Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Development of a decision support system to determine the best maize (Zea mays. L) hybrid - planting date option under typical New Zealand management systems

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Plant Science

At Massey University, Palmerston North,

New Zealand

ROWLAND TSIMBA

2011
ABSTRACT

A study was conducted with the aim of developing a decision support tool in the form of a crop simulation model, to help New Zealand (NZ) farmers make informed hybrid-specific decisions to optimise maize (*Zea mays* L.) yields through selection of the best hybrid for a given planting date (PD) and location. Field experiments were established (2006-2007) in four environments (ENVs) to generate data to modify and evaluate the CERES-Maize model. Planting between 20 September and 13 October (Waikato) or 6 November (Manawatu) maximised grain yields while the respective PDs for achieving highest silage yields were 9-15 October or 23 October. Optimum PDs varied seasonally. For instance, a 1°C mean temperature (spring) decrease advanced optimum PD by 1-2 wk. A base temperature of 8°C (*T*_b8) led to adequate estimates of thermal durations for the pre-flowering phase while *T*_b0 was more satisfactory during grain filling.

After minor model modifications using Waikato and Manawatu field data, CERES-Maize was successfully adapted for NZ conditions. Maize yields were simulated across eight contrasting ENVs using 31 yr weather data (1978-2009). High irradiance and moderate temperatures during grain filling resulted in the highest yields. This coincided with 1-18 October PDs. Temperatures <18°C and >25°C and irradiance <17 MJ m⁻² d⁻¹ during grain filling significantly reduced yields. Low spring temperatures also reduced leaf expansion, minimising source capacity. Planting date windows to achieve ≥95% of yield maxima ranged from 1-7 wk. Silage crops, warmer ENVs or early hybrids had wider planting windows and less crop failure risk when planted late. With early or late planting, yield reductions were greater in higher latitude ENVs where spring and autumn temperatures and radiation were much lower. Due to higher assimilate demand, late hybrids were generally more stress prone, whereas early hybrids were sink limited.

A multiple-linear regression equation based on temperature and relative humidity was established to estimate field grain drydown. Another relationship based on the Gompertz model was also developed to estimate silage maturity using thermal time. These functions were used to enhance CERES-Maize’s ability to predict harvest maturity. To simplify data collection for the model, linear and non-linear models for relationships between tassel initiation and leaf number; total plant leaf area and area of the largest leaf; and leaf tip number and fully expanded leaves were also established.
ACKNOWLEDGEMENTS

This PhD project would not have been possible without the financial, intellectual, technical and moral support provided by a range of people and organisations. I would like to extend my sincere gratitude to my supervisors. Special thanks go to my Chief Supervisor, Prof. Peter Kemp for your overall guidance of the project. You were always available to offer feedback on the manuscripts, and I am very grateful. To Dr James Millner, thanks so much for your advice on statistical analysis and feedback on the thesis manuscripts. Your assistance with field and laboratory work was also greatly appreciated. Dr Greg Edmeades, thank you so much for the advice from the inception to the end of this project, without which I would not have been where I am today. Your guidance and constructive criticism of the manuscripts was also quite invaluable.

Without the funding provided by the Tertiary Education Commission (Bright Future Scheme) and Genetic Technologies Ltd., this project would not have taken place. For that, I thank both organisations. To William and Philip Yates (respectively, Managing Director and Chairman, Genetic Technologies Ltd.), I would like to acknowledge your considerable generosity for allowing me to take on this project while I continued to work full time. To Barry McCarter, I am so grateful for your input and enthusiasm in this project, and most of all, for encouraging me to pursue PhD studies.

Special thanks also go to Mark Osborne for all the technical support needed to set up the Manawatu experiments. To Peter Jessop, Tiana, Angela and Ezra Rentoul, thank you so much for helping with the data collection. To Genetic Technologies staff that helped, I also offer my gratitude. I would also like to thank Dr Alasdair Noble for his advice with statistical analyses. Contributions by Sam Mudzanire on Fortran programming were also greatly appreciated. Thanks also to Prof. Gerrit Hoogenboom (University of Georgia, USA) and Dr Jun Wei (Pioneer® Hi-Bred International) for respectively, providing the CERES-Maize model source code and initial maize genetic coefficients.

Many thanks also go to my friends who always brought me joy and laughter when I felt low. To my parents, thank you so much for all the encouragement and help with some of the data collection. Finally, to my wife Fungisai, I can never thank you enough. You were always there for me, in good or bad times. Thanks also, for taking on most of the
house chores during this period, in addition to helping with data collection and manuscript editing.
TABLE OF CONTENTS

ABSTRACT ... i
ACKNOWLEDGEMENTS ... ii
TABLE OF CONTENTS .. iv
LIST OF TABLES ... ix
LIST OF FIGURES ... xiii
LIST OF PLATES .. xvi
LIST OF ABBREVIATIONS ... xvii

CHAPTER 1: GENERAL INTRODUCTION, OBJECTIVES AND THESIS FORMAT ... 1

1.1 GENERAL INTRODUCTION .. 1
 1.1.1 Climate ... 1
 1.1.2 Hybrid x environment interactions .. 2
 1.1.3 Simulation modelling .. 4

1.2 OBJECTIVES ... 6
 1.2.1 Specific objectives ... 6

1.3 THESIS FORMAT .. 7

CHAPTER 2: LITERATURE REVIEW ... 8

2.1 INTRODUCTION .. 8
 2.1.1 Phenological development ... 9

2.2 EFFECTS OF ENVIRONMENTAL FACTORS ON CROP GROWTH AND DEVELOPMENT ... 11
 2.2.1 Temperature .. 11
 2.2.2 Solar radiation ... 16
 2.2.3 Water .. 18
 2.2.3.1 Drought effects during vegetative growth ... 19
 2.2.3.2 Drought effects during flowering ... 20
 2.2.3.3 Drought effects during grain filling ... 21
 2.2.4 Photoperiod ... 22
 2.2.5 Interaction between temperature and solar radiation 23
 2.2.6 Interaction between temperature and photoperiod 23
 2.2.7 Interactions between water and other environmental factors 24

2.3 HYBRID SELECTION TO MAXIMISE YIELD ... 25

2.4 IMPACT OF EARLY PLANTING ON MAIZE GROWTH AND DEVELOPMENT .. 28

2.5 IMPACT OF LATE PLANTING ON MAIZE GROWTH AND DEVELOPMENT .. 30
5.3.6 Total biomass at 50% anthesis ... 125
5.3.7 Silage Yield .. 125
5.3.8 Data analysis .. 127

5.4 RESULTS .. 129
5.4.1 Weather summary .. 129
5.4.2 Silage yield .. 130
5.4.3 Silage quality traits .. 132
5.4.4 Milk t⁻¹ index .. 135
5.4.5 Milk ha⁻¹ index .. 136
5.4.6 Total biomass yield at anthesis ... 137
5.4.7 Plant height .. 138
5.4.8 Leaf number ... 139
5.4.9 Leaf area distribution ... 140
5.4.10 Leaf Area Index (LAI) ... 142
5.4.11 Rate of leaf emergence/phylochron .. 144
5.4.12 Estimation of leaf tip counts from fully expanded leaves 146

5.5 DISCUSSION ... 148
5.5.1 Total DM yield at flowering ... 148
5.5.2 Silage DM yield .. 149
5.5.3 Silage quality and predicted milk production 151
5.5.4 Canopy development ... 153

5.6 CONCLUSIONS ... 161

CHAPTER 6: USE OF THE CERES-MAIZE MODEL TO OPTIMISE PLANTING DATE AND MAIZE HYBRID SELECTION ... clxxiii
6.1 ABSTRACT .. clxxiii
6.2 INTRODUCTION .. clxv
6.3 MATERIALS AND METHODS .. clxviii
6.3.1 Experiment details .. clxviii
6.3.2 Model description .. clxviii
6.3.3 Model calibration and verification ... clxx
6.3.4 Long term simulation studies .. clxxxii
6.4 RESULTS .. clxxvii
6.4.1 Model calibration ... clxxvii
6.4.1.1 Genetic coefficients, grain yield and yield components clxxvii
6.4.1.2 Silage yields .. clxxix
6.4.2 Model verification/evaluation ... clxxx
6.4.2.1 Silage yields .. clxxxiii
6.4.3 Simulation studies .. clxxxv
6.4.3.1 Southland .. clxxxvii
6.4.3.2 Canterbury .. clxxxix
6.4.3.3 Taranaki ... cxcii
6.4.3.4 Manawatu ... cxciv
6.4.3.5 Waikato ... cxcvii
6.4.3.6 Bay of Plenty (BOP) .. cxcix
6.4.3.7 Northland ... cc
6.4.3.8 Poverty Bay ... ccii
6.4.3.9 Hybrid maturity switch date .. cciii
6.5 DISCUSSION ... ccv
6.5.1 Model evaluation ... ccv
6.5.2 Long term simulation study ... ccx
6.6 CONCLUSIONS .. ccxvi

CHAPTER 7: GENERAL DISCUSSION AND CONCLUSIONS ccxviii
7.1 INTRODUCTION .. ccxviii
7.2 DEVELOPMENT OF A DECISION SUPPORT SYSTEM........... ccxix
7.2.1 Crop management decisions based on research outcomes ccxix
7.2.2 Improvements in methods used to collect phenological and some growth data required for crop simulation models ccxx
7.2.3 Prediction of crop cycle duration .. ccxxi
7.2.4 Use of the CERES-Maize model in NZ ccxxiv
7.2.5 Planting date recommendations .. ccxxvii
7.3 CONSTRAINTS EXPERIENCED DURING THE STUDY ccxxviii
7.3.1 Drought ... ccxxviii
7.3.2 Distance .. ccxxviii
7.3.3 Delayed planting in Manawatu ... ccxxviii
7.3.4 Photoperiod ... ccxxviii
7.3.5 Model coding ... ccxxviii
7.4 FUTURE RESEARCH ... ccxxix
7.4.1 Test appropriate planting rates for different PD treatments ccxxix
7.4.2 Test appropriate planting densities for the different hybrid maturities ccxxix
7.4.3 Improving CERES-Maize performance ccxxix
7.4.4 Create a silage subroutine ... ccxxix
7.4.5 Compare CERES-Maize with AmaizeN model ccxxix
7.5 CONCLUSIONS ... ccxxx

REFERENCES ... ccxxxii
LIST OF TABLES

Table 1.1 Comparison of average monthly minimum (min), maximum (max) and mean temperatures for Iowa City (41.63° N; 91.55° W) (USA), Hamilton (37.87° S; 175.34° E) and Palmerston North (40.38° S; 175.58° E) (New Zealand) during a typical maize growing season...2

Table 3.1 Average monthly minimum (Min) and maximum (Max) temperature data for RUK07, MAS08, NGA08 and RUK08 during the experimental periods of 2006-07 and 2007-08...48

Table 3.2 Mean monthly radiation and total rainfall data for MAS08, RUK07, RUK08 and NGA08 during the experiment periods of 2006-07 and 2007-08..................49

Table 3.3 Grain yields at 14% moisture content (t ha⁻¹) for NGA08, RUK08, RUK07 and MAS08 over 4 or 5 planting dates (PDs); se is pooled standard error across PD treatments for all hybrids, and a and b are linear and quadratic regression estimates, expressed as t d⁻¹ from PD1...50

Table 3.4 Biomass yields for NGA08, RUK08, RUK07 and MAS08 over 4 or 5 planting dates (PD); se is the pooled standard error across PD treatments for all hybrids; a and b are linear and quadratic regression estimates, expressed as t d⁻¹ from PD1..54

Table 3.5 Kernel weight for NGA08, RUK08, RUK07 and MAS08 across four or five planting dates (PDs); se is pooled standard error across PD treatments for all hybrids...57

Table 3.6 The effect of planting date (PD) and hybrid maturity on KN m⁻² for treatments sown on 4 or 5 PDs at NGA08, RUK08, RUK07 and MAS08; a and b are linear and quadratic regression estimates, expressed as kernels m⁻² d⁻¹ from PD1..62

Table 4.1 Effect of base temperature (T_b) on the coefficient of variation of thermal time durations to different phenological stages of maize, using data obtained from RUK07. Optimum T_b is shown for each stage.................................85

Table 4.2 Kernel growth rate based on either thermal (T_b0) or real time, d, for RUK07 across 5 planting dates; se is standard error across PD treatments for all hybrids.89

Table 4.3 Thermal time requirement from emergence to tassel initiation for NGA08, RUK07, MAS08 and RUK08 across 4 or 5 planting dates (PDs); se is standard error across PD treatments for all hybrids.................................90
Table 4.4 Thermal time (T8) requirement from emergence to silking for MAS08, NGA08, RUK07 and RUK08 across 4 or 5 planting dates (PDs); se is standard error across PD treatments for all hybrids.91
Table 4.5 Thermal time requirement from 50% silking to physiological maturity for MAS08, NGA08, RUK07 and RUK08 across 4 or 5 planting dates (PDs); se is standard error across PD treatments for all hybrids.93
Table 4.6 Grain moisture (%) at black layer for RUK07 across 5 planting dates (PDs); se is standard error across PD treatments for all hybrids.94
Table 4.7 Thermal time requirement from emergence to physiological maturity for MAS08, NGA08, RUK07 and RUK08 across 4 or 5 planting dates (PDs); se is standard error across PD treatments for all hybrids.95
Table 4.8 The Gompertz non-linear function equations and statistical parameters to estimate whole plant dry matter content (%) on thermal time (TT, (T0) in 0Cd) between anthesis and physiological maturity for three hybrid maturities, using data from NGA08, MAS08, RUK07 and RUK08... 97
Table 4.9 Multiple regression equations and statistical parameters describing rates of grain moisture loss vs. thermal time (TT, (T0) in 0Cd) and relative humidity (RH%) using data from three planting date treatments at RUK07, expressed as % moisture loss d-1... 97
Table 4.10 Relative change in stover weight (%) between silking and maturity for RUK08, RUK07 and NGA08 across five planting dates (PDs); se is standard error across PD treatments for all hybrids. Data in parentheses indicate the average vegetative aboveground plant dry weight (g plant-1) at silking. 101
Table 5.1 Total solar radiation and mean temperature between emergence and flowering (maize) across planting date (PD) treatments for MAS08, RUK07, RUK08 and NGA08.. 129
Table 5.2 Average daylength and mean air temperature for 1-5 d prior to tassel initiation (TI) for four to five planting date (PD) treatment at MAS08, RUK07, RUK08 and NGA08 environments.. 129
Table 5.3 Silage dry matter yields for NGA08, RUK08, RUK07 and MAS08 across planting dates (PDs); se is standard error across PD treatments for all hybrid maturities. .. 130
Table 5.4 Predicted silage starch content averaged across planting dates (PDs) at NGA08, RUK07 and MAS08; se is standard error across PD treatments for all hybrid maturities.

Table 5.5 Correlation coefficients for silage quality traits vs. silage yield and harvest index (HI) across NGA08, RUK07 and MAS08. Only values with P<0.01 are presented. NS refers to not significant at P<0.01.

Table 5.6 Predicted milk t⁻¹ from silage for RUK07, NGA08 and MAS08 averaged over 4 or 5 planting dates; se is standard error across PD treatments for all hybrid maturities.

Table 5.7 Total aboveground biomass yields at 50% anthesis for NGA08, RUK08 and RUK07 over 5 planting dates (PDs); se is standard error across PD treatments for all hybrid maturities.

Table 5.8 Total leaf number for RUK07, NGA08, RUK08 and MAS08 across 4 or 5 planting dates (PDs); se is standard error across PD treatments for all hybrid maturities.

Table 5.9 Leaf area index (LAI) at NGA08, RUK08, RUK07 and MAS08, across 4 or 5 planting dates (PDs); se is standard error across all hybrids or maturities. Figures in parenthesis refer to mean temperatures (°C) during leaf expansion for the respective treatment.

Table 5.10 Phyllochron values for WKT08, RUK07 and MAS08 over 4 or 5 planting dates (PDs); se is standard error across PD treatments for all hybrid maturities.

Table 5.11 Comparison of actual vs. predicted leaf tips from full leaf numbers across all hybrids and environments using linear and non-linear (Gompertz) regression models.

Table 5.12 Comparison of actual vs. predicted average timing of leaf development stage across all hybrids at RUK07, in thermal time (TT), using linear and bilinear regression models. Figures in parenthesis refer to differences, in days, between predicted and actual.

Table 6.1 Genetic coefficients used by the CERES-Maize model.

Table 6.2 Location, latitude, longitude and elevation of the eight environments used for long term maize grain and yield simulations using the modified CERES-Maize model.

Table 6.3 Soil types used in each environment/region during model simulations.
Table 6.4 Genetic coefficients used to run CERES-Maize model after calibration.

Table 6.5 Measured and simulated developmental and growth parameters in seven maize hybrids using independent data from the relatively well-watered sites of RUK07, MAS08 and NGA08, and the test statistics to evaluate model accuracy.

Table 6.6 Estimated planting windows required to achieve ≥95% of the highest possible grain and silage yields and maintain crop failure risks to P<0.1 for two or three hybrid maturity classes across eight environments of New Zealand. Date in parenthesis refers to the planting date resulting in the maximum grain and silage yields.

Table 6.7 Mean monthly minimum (T_{min}) and maximum (T_{max}) temperatures across eight New Zealand environments over a 31 yr period (1978-2009).

Table 6.8 Mean total rainfall (Rain) and average daily global solar radiation receipt (SRad) for eight New Zealand environments over a 31 yr period (1978-2009).

Table 6.9 Probability of silage crop failure due to variable planting dates for three maize hybrid maturities simulated over 31 yr in eight New Zealand environments.

Table 6.10 Probability of grain crop failure/risk for nine planting dates and two or three maize hybrid maturities simulated over 31 yr in seven New Zealand environments.

Table 6.11 Probability of obtaining silage yields ≥17.5 t ha^{-1} for two or three hybrid maturity classes and nine planting dates in eight New Zealand environments over 31 yr.

Table 6.12 Probability of obtaining grain yields ≥10 t ha^{-1} for two or three hybrid maturity classes and nine planting dates in seven New Zealand environments over 31 yr.

Table 6.13 The latest planting dates to maintain crop failure risk at P<0.1 for two or three hybrid maturities in eight New Zealand environments.
LIST OF FIGURES

Figure 2.1 Comparison of maize crop growth and development rate responses to temperature ... 15

Figure 2.2 Effect of planting time on silage yields of maize hybrids differing in maturity .. 27

Figure 3.1 Grain yields at (a) MAS08 and (b) RUK07 across 4 and 5 planting dates (PDs), respectively. The vertical bars show standard errors (±se) over treatment means. The red bar in (a) is the pooled se across PDs for mid and late hybrids whereas the blue bar represents se for early hybrids .. 51

Figure 3.2 Harvest index for (a) RUK08, MAS08, NGA08 and (b) RUK07 across four or five planting dates. The vertical lines show standard errors (±se) across treatment means .. 56

Figure 3.3 Kernel weight at (a) MAS08 and (b) RUK08 over 4 and 5 planting dates (PDs). The vertical bars show standard errors (±se) across treatment means. The blue bar in (a) is se across PDs for early hybrids whereas the red bar is the pooled se across PDs for mid and late hybrids .. 58

Figure 4.1 Crop growth rates during the (a) emergence-silking period (CGR_{ES}) and (b) silking-silage harvest time (CGR_{SS}) for RUK07 over five planting dates. The vertical line bars show standard errors (±se) across treatment means 87

Figure 4.2 Senesced leaf area (%) for RUK07, RUK08 and NGA08 across 3 hybrid maturities and 5 planting date treatments between silking and physiological maturity. The vertical line bars denote the standard error (±se) of the mean for each treatment .. 98

Figure 4.3 Senesced leaf area (%) for 3 hybrid maturities across 5 planting date treatments at RUK07 from anthesis to physiological maturity. The vertical line bars denote the standard error (±se) of the mean for each treatment 100

Figure 5.1 Silage dry matter yields as affected by PD and hybrid maturity at a) RUK07 and (b) RUK08, NGA08 and MAS08. The vertical bars show standard error (±se) across treatment means .. 131

Figure 5.2 Milk ha\(^{-1}\) (MILK2006) at (a) NGA08, MAS08 and (b) RUK07 over 4 or 5 planting dates. The vertical bars show standard errors (±se) across treatment means .. 136
Figure 5.3 Comparison of actual and predicted total plant leaf area using independent data from RUK07 (PD2 and PD4) .. 141

Figure 5.4 Leaf area distribution by hybrid maturity class and leaf position in the RUK07 ENV, averaged over 5 planting date treatments ... 142

Figure 5.5 Comparison of phyllochron estimation based on a linear (Y1) and bilinear model split into two parts (Y2) ≤17 leaves (i.e., up to 90% of total leaf number) and (Y3) ≥17 leaves (i.e., the last 10% of the total leaf number). Blue squares and red triangles respectively represent the two linear phases of the bilinear models, Y2 and Y3, of leaf emergence. Combination of red triangles and blue squares constitute the linear model, Y1 ... 145

Figure 5.6 Observed leaf tip number (MAS08; NGA08; RUK08) vs. predictions based on RUK07 data using the Gompertz model ... 146

Figure 6.1 Comparison of observed and simulated silage yields for seven maize hybrids grown under three environments (MAS08, RUK07 and NGA08) over a range of planting dates. Dotted and solid lines represent, respectively, 1:1 and regression lines .. clxxix

Figure 6.2 Observed stem weight at anthesis and simulated stem weight using CERES-Maize from emergence to maturity (line) for 34D71 planted at RUK07 under PD5 conditions .. clxxx

Figure 6.3 Comparison of observed (points) leaf area index (LAI) and simulated values (lines) for 34P88 planted at RUK07 and NGA08 under PD3 and PD5 conditions. FMax and SMax denote, respectively, the maximum field or simulated LAI values .. clxxxi

Figure 6.4 Comparison of observed and simulated grain yields (adjusted to 14% moisture content) for seven maize hybrids grown at RUK08, MAS08, NGA08 and RUK07 over a range of planting dates .. clxxxiii

Figure 6.5 Comparison of observed and simulated silage yields (adjusted for model underprediction of stem weight at anthesis) for seven maize hybrids grown at RUK08, MAS08, NGA08 and RUK07 over a range of planting date treatments not originally used for model calibration ... clxxxiv

Figure 6.6 Comparison of silage yield probability curves for early and mid-maturity maize hybrids in Southland across three planting dates (1 and 15 October and 1 November). The vertical dotted line denotes the break-even yield level. clxxxix
Figure 6.7 Comparison of silage yield probability curves for mid and late maize hybrid classes planted in Canterbury over three planting dates (1 October, 15 November and 1 December). The vertical dotted line denotes the break-even yield level.

Figure 6.8 Comparison of simulated silage dry matter yields in Taranaki over 31 yr (1978-2009) for three hybrid maturity classes and nine planting dates (PDs) ranging from 1 September to 31 December. The vertical line bars denote the standard error (±se) of the mean for each PD treatment.

Figure 6.9 Comparison of silage yield probability curves for early, mid and late maize hybrid classes planted in Manawatu on 15 October and 1 December. The vertical dotted line denotes the break-even yield level.

Figure 6.10 Comparison of simulated silage dry matter yields in Waikato over 31 yr (1978-2009) for early, mid and late hybrids planted on nine dates ranging from 1 September to 31 December. The vertical line bar denotes the standard error (±se) of the mean of planting date and maturity treatments.

Figure 6.11 Comparison of grain yield probability curves for early, mid and late maize hybrid classes planted in Waikato on 15 October and 15 November. The vertical dotted line denotes the break-even yield level.

Figure 6.12 Comparison of grain yield probability curves for early, mid and late maize hybrid classes planted in Poverty Bay on 15 September and 15 November. The vertical dotted line denotes the break-even yield level.
LIST OF PLATES

Plate 2.1 Illustration of maize seedlings at emergence (VE) ... 10
Plate 2.2 A maize seedling illustrating leaf tip and fully expanded or visible leaf collar
... 11
Plate 3.1 Positioning of a “Watch Dog” temperature logger suspended above the ground
but within the crop canopy and apical meristem level. .. 45
Plate 3.2 Measuring grain moisture and test weight using a GAC 2100 meter 46
Plate 3.3 Comparison of RUK08 (top) vs. NGA08 (bottom) soils. 53
Plate 3.4 Crop status for PD5 at RUK08 (top) and NGA08 (bottom) on 25 March 2008.
... 67
Plate 4.1 Dissecting a maize plant under a stereoscopic microscope to determine timing
to tassel initiation... 78
Plate 4.2 Two dried cobs illustrating kernels removed from the central part of the cob.
... 79
Plate 4.3 A low density maize plot at NGA08. ... 80
Plate 4.4 A maize plot at physiological maturity (i.e., 50% kernel black layer). 81
Plate 5.1 A maize plant showing a tagged leaf tip for use as a reference point 123
Plate 5.2 A maize plant showing a leaf tip emerging from the whorl. 123
Plate 5.3 A maize crop ready for silage harvesting... 126
Plate 5.4 A modified chipper shredder used to mulch sample plants for dry matter
subsampling.. 127
Plate 6.1 Cold affected maize seedlings with characteristic pale green or bleached
appearance when planted on 18 September 2006 in a Waikato environment
(RUK07). .. ccxiv
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>Acid detergent fibre</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ASI</td>
<td>Anthesis-silking interval</td>
</tr>
<tr>
<td>BOP</td>
<td>Bay of Plenty</td>
</tr>
<tr>
<td>CEC</td>
<td>Cation exchange capacity</td>
</tr>
<tr>
<td>CGR</td>
<td>Crop growth rate</td>
</tr>
<tr>
<td>CGR_{ES}</td>
<td>CGR for the emergence-silking interval</td>
</tr>
<tr>
<td>CGR_{SS}</td>
<td>CGR for the silking to silage harvest interval</td>
</tr>
<tr>
<td>CP</td>
<td>Crude protein</td>
</tr>
<tr>
<td>CRM</td>
<td>Comparative relative maturity</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>DM</td>
<td>Dry matter</td>
</tr>
<tr>
<td>dNDF</td>
<td>Digestible neutral detergent fibre</td>
</tr>
<tr>
<td>EL</td>
<td>Ear leaf</td>
</tr>
<tr>
<td>ENV</td>
<td>Environment</td>
</tr>
<tr>
<td>G2</td>
<td>Potential kernel number per plant</td>
</tr>
<tr>
<td>G3</td>
<td>Potential kernel growth rate under optimum conditions (mg d(^{-1}))</td>
</tr>
<tr>
<td>GY</td>
<td>Grain yield</td>
</tr>
<tr>
<td>HI</td>
<td>Harvest index</td>
</tr>
<tr>
<td>IPAR</td>
<td>Intercepted photosynthetically active radiation</td>
</tr>
<tr>
<td>k</td>
<td>Light extinction coefficient</td>
</tr>
<tr>
<td>KGR</td>
<td>Kernel growth rate</td>
</tr>
<tr>
<td>KN</td>
<td>Kernel number</td>
</tr>
<tr>
<td>KW</td>
<td>Kernel weight</td>
</tr>
<tr>
<td>LA</td>
<td>Leaf area</td>
</tr>
<tr>
<td>LAI</td>
<td>Leaf area index</td>
</tr>
<tr>
<td>LN</td>
<td>Leaf number</td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>NDF</td>
<td>Neutral detergent fibre</td>
</tr>
<tr>
<td>NIRS</td>
<td>Near-infrared spectroscopy</td>
</tr>
<tr>
<td>NIWA</td>
<td>National Institute of Water and Atmospheric Research</td>
</tr>
<tr>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>P1</td>
<td>Thermal time from emergence to end of juvenile phase</td>
</tr>
<tr>
<td>P2</td>
<td>Photoperiod sensitivity coefficient</td>
</tr>
<tr>
<td>P5</td>
<td>Thermal time from silking to physiological maturity</td>
</tr>
<tr>
<td>P<sub>c</sub></td>
<td>Critical value of daylength</td>
</tr>
<tr>
<td>PAR</td>
<td>Photosynthetically active radiation</td>
</tr>
<tr>
<td>PD</td>
<td>Planting date</td>
</tr>
<tr>
<td>PHINT</td>
<td>Phyllochron interval</td>
</tr>
<tr>
<td>PM</td>
<td>Physiological maturity</td>
</tr>
<tr>
<td>PRFT</td>
<td>Photosynthetic reduction factor</td>
</tr>
<tr>
<td>PTQ</td>
<td>Photothermal quotient</td>
</tr>
<tr>
<td>r</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>R</td>
<td>Reproductive stage</td>
</tr>
<tr>
<td>r<sup>2</sup></td>
<td>Coefficient of determination</td>
</tr>
<tr>
<td>R<sup>2</sup></td>
<td>Coefficient of multiple determination</td>
</tr>
<tr>
<td>RGFIL</td>
<td>Grain growth rate</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root mean square error</td>
</tr>
<tr>
<td>RUE</td>
<td>Radiation use efficiency</td>
</tr>
<tr>
<td>SE</td>
<td>Standard error</td>
</tr>
<tr>
<td>SLPF</td>
<td>Soil fertility factor</td>
</tr>
<tr>
<td>SY</td>
<td>Silage yield</td>
</tr>
<tr>
<td>T<sub>b</sub></td>
<td>Base temperature</td>
</tr>
<tr>
<td>TI</td>
<td>Tassel initiation</td>
</tr>
<tr>
<td>T<sub>max</sub></td>
<td>Daily maximum temperature</td>
</tr>
<tr>
<td>T<sub>min</sub></td>
<td>Daily minimum temperature</td>
</tr>
<tr>
<td>T<sub>ml</sub></td>
<td>Maximum lethal temperature</td>
</tr>
<tr>
<td>T<sub>opt</sub></td>
<td>Optimum temperature</td>
</tr>
<tr>
<td>TT</td>
<td>Thermal time</td>
</tr>
<tr>
<td>V</td>
<td>Vegetative stage</td>
</tr>
<tr>
<td>VE</td>
<td>Seedling emergence stage</td>
</tr>
<tr>
<td>Y<sub>c</sub></td>
<td>% Yield change from maximum</td>
</tr>
</tbody>
</table>