cu concentration and shoot Cu concentration, and total shoot Cu uptake at the last harvest ... 142
 9.3.5 Stability of Cu-organic complexes in soil solution .. 149
 9.3.6 Conceptual model of plant Cu uptake from soils ... 153
9.4 CONCLUSIONS AND IMPLICATIONS... 155

CHAPTER 10
SUMMARY

10.1 BACKGROUND .. 156
10.2 SUMMARY ... 156
10.3 CONCLUDING REMARKS AND FUTURE STUDY DIRECTIONS 159

REFERENCES ... 161
LIST OF TABLES

CHAPTER 2

Table 2.1 Normal elemental concentrations in plants and lower limit for hyperaccumulator plants (from Reeves et al., 1995).. 11
Table 2.2 The effect of rooting media (bark/pumice) Cu concentration on Cu accumulation in H. katangense plants. Data are the means of ten replicates. Significant differences between means are indicated using significant P values.. 15
Table 2.3 Effect of Cu treatment on pH and total dissolved Cu concentrations in solutions extracted from bark/pumice potting mixture. Data are the means of ten replicates. Significantly different means are indicated using significant P values, or NS if no significant 16
Table 2.4 Effect of Cu concentration in NFT solution on H. katangense plant growth. Dry biomass data are the means of three replicates. Relative growth is expressed as the dry weights of shoots or roots of treated plants as a percentage of plants in 0.05 mg Cu L⁻¹ .. 20
Table 2.5 Effect of Cu concentration in NFT solution on shoot and root Cu concentrations of H. katangense plants. Data are the means of three replicates. Significantly different means are labelled with different letters. Relative increase rate of Cu concentration is determined by expressing the concentrations of shoots and roots of treated plants relative to plants in 0.05 mg Cu L⁻¹ ... 20

CHAPTER 3

Table 3.1 The effects of Cu on biomass production of B. coddii and A. bertolonii. Data are the means of three replicates. Significantly different means are represented by labels a, b and c as determined by ANOVA................................. 27
Table 3.2 Copper concentrations in shoots and roots of B. coddii and A. bertolonii plants grown in NFT solutions containing Cu. Data are the means of three replicates. Significantly different means within columns are represented by labels a, b, c and d as determined by ANOVA................................. 28
Table 3.3 Total Cu accumulation and Cu distribution in *A. bertolonii* and *B. coddii* grown in an NFT system. Data are the means of three replicates. Significantly different means within columns are represented by labels a, b, c and d as determined by ANOVA.

CHAPTER 4

Table 4.1 Effect of Cu concentration in NFT solution on chicory and tomato plant growth. Dry biomass data are the means of three replicates. Significantly different means are labelled with different letters. Growth rate is expressed as the dry weights of shoots or roots of treated plants as a percentage of plants in 0.05 mg Cu L\(^{-1}\).

Table 4.2 Effect of Cu concentration in NFT solution on shoot and root Cu concentrations of chicory and tomato plants. Data are the means of three replicates. Significantly different means are labelled with different letters. Relative increase rate of Cu concentration is determined by expressing the concentrations of shoots and roots of treated plants relative to plants in 0.05 mg L\(^{-1}\).

Table 4.3 Effect of Cu concentration in NFT solution on Cu accumulation and distribution in chicory and tomato plants. The data of shoot, root and total Cu accumulation are the means of three replicates. Significantly different means are labelled with different letters. Theoretical Cu accumulation was calculated as: DM (g) + WUE (g DM L\(^{-1}\)) × Xylem sap Cu concentration (mg Cu L\(^{-1}\)), where WUE was based on typical values in the literature.

CHAPTER 5

Table 5.1 The operating eluent gradient. Eluent A: 0.14 M sodium acetate in water titrated to pH 6.5 ± 0.02 with glacial acetic acid, with the addition of 17.8 mL L\(^{-1}\) acetonitrile and 250 µL L\(^{-1}\) 10 mM EDTA. Eluent B: 9:8:3 (v/v) of acetonitrile - water - methanol.
Table 5.2 Effect of Cu concentration in rooting media on amino acid concentrations (mM) in tomato and chicory xylem sap. Data are presented as means ± S.E. (n=3) ... 58

Table 5.3 Free Cu²⁺ concentrations in simulated saps and tomato xylem sap from high Cu treatment (20 mg Cu L⁻¹) at pH 5.60. Free Cu²⁺ concentration data are presented as means ± S.E. (n=3) ... 59

Table 5.4 Free Cu²⁺ concentrations in simulated saps and chicory xylem sap (2-fold diluted) from high Cu treatment (20 mg Cu L⁻¹) at pH 5.60. Free Cu²⁺ concentration data are presented as means ± S.E. (n=3) ... 63

Table 5.5 Effect of the presence of competing cation Zn²⁺ on free Cu²⁺ concentrations in simulated xylem saps at pH 5.60. Free Cu²⁺ concentration data are presented as means ± S.E. (n=3) ... 63

CHAPTER 6

Table 6.1 Concentrations of Fe, Mn, Zn and Cu in the phloem sap of different species (µM) ... 74

Table 6.2 Stability constants (logK_{MeNA}) of nicotianamine (NA) with various divalent transition metal ions (from Stephan et al., 1996) ... 75

Table 6.3 Treatments ... 78

Table 6.4 Effects of relative humidity (RH), light intensity, solution nutrient concentration and Cu treatments on plant shoot dry weight gain. Significant differences (P<0.05) between treatment means (in rows) are labelled with different letters. The standard errors of means are shown in parentheses. T-tests were performed for paired data from low and high humidity boxes (in columns), significantly different means were shown with P values and NS for no significant difference. Three-letter code referring to level of RH, light intensity and nutrient concentration are listed in Table 6.3 ... 82

Table 6.5 Effects of relative humidity (RH), light intensity, solution nutrient concentration and Cu treatments on tomato plant water use (mL g⁻¹ DM). Significant differences (P<0.05) between treatment means (in rows) are labelled with different letters. The standard errors of means are shown in parentheses. T-tests were performed for paired data from low and high humidity boxes (in columns), significantly different means were shown
with P values. Three-letter code referring to level of RH, light intensity and nutrient concentration are listed in Table 6.3.

Table 6.6 Effects of relative humidity (RH), light intensity, solution nutrient concentration and Cu treatments on shoot Cu concentrations and accumulation of tomato plants. Significant differences ($P<0.05$) between treatment means (in rows) are labelled with different letters. The standard errors of means are shown in parentheses. Three-letter code referring to level of RH, light intensity and nutrient solution concentration are listed in Table 6.3.

Table 6.7 Increase in Cu in solution (ΔCu_1, μg), and root tissue (ΔCu_2, μg) of the half roots not exposed to high Cu and their proportions to Cu accumulation in shoots (%). Three-letter code referring to level of RH, light intensity and nutrient concentration are listed in Table 6.3.

CHAPTER 7

Table 7.1 Effects of Cu fertiliser source and application rate on accumulated shoot dry weight, and shoot Cu accumulation of chicory plants grown in pots of Manawatu silt loam. Data are means of three replicates.

Table 7.2 The effect of Cu source, application rate and additives on accumulated shoot Cu accumulation of chicory plants grown in pots of Manawatu silt loam. Data shown are means of three replicates. Significantly different means are labelled with different letters. NS means no significant difference.

CHAPTER 8

Table 8.1 Basic characteristics of soils used for study.

Table 8.2 The differences in fertiliser granule weight and Cu content before and after the experimental period. Data are mean ± S.E. (n=10).

Table 8.3 The effect of Cu fertiliser source, application rate, and soil type on the cumulative yield and the cumulative Cu uptake of ryegrass over 6 harvests. Data shown are means of three replicates. Significantly different means are labelled with different letters.
Table 8.4 The effect of Cu fertiliser source, application rate, and soil type on shoot Cu concentrations of ryegrass at each harvest over 6 harvests. Data shown are means of three replicates. Significantly different means are labelled with different letters. ... 123

Table 8.5 Effect of plant species, soil type, Cu source and application rate on the apparent recovery of fertiliser Cu over the first 3 harvests (90 days after transplanting (chicory) and/or seedling thinning (ryegrass)) 129

CHAPTER 9

Table 9.1 Major available soluble species, total soil solution concentrations of micronutrients (Fe, Mn, Zn and Cu) in soils (from Welch, 1995) 132

Table 9.2 Effect of the Cu source and application rate on the total soil solution Cu and the percentage of free Cu$^{2+}$ as the total soil solution Cu concentration in the Ashhurst stony silt loam and Wairoa pumice soil. Data shown are means ± S.E. (n=2) ... 137
LIST OF FIGURES

CHAPTER 1

Fig. 1.1 Generalised uptake curves for essential and non-essential elements over the full range of soil concentrations (from Berry, 1986). .. 3
Fig. 1.2 The possible uptake response of plants to heavy metals in soils (from Robinson, 1997). .. 3
Fig. 1.3 Copper deficiency in lambs. Note the characteristic position of a lamb with enzootic ataxia or swayback (from Grace, 1983). .. 4
Fig. 1.4 Copper deficiency in cattle. Note the pale coat colour, poor body condition and diarrhoea (from Grace, 1983). .. 4
Fig. 1.5 Diagram of the structure of the thesis. .. 9

CHAPTER 2

Fig. 2.1 Haumaniastrum katangense growing in copper-poisoned soil at Lubumbashi, Zaire (from Brooks et al., 1992) .. 12

CHAPTER 3

Fig. 3.1 The effect on shoots of B. coddii of various Ni and Cu concentrations in the rooting media nutrient solution. (A) The effect of Cu and Ni on shoot dry weight; (B) Ni concentrations in dry shoots as a function of metals in the growth solution; (C) Cu concentrations in dry shoots as in (B). T1 (BS - base [control] solution), T2 (BS + 10 mg Cu L⁻¹), T3 (BS + 10 mg Ni L⁻¹), T4 (BS + 10 mg L⁻¹ each of Cu and Ni). Labels a and b indicate significant differences (P<0.01) as determined by ANOVA .. 33

CHAPTER 4

Fig. 4.1 Effect of Cu concentration in NFT solution on Cu distribution in chicory and tomato plants .. 42
Fig. 4.2 Effect of Cu concentration in NFT solution on Cu concentration in xylem sap of chicory and tomato plants. Data shown are means ± S.E. (n = 3) .. 44
Fig. 4.3 Relationship between Cu concentrations in xylem saps and Cu concentrations in roots (A) and shoots (B) of tomato and chicory plants. Data shown are means ± S.E. (n = 3) .. 45

Fig. 4.4 Degree of Cu chelation in chicory and tomato xylem saps .. 46

CHAPTER 5

Fig. 5.1 Relative xylem amino acid concentrations in plants exposed to 20 mg Cu L⁻¹ in the rooting media compared to amino acid concentrations in the xylem sap of control plants (0.05 mg Cu L⁻¹). Amino acids are listed from left to right in the order of decreasing abundance in the xylem saps. Only those amino acids present at ≥ 1 μM in any sample are shown. A: tomato xylem sap; B: chicory xylem sap .. 60

Fig. 5.2 Free Cu²⁺ concentration vs pH titration curves of simulated saps and tomato xylem sap. A: simulated saps with single amino acid; B: Simulated saps with combination of amino acids .. 61

Fig. 5.3 Free Cu²⁺ concentration vs pH titration curves of simulated saps and chicory xylem sap (2-fold diluted). A: simulated saps with single amino acid; B: Simulated saps with combination of amino acids .. 65

Fig. 5.4 Effect of Cu concentration in NFT solutions on xylem sap His and NA concentrations. Data shown are means of three replicates. The vertical bars indicate the S.E. (n = 3) .. 66

Fig. 5.5 Relationship between Cu and His and NA concentrations in xylem sap of chicory and tomato .. 67

CHAPTER 6

Fig. 6.1 The split-root technique .. 79

Fig. 6.2 Tomato root growth in split-root systems exposed to different concentrations of 50 μg Cu L⁻¹ (clear columns) and 10 mg L⁻¹ Cu (shaded columns). The vertical bar on the top of each column is the standard error. Significant differences (P<0.05) between treatment means are labelled with different letters (A, B, C, D, E and a, b, c, d for right-hand side and left-hand side root, respectively). Three-letter code referring to level of RH, light intensity and nutrient concentration are listed in Table 6.3 .. 83
Fig. 6.3 Copper concentrations (mg Cu kg\(^{-1}\) DW) of leaves sampled from both sides of tomato plants grown in 0/0 and 0/10 Cu treatment solutions. Three-letter code referring to level of RH, light intensity and nutrient concentration are listed in Table 6.3................................. 87

Fig. 6.4 Tomato root Cu concentrations in split-root systems exposed to different concentrations of 50 µg Cu L\(^{-1}\) (clear columns) and 10 mg L\(^{-1}\) Cu (shaded columns). The ANOVA was performed on logarithmic transformed data. The vertical bar on the top of each column is the standard error. Significant differences (\(P<0.05\)) between treatment means are labelled with different letters (A, B, C, D, E and a, b, c, d for right-hand side and left-hand side root, respectively). Three-letter code referring to level of RH, light intensity and nutrient concentration are listed in Table 6.3.. 90

Fig. 6.5 Tomato root Cu accumulations in split-root systems exposed to different concentrations of 50 µg Cu L\(^{-1}\) (clear columns) and 10 mg L\(^{-1}\) Cu (shaded columns). The ANOVA was performed on the logarithmic transformed data. The vertical bar on the top of each column is the standard error. Significant differences (\(P<0.05\)) between treatment means are labelled with different letters (A, B, C, D, E and a, b, c, d for right-hand side and left-hand side root, respectively). Three-letter code referring to level of RH, light intensity and nutrient concentration are listed in Table 6.3.. 91

Fig. 6.6 Relationship between plant water use (mL g\(^{-1}\) DM) and shoot Cu concentrations (mg Cu kg\(^{-1}\) DM) of tomato plants grown in 0/10 Cu solutions... 94

Fig. 6.7 Possible model of Cu redistribution within the tomato plant............. 98

CHAPTER 7

Fig. 7.1 Effect of Cu sources, rate of application and additives on cumulative shoot dry weight over 3 harvests of chicory plants grown in pots of Manawatu silt loam. Vertical error bars are the standard error of means. NS means no significant difference.. 105

Fig. 7.2 Effect of Cu sources, rate of application on shoot Cu concentration of chicory plants grown in pots of Manawatu silt loam. NS indicates no significant difference. The vertical error bars are the LSD\(_{0.05}\) values
calculated from ANOVA analysis. Significant differences (P<0.05) between treatment means at a single harvest are signified by different letters.

Fig. 7.3 Effect of additives on apparent Cu recovery of Cu from fertilisers, over 3 harvests, of chicory grown in pots of Manawatu silt loam. The vertical error bars are the LSD_{0.05} values calculated from ANOVA analysis. Significant differences (P<0.05) between treatment means at a single harvest are signified by different letters.

CHAPTER 8

Fig. 8.1 Visible fertiliser granules of the Cu(OH)_{2}-based product in the fertilised zone of Ashhurst stony silt loam (top) and Wairoa pumice soil (bottom) after more than 7 months plant growth in the pots.

Fig. 8.2 Effect of Cu source and application rate on shoot Cu concentration of ryegrass grown in pots of Ashhurst stony silt loam over 6 harvests. F1: CuSO_{4}.5H_{2}O chips (1.4-2 mm); F2: Cu(OH)_{2}-based product (1.4-2 mm); F3: Ca-caseinate-CuSO_{4}.5H_{2}O (1.4-2 mm); F4: CuSO_{4}.5H_{2}O powder (<0.5 mm). Vertical error bars represent LSD at P = 0.05 and NS no significant.

Fig. 8.3 Effect of Cu sources and rates on shoot Cu concentration of ryegrass grown in pots of Wairoa pumice soil over 6 harvests. F1: CuSO_{4}.5H_{2}O chips (1.4-2 mm); F2: Cu(OH)_{2}-based product (1.4-2 mm); F3: Ca-caseinate-CuSO_{4}.5H_{2}O (1.4-2 mm); F4: CuSO_{4}.5H_{2}O powder (<0.5 mm). Vertical error bars represent LSD at P = 0.05 and NS no significant.

Fig. 8.4 Effect of Cu source and application rate on cumulative shoot Cu uptake, over 6 harvests, of ryegrass grown in pots of Wairoa pumice soil and Ashhurst stony silt loam. F1: CuSO_{4}.5H_{2}O chips (1.4-2 mm); F2: Cu(OH)_{2}-based product (1.4-2 mm); F3: Ca-caseinate-CuSO_{4}.5H_{2}O (1.4-2 mm); F4: CuSO_{4}.5H_{2}O powder (<0.5 mm). Vertical error bars represent LSD at P = 0.05.

Fig. 8.5 Effect of Cu sources and rates on the apparent recovery of Cu from fertilisers, over 6 harvests, of ryegrass grown in pots of Ashhurst stony silt loam and Wairoa pumice soil. F1: CuSO_{4}.5H_{2}O chips (1.4-2 mm); F2: Cu(OH)_{2}-based product (1.4-2 mm); F3: Ca-caseinate-CuSO_{4}.5H_{2}O (1.4-2 mm); F4: CuSO_{4}.5H_{2}O powder (<0.5 mm). Vertical error bars represent LSD at P = 0.05.
Fig. 9.1 The lack of a relationship between soil solution pH and total soil solution Cu concentration in soil solutions extracted from pots of Ashhurst stony silt loam and Wairoa pumice soil fertilised with different sources and rates of Cu fertilisers.

Fig. 9.2 Relationship between soil solution pH and soil solution pCu$^{2+}$. F1: CuSO$_4$.5H$_2$O (1.4-2 mm); F2: Cu(OH)$_2$-based product (1.4-2 mm); F3: Ca-caseinate-CuSO$_4$.5H$_2$O (1.4-2 mm); F4: CuSO$_4$.5H$_2$O (<0.5 mm).

Fig. 9.3 The lack of a relationship between ryegrass shoot Cu concentrations at 6th harvest and soil solution pCu$^{2+}$. F1: CuSO$_4$.5H$_2$O (1.4-2 mm); F2: Cu(OH)$_2$-based product (1.4-2 mm); F3: Ca-caseinate-CuSO$_4$.5H$_2$O (1.4-2 mm); F4: CuSO$_4$.5H$_2$O (<0.5 mm).

Fig. 9.4 Relationship between ryegrass shoot Cu concentrations at 6th harvest and total soil solution Cu concentration. F1: CuSO$_4$.5H$_2$O (1.4-2 mm); F2: Cu(OH)$_2$-based product (1.4-2 mm); F3: Ca-caseinate-CuSO$_4$.5H$_2$O (1.4-2 mm); F4: CuSO$_4$.5H$_2$O (<0.5 mm).

Fig. 9.5 Relationship between shoot Cu uptake at 6th harvest and total soil solution Cu concentrations. F1: CuSO$_4$.5H$_2$O (1.4-2 mm); F2: Cu(OH)$_2$-based product (1.4-2 mm); F3: Ca-caseinate-CuSO$_4$.5H$_2$O (1.4-2 mm); F4: CuSO$_4$.5H$_2$O (<0.5 mm).

Fig. 9.6 The lack of a relationship between the total dissolved soil solution Cu concentrations and shoot Cu concentrations (A), and total shoot Cu uptake (B) at the 6th harvest in both Ashhurst stony silt loam and Wairoa pumice soil.

Fig. 9.7 The relationship between free Cu$^{2+}$ concentration and pH of soil solutions from pots treated with 50 kg Cu ha$^{-1}$ as CuSO$_4$.5H$_2$O (1.4-2 mm).

Fig. 9.8 The relationship between free Cu$^{2+}$ concentration and pH of soil solutions from pots treated with 50 kg Cu ha$^{-1}$ as Ca-caseinate-CuSO$_4$ (1.4-2 mm).

Fig. 9.9 The conceptual model of plant Cu uptake from soils.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Mh</td>
<td>3-methylhistidine</td>
</tr>
<tr>
<td>Aaba</td>
<td>α-aminobutyric acid</td>
</tr>
<tr>
<td>AAD</td>
<td>α-aminoadipic acid</td>
</tr>
<tr>
<td>Ala</td>
<td>alanine</td>
</tr>
<tr>
<td>Arg</td>
<td>arginine</td>
</tr>
<tr>
<td>Asn</td>
<td>asparagine</td>
</tr>
<tr>
<td>Asp</td>
<td>aspartic acid</td>
</tr>
<tr>
<td>β-Aib</td>
<td>β-aminoisobutyric acid</td>
</tr>
<tr>
<td>Carn</td>
<td>carnosine</td>
</tr>
<tr>
<td>Cyst</td>
<td>cystathionine</td>
</tr>
<tr>
<td>DM</td>
<td>dry matter</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene-diaminetetraacetic acid</td>
</tr>
<tr>
<td>FAAS</td>
<td>flame atomic absorption spectrometry</td>
</tr>
<tr>
<td>Gaba</td>
<td>γ-aminobutyric acid</td>
</tr>
<tr>
<td>GFAAS</td>
<td>graphite furnace atomic absorption spectrometry</td>
</tr>
<tr>
<td>Gln</td>
<td>glutamine</td>
</tr>
<tr>
<td>Glu</td>
<td>glutamic acid</td>
</tr>
<tr>
<td>His</td>
<td>histidine</td>
</tr>
<tr>
<td>Hyp</td>
<td>hydroxyproline</td>
</tr>
<tr>
<td>Ile</td>
<td>isoleucine</td>
</tr>
<tr>
<td>Leu</td>
<td>leucine</td>
</tr>
<tr>
<td>Lys</td>
<td>lysine</td>
</tr>
<tr>
<td>Met</td>
<td>methionine</td>
</tr>
<tr>
<td>NA</td>
<td>nicotianamine</td>
</tr>
<tr>
<td>NFT</td>
<td>nutrient film technique system</td>
</tr>
<tr>
<td>Orn</td>
<td>ornithine</td>
</tr>
<tr>
<td>Phe</td>
<td>phenylalanine</td>
</tr>
<tr>
<td>PITC</td>
<td>phenylisothiocyanate</td>
</tr>
<tr>
<td>Pro</td>
<td>proline</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RP-HPLC</td>
<td>reversed phase high performance liquid chromatography</td>
</tr>
<tr>
<td>Ser</td>
<td>serine</td>
</tr>
<tr>
<td>Thr</td>
<td>threonine</td>
</tr>
<tr>
<td>Tyr</td>
<td>tyrosine</td>
</tr>
<tr>
<td>Val</td>
<td>valine</td>
</tr>
<tr>
<td>WUE</td>
<td>plant water use efficiency (g DM L⁻¹ H₂O)</td>
</tr>
</tbody>
</table>