Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Towards Selective Small Cation Chelation

A thesis presented
in partial fulfilment of the requirements
for the degree of
Doctor of Philosophy in Chemistry
at Massey University, Palmerston North

Karl Jürgen Shaffer

2010
Acknowledgements

First and foremost I would like to thank my supervisor Paul Plieger who was always friendly and supportive throughout my study. He encouraged me to put my own twist on the thesis and this has fostered the development of my independent research and problem-solving abilities.

I would like to thank Anthony Burrell and Mark McCleskey for hosting me when I visited the Los Alamos National Laboratory to conduct the beryllium coordination chemistry aspects of this thesis. Whilst there, Himashinie Diyabalanage provided much insight regarding the particular aspects of conducting this challenging field of chemistry.

Ross Davidson deserves a special mention for providing a wealth of knowledge on the inorganic chemistry and computational aspects of this thesis. Marco Wenzel must be thanked for taking time away from his own research to run most of my crystals on the diffractometer.

I would also like to acknowledge the New Zealand Government for providing financial support in the form of a Top Achiever Doctoral Scholarship.

Finally, I wish to thank my parents for supporting my efforts to pursue a PhD.
Abstract

This thesis sought to identify ligands which could be used in sensing or sequestering applications for the toxic element beryllium. The overall aim was to search for ligands with tight binding cavities and those capable of fully encapsulating the small Be(II) cation. Please refer to the foldout at the end of this book for ligand descriptions.

Proton sponge ligands L1 – L13 were synthesised and evaluated for their use as simple bidentate small cation chelators. An efficient modified route to L1 was developed. The derivatisation and properties of these unexplored ligands were investigated. X-ray crystallography gave insight into the structures of these unique molecules. Ligands of type L1 had an ideal size-fit for the small cation B(III), used as a structural analogue for Be(II), as indicated by the crystal structure of the boron complex. Due to their high basicity they were unsuitable for coordination to Be(II) in aqueous systems due to competition for protonation. The larger Cu(II) cation was a poor fit for these ligands and a rare crystal structure showed large distortions of the metal ion from the ligand plane. The Cu(II) complexes were unstable and hydrolysed readily.

A fundamentally new type of tetra-coordinate ligand, L14, was synthesised and while untested in this thesis offers promise as an ideal Be(II) chelator.

The ligands L15 – L21 were evaluated for use as fully encapsulating Be(II) chelators and those containing three oxygen donors were found to be most suitable. The rigidity imparted by the locking of certain conformations of the ligands L18 and L19 upon Be(II) coordination gave rise to fluorescence. The ligands containing carboxylic acid groups (L17 and L18) enabled good water solubility and L18 in particular showed the most promise as a ligand for beryllium sensing or sequestering applications.
Contents

Chapter 1: Literature Review .. 1

1.1 Introduction to Beryllium .. 1
 1.1.1 Properties, Production and Uses ... 1
 1.1.2 Health Hazards and Safety Precautions ... 3

1.2 Beryllium Coordination Chemistry ... 5
 1.2.1 Beryllium Complexes with Oxygen Donors .. 5
 1.2.2 Beryllium Complexes with Mixed Oxygen and Nitrogen Donors 10
 1.2.3 Beryllium Complexes with Nitrogen Donors ... 13
 1.2.4 Summary of Existing Beryllium Complexes .. 14

1.3 The Search for a Beryllium Selective Ligand .. 16
 1.3.1 Introduction .. 16
 1.3.2 Aryl Amine Proton Sponges .. 19
 1.3.3 Heterocyclic Imine Proton Sponges ... 20
 1.3.4 Aryl Imine Proton Sponges .. 21
 1.3.5 Proton Sponge Metal Coordination Complexes 21

1.4 Encapsulation of Beryllium ... 27
 1.4.1 Existing Ligands which Encapsulate Beryllium 27
 1.4.2 Design of New Ligands which Fully Encapsulate Beryllium 28

1.5 Boron as a Small Cation Analogue for Beryllium ... 31

1.6 Proposed Aims .. 32

Chapter 2: Synthesis of Proton Sponges .. 33
4.1.2 Results / Discussion ... 90

4.2 Spectroscopy of Boron Proton Sponge Complexes ... 98
 4.2.1 Introduction ... 98
 4.2.2 UV-Vis Spectroscopy .. 98
 4.2.3 Fluorescence Spectroscopy ... 106
 4.2.4 Surface Enhanced Raman Spectroscopy ... 111

4.3 Complexation of Proton Sponges to Beryllium ... 112
 4.3.1 Introduction ... 112
 4.3.2 Aqueous Coordination Chemistry of Beryllium to Proton Sponges 113
 4.3.3 Non-Aqueous Coordination Chemistry of Beryllium to Proton Sponges..... 116

4.4 Complexation of Proton Sponges to Transition Metals .. 124
 4.4.1 Introduction ... 124
 4.4.2 Results / Discussion ... 124

4.5 Summary .. 135

Chapter 5: Synthesis of Tetra-Coordinate Ligands ... 138

5.1 Assessment of Tetra-Coordinate Ligands ... 138

5.2 Synthesis of a Phenol-Capped Tetra-Coordinate Ligand 142
 5.2.1 Introduction ... 142
 5.2.2 Results / Discussion ... 143

5.3 Synthesis of a Carboxylic Acid-Capped Tetra-Coordinate Ligand 152
 5.3.1 Introduction ... 152
 5.3.2 Results / Discussion ... 154
5.4 Synthesis of Amine-Capped Tetra-Coordinate Ligands

5.4.1 Introduction ... 163
5.4.2 Results / Discussion ... 164

5.5 Summary

.. 169

Chapter 6: Coordination Chemistry of Encapsulating Compounds

6.1 Complexation of Encapsulating Compounds to Beryllium

6.1.1 Introduction ... 171
6.1.2 9Be NMR Analysis ... 174
6.1.3 UV-Vis Spectroscopy in Organic Solvents .. 179
6.1.4 Fluorescence Spectroscopy in Organic Solvents .. 182
6.1.5 UV-Vis and Fluorescence Spectroscopy in Water .. 193

6.2 Complexation of Encapsulating Compounds to Transition Metals 196

6.3 Summary ... 203

Chapter 7: Conclusions

.. 204

Appendix A: Experimental

A.1 General Experimental ... 209
A.1.1 Reagents and Solvents .. 209
A.1.2 Synthetic Methods .. 209
A.1.3 Chromatography .. 210
A.1.4 Characterisation ... 210
A.1.5 Computational .. 211

A.2 Beryllium Coordination Chemistry Safety Considerations 213
A.2.1 Safe Handling ... 213
A.2.2 Testing for Contamination .. 214

A.3 Chapter 2 Experimental .. 215
A.3.1 Tetramethyl 2,2'-(naphthalene-1,8-diylbis(azanediyl))difumarate (205) 215
A.3.2 Dimethyl 4,9-dioxo-1,4,9,12-tetrahydroquinolino[7,8-h]quinoline-2,11-dicarboxylate (206) ... 215
A.3.3 Quinolino[7,8-h]quinoline-4-9-(1H,12H)-dione (208) 216
A.3.4 4,9-Dichloroquinolino[7,8-h]quinoline (L1) 217
A.3.5 Quino[7,8-h]quinoline (L2) ... 218
A.3.6 [H(L1)]BF₄ ... 218
A.3.7 [H(L2)]BF₄ ... 222
A.3.8 3,3-bis(Methylthio)acrylaldehyde (217) 225
A.3.9 N-(2-(Methylthio)benzo[h]quinolin-10-yl)acetamide (214) 225

A.4 Chapter 3 Experimental .. 229
A.4.1 9-(4-tert-Butylphenoxy)quinolino[7,8-h]quinolin-4(1H)-one (L4) 229
A.4.2 4-(4-tert-Butylphenoxy)-9-chloroquinolino[7,8-h]quinoline (L5) 233
A.4.3 (E)-N-(9-Chloroquinolino[7,8-h]quinolin-4(1H)-ylidene)-4-methylaniline (L6) ... 236
A.4.4 (E)-N-p-tolyl-9-(p-tolylimino)-9,12-dihydroquinolino[7,8-h]quinolin-4-amine (L7) .. 239
A.4.5 [H(L7)]BF₄ .. 243
A.4.6 (E)-Methyl 2-(9-(o-tolylamino)quinolino[7,8-h]quinolin-4(1H)-ylideneamino)benzoate (L8) ... 246
A.4.7 4,9-Dichloro-6,7-dinitroquinolino[7,8-h]quinoline (L9) 249
A.4.8 9-Oxo-9,12-dihydroquinolino[7,8-h]quinoline-4-sulfonic acid (L10) 252
A.4.9 4,9-Dimethoxyquinolino[7,8-h]quinoline (L11) 255
A.4.10 4,9-Dibromoquinolino[7,8-h]quinoline (L12) 258
A.4.11 Dimethyl 4,9-Dichloroquinolino[7,8-h]quinoline-2,11-dicarboxylate (L13)261
A.4.12 [H(L13)]BF₄ .. 264
A.5 Chapter 4 Experimental ... 267
- A.5.1 \([\text{BF}_2(L1)]\text{BF}_4\) .. 267
- A.5.2 \([\text{BF}_2(L2)]\text{BF}_4\) .. 271
- A.5.3 Attempted beryllium complex with L1 275
- A.5.4 Attempted beryllium complex with L5 275
- A.5.5 \([\text{Cu}(L1)(\text{CH}_3\text{CN})_3](\text{ClO}_4)_2\) 275
- A.5.6 \([\text{Cu}(L2)(\text{CH}_3\text{CN})_3](\text{ClO}_4)_2\) 276
- A.5.7 Fluorescence Experimental ... 277
- A.5.8 Surface Enhanced Raman Spectroscopy Experimental 279

A.6 Chapter 5 Experimental ... 281
- A.6.1 2-(2-Pyridylmethyl)pyridine (504) ... 281
- A.6.2 2-(2-Methoxyphenyl)pyridine (508) ... 281
- A.6.3 2-Chloro-6-(2-methoxyphenyl)pyridine (509) 282
- A.6.4 2-Bromo-6-(2-methoxyphenyl)pyridine (513) 283
- A.6.5 2,2'-(Bromomethylene)dipyridine (514) 286
- A.6.6 6-(2-Methoxyphenyl)-N,N-di(pyridin-2-yl)pyridin-2-amine (518) 286
- A.6.7 2-(6-(Dipyridin-2-ylamino)pyridin-2-yl)phenol (L14) 290
- A.6.8 N-(2-Bromophenyl)cinnamamide (533) 293
- A.6.9 8-Bromo-2(1H)-quinolinone (523) .. 293
- A.6.10 8-Bromo-2-chloroquinoline (524) ... 294
- A.6.11 2-Chloroquinoline-8-carboxylic acid (519) 294
- A.6.12 Methyl 2-chloroquinoline-8-carboxylate (535) 298
- A.6.13 Methyl 2-cinnamamidobenzoate (536) 301
- A.6.14 2-Chloroquinoline-8-carbonitrile (538) 304
- A.6.15 8-Bromo-2-(dipyridin-2-ylmethyl)quinoline (537) 307
- A.6.16 2-(Dipyridin-2-ylmethyl)quinoline-8-carbonitrile (539) 310
- A.6.17 2-((2-(Pyridin-2-yl)ethylamino)methyl)phenol (545) 313
- A.6.18 2-(((2-Hydroxybenzyl)(pyridin-2-ylethyl)amino)methyl)-4-nitrophenol (L15) ... 313
A.6.19 2-((2-(Pyridin-2-yl)methylamino)methyl)phenol (560).......................... 317
A.6.20 2-(((2-Hydroxybenzyl)(pyridin-2-ylmethyl)amino)methyl)-4-nitrophenol (L16) ... 317
A.6.21 Methyl 3-(2-hydroxybenzylamino)propanoate (562).......................... 321
A.6.22 Methyl 3-((2-hydroxy-5-nitrobenzyl)(2-hydroxybenzyl)amino)propanoate (549) .. 324
A.6.23 3-((2-Hydroxy-5-nitrobenzyl)(2-hydroxybenzyl)amino)propanoic acid (L17) .. 327
A.6.24 2-(bis(2-Hydroxy-3,5-dimethylbenzyl)amino)acetic acid (L18) 330
A.6.25 2-(2-Hydroxybenzylamino)phenol (567) ... 330
A.6.26 2-(((2-Hydroxybenzyl)(2-hydroxyphenyl)amino)methyl)-4-nitrophenol (L19) .. 331
A.6.27 2-((Quinolin-8-ylamino)methyl)phenol (569).. 334
A.6.28 2-(((2-Hydroxybenzyl)(quinolin-8-yl)amino)methyl)-4-nitrophenol (L20) 334
A.6.29 2-((2-Phenylquinolin-8-ylamino)methyl)phenol (571) 338
A.6.30 2-(((2-Hydroxybenzyl)(2-phenylquinolin-8-yl)amino)methyl)-4-nitrophenol (L21) .. 341

A.7 Chapter 6 Experimental .. 344
 A.7.1 Be complex with L15 .. 344
 A.7.2 Be complex with L16 .. 345
 A.7.3 Be complex with L17 .. 346
 A.7.4 Be complex with L18 .. 347
 A.7.5 Be complex with L19 .. 348
 A.7.6 Be complex with L20 .. 350
 A.7.7 Be complex with L21 .. 351
 A.7.8 Cu complex with L16 .. 353
 A.7.9 Zn complex with L16 .. 354

Appendix B: Abandoned Proton Sponge Syntheses .. 356
B.1 Introduction .. 356

B.2 Muthusubramanian and Misra Synthesis199 ... 357
 B.2.1 Introduction .. 357
 B.2.2 Results / Discussion.. 357
 B.2.3 Experimental .. 358
 B.2.3.1 3-(8-Aminonaphthalen-1-ylamino)propanenitrile (B10) 359

B.3 Schmittel and Ammon Synthesis111 .. 360
 B.3.1 Introduction .. 360
 B.3.2 Results / Discussion.. 360
 B.3.3 Experimental .. 361
 B.3.3.1 Ethyl-2-phenylacetate (B16) .. 361
 B.3.3.2 Ethyl-3-hydroxy-2-phenylacetate (B18) ... 362
 B.3.3.3 1H-Perimidine (B21) ... 363

B.4 Molock and Boykin Synthesis202 ... 364
 B.4.1 Introduction .. 364
 B.4.2 Results / Discussion.. 364
 B.4.3 Experimental .. 365
 B.4.3.1 Tetraethyl 2,2'-(naphthalene-1,8-diylbis(azanediyl))bis(methan-1-yl-1-
 ylidene)dimalonate (B27) .. 365

B.5 Montalban et al. Synthesis203 ... 367
 B.5.1 Introduction .. 367
 B.5.2 Results / Discussion.. 367

B.6 Summary ... 368

References .. 370
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acac</td>
<td>Acetylacetonate</td>
</tr>
<tr>
<td>BODIPY</td>
<td>Boron dipyrromethene</td>
</tr>
<tr>
<td>"Bu</td>
<td>Normal butyl group</td>
</tr>
<tr>
<td>"Bu</td>
<td>Tertiary butyl group</td>
</tr>
<tr>
<td>CBD</td>
<td>Chronic beryllium disease</td>
</tr>
<tr>
<td>CCSD</td>
<td>Cambridge crystal structure database</td>
</tr>
<tr>
<td>Cg</td>
<td>Centroid</td>
</tr>
<tr>
<td>COSY</td>
<td>Correlation spectroscopy</td>
</tr>
<tr>
<td>DFT</td>
<td>Density functional theory</td>
</tr>
<tr>
<td>DMAD</td>
<td>Dimethylacetylene dicarboxylate</td>
</tr>
<tr>
<td>DMAE</td>
<td>Dimethyaminoethanol</td>
</tr>
<tr>
<td>DMAN</td>
<td>1,8-Bis(dimethylamino)naphthalene</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>Dppe</td>
<td>1,2-Bis(diphenylphosphino)ethane</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>ESR</td>
<td>Electron spin resonance</td>
</tr>
<tr>
<td>-Et</td>
<td>Ethyl group</td>
</tr>
<tr>
<td>GIAO</td>
<td>Gauge including atomic orbital</td>
</tr>
<tr>
<td>HEPA</td>
<td>High efficiency particulate air</td>
</tr>
<tr>
<td>Hfac</td>
<td>Hexafluoroacetylacetonate</td>
</tr>
<tr>
<td>HMQC</td>
<td>Heteronuclear multiple quantum coherence</td>
</tr>
<tr>
<td>HOMO</td>
<td>Highest occupied molecular orbital</td>
</tr>
<tr>
<td>LUMO</td>
<td>Lowest unoccupied molecular orbital</td>
</tr>
<tr>
<td>-Me</td>
<td>Methyl group</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectroscopy</td>
</tr>
<tr>
<td>NBS</td>
<td>N-Bromosuccinimide</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>-OAc</td>
<td>Acetoxy group</td>
</tr>
<tr>
<td>-Ph</td>
<td>Phenyl group</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>SERS</td>
<td>Surface enhanced Raman spectroscopy</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>TMS</td>
<td>Tetramethysilane</td>
</tr>
<tr>
<td>TOF</td>
<td>Time of flight</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>Ultraviolet-Visible spectroscopy</td>
</tr>
</tbody>
</table>
List of Figures, Tables and Reaction Schemes

Chapter 1

Table 1.1: Relative selectivity of proton sponge ligands for metal cations 18
Table 1.2: Similarities between B(III) and Be(II) 31
Figure 1.1: Structure of beryllium acetate 6
Figure 1.2: Selection of dicarboxylic acids and a representative complex of $K_2[Be(102)_2]$ 7
Figure 1.3: Crystal structure of beryllium bound to dicarboximidazole, 105 7
Figure 1.4: Resonance structure of hydroxy-keto-heterocycles 8
Figure 1.5: Selection of hydroxy-keto-heterocycles and a representative complex of $[Be(106)_2]$ 8
Figure 1.6: Salicylic acid, 108, and its sulfonated analogue, 109, and the complex of $K_2[Be(108)]$ 9
Figure 1.7: Catechol, 110, and related polyols, and the complex of $Na_2[Be(110)_2]$ 9
Figure 1.8: Crystal structure of beryllium bound to nitrilotripropionic acid, 114 10
Figure 1.9: Salicylaldimines which formed bis-ligand chelates with beryllium 11
Figure 1.10: 2-(Pyridin-2-yl)phenol, 117, and the bis-ligand beryllium chelate 11
Figure 1.11: Hydroxyphenyl indole ligand, 118 12
Figure 1.12: Benzo[h]quinolin-10-ol, 119 12
Figure 1.13: A colourmetric beryllium test kit utilising a sulfonated analogue of 119 13
Figure 1.14: 8-Hydroxyquinoline, 120 13
Figure 1.15: Crystal structure of beryllium bound to 2-(pyridin-2-yl)-1H-indole, 121 14
Figure 1.16: 1-Methyl-1H-imidazole-4,5-dicarboxylic acid with Be(II) bound 16
Figure 1.17: Benzo[h]quinolin-10-ol, 119 showing the internal hydrogen bonding interaction 17
Figure 1.18: Mode of proton binding in 1,8-bis(dimethylamino)naphthalene 17
Figure 1.19: Naphthalene-1,8-diol, 122 18
Figure 1.20: Benzo[h]quinolin-10-ol, 121 19
Figure 1.21: Benzo[h]quinolin-10-amine, 123 19
Figure 1.2: Alkylated proton sponge; 1,8-bis(dimethylamino)naphthalene, 125
Figure 1.23: Fluorenediamine, 126, and related derivatives based on 127
Figure 1.24: Quino[7,8-h]quinoline, 124
Figure 1.25: Aryl imine type proton sponges
Figure 1.26: Metal complexes with 4,9-dichloroquina[7,8-h]quinoline, 131
Figure 1.27: Perspective view of the crystal structure of [Pt(131)Cl₂]
Figure 1.28: Perspective view of the crystal structure of [Re(131)(CO)₃Br]
Figure 1.29: Crystal structure of [Pd(β-dik-O,O')(125)](hfac)
Figure 1.30: Perspective view of the crystal structure of [Pt(128)Cl₂]
Figure 1.31: Nitrilotripropionic acid, 114
Figure 1.32: 2,2'-((1E,1'E)-(1,1'-Binaphthyl-2,2'-diylbis(azan-1-yl-1-ylidene))-bis(methan-1-yl-1-ylidene)diphenol, 132
Figure 1.33: Beryllium complex of 2,6-bis(2-hydroxyphenyl)pyridine, 133
Figure 1.34: Creation of a tetra-coordinate ligand, 134
Figure 1.35: Conversion of a proton sponge into the third dimension
Figure 1.36: Location of an oxygen atom required to make tetrahedral binding cavity
Figure 1.37: Possible compounds containing tetrahedral binding cavities for beryllium

Chapter 2

Table 2.1: Important parameters from the optimised proton sponge beryllium complexes
Table 2.2: Estimated mean and standard deviation for bond lengths of neutral N-donors to beryllium
Table 2.3: Important bond lengths and angles associated with hydrogen bonding in quino[7,8-h]quinolines
Table 2.4: Proton sponge torsion angles in the solid state
Figure 2.1: Proton sponges analysed by computational methods
Figure 2.2: Highlighted structural parameters for the optimised models
Figure 2.3: 1,8-bis(Dimethylamino)naphthalene, L3
Figure 2.4: Computer model of the beryllium bis-ligand chelate of L3
Figure 2.5: N1,N8-bis(1,3-Dimethyl-1H-imidazol-2(3H)-ylidene)naphthalene-1,8-diamine, 201

Figure 2.6: Computer model of the beryllium bis-ligand chelate of 201

Figure 2.7: Quino[7,8-h]quinoline, L2

Figure 2.8: Computer model of the beryllium bis-chelate of L2

Figure 2.9: Quino[7,8-h]quinoline, L2

Figure 2.10: Quino[7,8-h]quinoline, L2, and misreported products formed, 202 and 203

Figure 2.11 IR spectrum for the tautomer of 208

Figure 2.12: Crystal structure showing twisting of the heterocyclic ring system in L1

Figure 2.13: Parameters describing π – π stacking interactions

Figure 2.14: Example of stacking π – π stacking interactions between two molecules of L1

Figure 2.15: Crystal structure of Zirnstein and Staab showing flattened heterocyclic ring system of L2

Figure 2.16: Face view of the crystal structure of [H(L1)][BF4] showing hydrogen bonding

Figure 2.17: Example of stacking π – π stacking interactions between two molecules of [H(L1)][BF4]

Figure 2.18: Classification of important bond lengths and angles associated with hydrogen bonding

Figure 2.19: Selection of proton sponges with recorded crystal structures

Figure 2.20: N-(2-(Methylthio)benzo[h]quinolin-10-yl)acetamide, 214

Figure 2.21: N-(Benzo[h]quinolin-10-yl)benzamide, 215

Figure 2.22: Crystal structure of 214, grown by D. Parr

Figure 2.23: Crystal packing of 214

Figure 2.24: Computer model of the beryllium bis-ligand chelate of 214

Figure 2.25: Successfully synthesised proton sponge ligands

Figure 2.26: 2,11-bis(Methylthio)quinolino[7,8-h]quinoline, 213

Scheme 2.1: Synthesis of quino[7,8-h]quinoline, L2

Scheme 2.2: Synthesis of tetramethyl 2,2’-(naphthalene-1,8-diylbis(azanediyl))-
Scheme 2.3: Synthesis of dimethyl 4,9-dioxo-1,4,9,12-tetrahydroquinolino-[7,8-h]quinoline-2,11-dicarboxylate, 206

Scheme 2.4: Synthesis of quinolino[7,8-h]quinoline-4,9(1H,12H)-dione, 208

Scheme 2.5: Microwave assisted ester cleavage of ethyl indole-2-carboxylate, 210

Scheme 2.6: Microwave assisted ester cleavage of dimethyl 4,9-dioxo-1,4,9,12-tetrahydroquinolino[7,8-h]quinoline-2,11-dicarboxylate, 206

Scheme 2.7: Synthesis of dimethyl 4,9-dichloroquinolino[7,8-h]quinoline-2,11-dicarboxylate, L13

Scheme 2.8: Synthesis of 4,9-dichloroquinolino[7,8-h]quinoline, L1

Scheme 2.9: Synthesis of quinolino[7,8-h]quinoline, L2

Scheme 2.10: Synthesis of 2,11-bis(methylthio)quinolino[7,8-h]quinoline, 213

Chapter 3

Table 3.1: Lack of relationship between 1H NMR NH shift and pK_{BH^+}

Table 3.2: Relative basicity of quinolino[7,8-h]quinolines

Table 3.3: Important bond lengths and angles associated with the hydrogen bonding of H2 and H2B in [H(L3)][BF4]

Figure 3.1: Potential sites for modification of on quinolino[7,8-h]quinoline

Figure 3.2: Computer model showing potential encapsulation of beryllium through 2,11 substitution of acetic acid moieties on quinolino[7,8-h]quinoline

Figure 3.3: Tautomerism of quininolin-4-ol, 302

Figure 3.4: Crystal structure of L4 showing the bridging proton, H9AA

Figure 3.5: Expanded crystal structure of L4 showing the bonds with single and double bond character

Figure 3.6: Crystal packing in L4

Figure 3.7: Crystal structure of L7

Figure 3.8: Hydrogen bonding and edge to face π packing interactions in L7

Figure 3.9: Crystal structure of [H(L7)][BF4]

Figure 3.10: Crystal packing of [H(L7)][BF4]
Figure 3.11: Hydrogen bonding in methyl 2-aminobenzoate, 304

Figure 3.12: Compounds; (a) L7, (b) [H(L7)][BF₄], (c) L8, (d) [H(L8)][BF₄], viewed in the dark under a long wave 385 nm UV lamp

Figure 3.13: Molecular orbitals associated with the π – π* transition for [H(L7)][BF₄]

Figure 3.14: Molecular orbitals associated with the π – π* transition for [H(L8)][BF₄]

Figure 3.15: ¹H NMR of the nitrated quinolino[7,8-h]quinoline, L9

Figure 3.16: Crystal structure of L11

Figure 3.17: Crystal packing of L11

Figure 3.18: Proton sponges with different chemical environments

Figure 3.19: Crystal structure of [H(L13)][BF₄] showing H2 close contacts

Figure 3.20: Crystal packing of [H(L13)][BF₄]

Figure 3.21: Crystal structure of [H(L3)][BF₄] with a long range contact to a BF₄⁻ anion

Figure 3.22: 4-(4-tert-Butylphenoxy)-9-chloroquinolino[7,8-h]quinoline, L5

Scheme 3.1: General scheme for the synthesis of substituted 301

Scheme 3.2: Synthesis of 9-(4-tert-butylphenoxy)quinolino[7,8-h]quinolin-4(1H)-one, L4

Scheme 3.3: Synthesis of 4-(4-tert-butylphenoxy)-9-chloroquinolino[7,8-h]quinoline, L5

Scheme 3.4: Synthesis of (E)-N-(9-chloroquinolino[7,8-h]quinolin-4(1H)-ylidene)-4-methylaniline, L6

Scheme 3.5: Synthesis of (E)-N-p-tolyl-9-(p-tolylimino)-9,12-dihydroquinolino-[7,8-h]quinolin-4-amine, L7

Scheme 3.6: Synthesis of (E)-methyl 2-(9-(o-tolylamino)quinolino[7,8-h]quinolin-4(1H)-ylideneamino)benzoate, L8

Scheme 3.7: Attempted synthesis of the asymmetrically substituted 305

Scheme 3.8: Synthesis of 4,9-dichloro-6,7-dinitroquinolino[7,8-h]quinoline, L9

Scheme 3.9: Synthesis of 9-oxo-9,12-dihydroquinolino[7,8-h]quinoline-4-sulfonic acid, L10

Scheme 3.10: Synthesis of 4,9-dimethoxyquinolino[7,8-h]quinoline, L11

Scheme 3.11: General scheme for the synthesis of alkyl-substituted 307
Scheme 3.12: Proposed generalised Suzuki coupling reaction with L12

Scheme 3.14: Proposed ester hydrolysis of L13

Scheme 3.15: Proposed synthesis of 2,2'-(4,9-dichloroquinolo[7,8-h]quinoline-2,11-diyl)diacetonitrile, 315

Scheme 3.16: Proposed synthesis of 2,2'-(4,9-dichloroquinolo[7,8-h]quinoline-2,11-diyl)diacetic acid, 316

Scheme 3.17: Proposed limitation of side reactions through substitution of the chlorides on 317

Scheme 3.18: Generalised tautomerised product when oxygen-containing groups were substituted

Scheme 3.19: Generalised tautomerised product when anilines were substituted

Chapter 4

Table 4.1: Comparison of the π – π* transitions and charge transfer peaks for quino[7,8-h]quinolines

Table 4.2: Comparison of bond parameters for the B(III) ion between the crystal structure and calculated models

Table 4.3: Calculation of relative quantum yields, ΦF(X)

Table 4.4: Related bands for the SERS and calculated Raman spectra of [BF3(L1)][BF4]

Table 4.5: NMR analysis of beryllium complexes with L1

Table 4.6: Major structural parameters for the geometry of the Cu(II) ion in [Cu(L1)(CH3CN)3][ClO4]2

Table 4.7: Major structural parameters for the geometry of the Cu(II) ion in [Cu(L2)(CH3CN)3][ClO4]2

Table 4.8: ESR data for the copper complexes of L1 and L2

Table 4.9: Atom distances to relate the size-fit of various cations for L1

Figure 4.1: Example of a boron-dipyrrromethene complex with a high quantum yield
Figure 4.2: Neutral nitrogen donor ligands with boron complexes; 2,2'-bipyridine, 1,10-phenanthroline, and 1,8-bis(dimethylamino)naphthalene respectively

Figure 4.3: Perspective view of the crystal structure of [Pt(L1)Cl2]

Figure 4.4: 4,9-Dichloroquino[7,8-h]quinoline, L1

Figure 4.5: Side view of the crystal structure of [BF2(L1)][BF4]

Figure 4.6: Top view of the crystal structure of [BF2(L1)][BF4]

Figure 4.7: Packing within the structure of [BF2(L1)][BF4]

Figure 4.8: Quino[7,8-h]quinoline, L2

Figure 4.9: Side view of the crystal structure of [BF2(L2)][BF4]

Figure 4.10: Top view of the crystal structure of [BF2(L2)][BF4]

Figure 4.11: Packing within the structure of [BF2(L2)][BF4]

Figure 4.12: Ligands which did not show good coordination to B(III)

Figure 4.13: UV-Vis spectra of [BF2(L2)][BF4] and [BF2(L1)][BF4] showing the π – π* transitions at 10⁻⁴ M

Figure 4.14: UV-Vis spectra of [BF2(L2)][BF4] and [BF2(L1)][BF4] showing the charge transfer peak for [BF2(L1)][BF4] at 10⁻⁶ M

Figure 4.15: UV-Vis spectra of L1 and [H(L1)][BF4] showing the π – π* transitions

Figure 4.16: Comparison between the IR spectra of [BF2(L1)][BF4]; measured as KBr disc, OLYP and B3LYP

Figure 4.17: Comparison between the IR spectra of L1; measured as KBr disc, OLYP and B3LYP

Figure 4.18: Comparison between the UV-Vis spectra of [BF2(L1)][BF4]; measured in MeCN at 10⁻⁶ M, OLYP and B3LYP

Figure 4.19: Comparison between the UV-Vis spectra of L1; measured in MeCN, OLYP and B3LYP

Figure 4.20: Normalised absorption and emission spectra of [BF2(L1)][BF4]

Figure 4.21: Molecular orbitals associated with the fluorescence for [BF2(L1)][BF4]

Figure 4.22: Normalised absorption and emission spectra of [H(L1)][BF4]

Figure 4.23: Molecular orbitals associated with the fluorescence for [H(L1)][BF4]

Figure 4.24: Raman spectra of [BF2(L1)][BF4]; calculated and SERS

Figure 4.25: Coordination of beryllium to 2,2’-bipyridine

xxiii
Figure 4.26: Proton sponge ligands tested for beryllium coordination

Figure 4.27: 4,9-Dichloroquino[7,8-h]quinoline, L1

Figure 4.28: Normalised absorption and emission spectra at 10⁻⁵ M of neutral L1 and after BeSO₄ or H₂SO₄ addition

Figure 4.29: Change in UV-Vis spectrum at 10⁻⁵ M of neutral L1 and after BeSO₄ or H₂SO₄ addition

Figure 4.30: Calculated distribution of beryllium hydroxo species at C_Be = 0.002 M

Figure 4.31: Normalised absorption and emission spectra at 10⁻⁵ M of neutral L1 and after BeSO₄ addition in DMF and NEt₃

Figure 4.32: Shift in UV-Vis spectrum at 10⁻⁵ M of neutral L1 and after BeSO₄ addition or simply heating L1 in DMF and NEt₃

Figure 4.33: ⁉Be NMR shift of L1 coordinated to beryllium and BeSO₄ in DMF / NEt₃

Figure 4.34: Quino[7,8-h]quinoline, L2

Figure 4.35: 1,8-bis(Dimethylamino)naphthalene, L3

Figure 4.36: 9-(4-tert-Butylphenoxy)quinolo[7,8-h]quinolin-4(1H)-one, L4

Figure 4.37: 4-(4-tert-butylphenoxy)-9-chloroquinolino[7,8-h]quinoline, L5

Figure 4.38: The broad ⁉Be NMR shift for the reaction mixture of beryllium and L5 in DMF / NEt₃

Figure 4.39: Shift in UV-Vis spectrum at 10⁻⁵ M of neutral L5 and after BeSO₄ addition in DMF and NEt₃

Figure 4.40: Normalised absorption and emission spectras at 10⁻⁵ M of neutral L5 and after BeSO₄ addition in DMF and NEt₃

Figure 4.41: Proton sponges with tautomers incapable of coordinating to Be(II)

Figure 4.42: Metal complexes with L1

Figure 4.43: Perspective view of the crystal structure of [Cu(L1)(CH₃CN)₃][(ClO₄)₂]

Figure 4.44: Space-filling diagram showing a perchlorate stabilising the acetonitriles

Figure 4.45: Crystal packing of [Cu(L1)(CH₃CN)₃][(ClO₄)₂]

Figure 4.46: UV-Vis of [Cu(L1)(CH₃CN)₃][(ClO₄)₂] and copper perchlorate in acetonitrile

Figure 4.47: Summary of energy ranges for closely related CuNₓ chromophores
with different stereochemistries

Figure 4.48: Perspective view of the crystal structure of $[\text{Cu(L2)}(\text{CH}_3\text{CN})_3][(\text{ClO}_4)_2]$

Figure 4.49: Crystal packing of $[\text{Cu(L2)}(\text{CH}_3\text{CN})_3][(\text{ClO}_4)_2]$

Figure 4.50: UV-Vis of $[\text{Cu(L2)}(\text{CH}_3\text{CN})_3][(\text{ClO}_4)_2]$ and copper perchlorate in acetonitrile

Figure 4.51: Atoms used to relate the size-fit of various cations for quino[7,8-h]quinolines

Figure 4.52: Atomic motion relative to cation size

Figure 4.53: Coordination of boron trifluoride to quino[7,8-h]quinoline

Figure 4.54: Coordination of beryllium hydrate to benzo[h]quinolin-10-ol

Figure 4.55: Inactivation of quino[7,8-h]quinoline by protonation

Chapter 5

Figure 5.1: 2-(6-(Dipyridin-2-ylmethyl)pyridin-2-yl)phenol, 501

Figure 5.2: A related four-coordinate ligand to 501

Figure 5.3: Computer model of beryllium coordinated to 501

Figure 5.4: 2-(Dipyridin-2-ylmethyl)quinoline-8-carboxylic acid, 502

Figure 5.5: Computer model of beryllium coordinated to 502

Figure 5.6: Range of tetra-coordinate amine-capped ligands

Figure 5.7: Computer model of beryllium coordinated to L17

Figure 5.8: Disconnection of 2-(6-(dipyridin-2-ylmethyl)pyridin-2-yl)phenol, 501

Figure 5.9: Proposed model for external chelations in substituted phenylpyridines leading to chloride substitution at the 2-position

Figure 5.10: Dipyridin-2-ylamine, 517

Figure 5.11: COSY of 6-(2-methoxyphenyl)-N,N-di(pyridin-2-yl)pyridin-2-amine, 518

Figure 5.12: HMQC of 6-(2-methoxyphenyl)-N,N-di(pyridin-2-yl)pyridin-2-amine, 518

Figure 5.13: 1H NMR of 2-(6-(dipyridin-2-ylamino)pyridin-2-yl)phenol, L14 showing the deshielded proton at 12.55 ppm.
Figure 5.14: 2-Chloro-3-(trifluoromethyl)quinoline-8-carboxylic acid, \textbf{520} \hfill 151

Figure 5.15: 1H NMR of the trace amount of \textbf{525} (A) and the side-product (B) isolated in Scheme 5.19 \hfill 155

Figure 5.16: 1H NMR of 2-chloroquinoline-8-carboxylic acid, \textbf{519} \hfill 156

Figure 5.17: Successfully synthesised 2-(6-(dipyridin-2-ylamino)pyridin-2-yl)phenol, \textbf{L14} \hfill 160

Figure 5.18: Variety of amine-capped tetra-coordinate ligands \hfill 163

Figure 5.19: COSY of 2-(((2-hydroxybenzyl)(quinolin-8-yl)amino)methyl)-4-nitrophenol, \textbf{L20} \hfill 165

Figure 5.20: HMQC of 2-(((2-hydroxybenzyl)(quinolin-8-yl)amino)methyl)-4-nitrophenol, \textbf{L20} \hfill 166

Figure 5.21: Successfully synthesised 2-(6-(dipyridin-2-ylamino)pyridin-2-yl)phenol, \textbf{L14} \hfill 168

Figure 5.22: Unsuccessfully synthesised 2-(dipyridin-2-ylmethyl)quinoline-8-carboxylic acid, \textbf{502} \hfill 168

Figure 5.23: Variety of amine-capped tetra-coordinate ligands \hfill 169

Scheme 5.1: Synthesis of 2-chloro-6-(2-methoxyphenyl)pyridine, \textbf{509} \hfill 141

Scheme 5.2: Synthesis of 2-(2-pyridylmethyl)pyridine, \textbf{504} \hfill 142

Scheme 5.3: Attempted synthesis of 2-(dipyridin-2-ylmethyl)-6-(2-methoxyphenyl)pyridine, \textbf{512} \hfill 142

Scheme 5.4: Synthesis of 2-bromo-6-(2-methoxyphenyl)pyridine, \textbf{513} \hfill 143

Scheme 5.5: Attempted synthesis of 2-(dipyridin-2-ylmethyl)-6-(2-methoxyphenyl)pyridine, \textbf{512} \hfill 143

Scheme 5.6: Synthesis of 2,2'-(bromomethylene)dipyridine, \textbf{514} \hfill 144

Scheme 5.7: Attempted synthesis of 2-(dipyridin-2-ylmethyl)-6-(2-methoxyphenyl)pyridine, \textbf{512} \hfill 144

Scheme 5.8: Attempted synthesis of (6-(2-methoxyphenyl)pyridin-2-yl)dipyridin-2-ylmethanol, \textbf{516} \hfill 144

Scheme 5.9: Proposed synthesis of 6-(2-methoxyphenyl)-N,N-di(pyridin-2-yl)pyridin-2-amine, \textbf{518} \hfill 145

Scheme 5.10: Synthesis of 6-(2-methoxyphenyl)-N,N-di(pyridin-2-yl)pyridin-
2-amine, 518

Scheme 5.11: Synthesis of 2-(6-(dipyridin-2-ylamino)pyridin-2-yl)phenol, L14

Scheme 5.12: Disconnection of 2-(dipyridin-2-ylmethyl)quinoline-8-carboxylic acid, 502

Scheme 5.13: Proposed synthesis of 2-chloroquinoline-8-carboxylic acid, 519

Scheme 5.14: Proposed synthesis of ethyl 2-chloroquinoline-8-carboxylate, 525

Scheme 5.15: Proposed synthesis of methyl 2-chloroquinoline-8-carboxylate, 528

Scheme 5.16: Proposed synthesis of ethyl 2-(dipyridin-2-ylmethyl)quinoline-8-carboxylate, 529

Scheme 5.17: Synthesis of N-(dipyridin-2-yl(quinolin-2-yl)methyl)acetamide, 532

Scheme 5.18: Synthesis of 2-(2-pyridylmethyl)pyridine, 504

Scheme 5.19: Synthesis of 8-bromo-2-chloroquinoline, 524

Scheme 5.20: Unsuccessful esterification of 525

Scheme 5.21: Synthesis of 2-chloro-3-(trifluoromethyl)quinoline-8-carboxylic acid, 520

Scheme 5.22: Synthesis of 2-chloroquinoline-8-carboxylic acid, 519

Scheme 5.23: Synthesis of methyl 2-chloroquinoline-8-carboxylate, 535

Scheme 5.24: Attempted synthesis of methyl 2-oxo-1,2-dihydroquinoline-8-carboxylate, 527

Scheme 5.25: Attempted synthesis of 2-(dipyridin-2-ylmethyl)quinoline-8-carboxylic acid, 502

Scheme 5.26: Synthesis of 8-bromo-2-(dipyridin-2-ylmethyl)quinoline, 537

Scheme 5.27: Attempted synthesis of 2-(dipyridin-2-ylmethyl)quinoline-8-carboxylic acid, 502

Scheme 5.28: Synthesis of 2-chloroquinoline-8-carbonitrile, 538

Scheme 5.29: Synthesis of 2-(dipyridin-2-ylmethyl)quinoline-8-carbonitrile, 539

Scheme 5.30: Attempted synthesis of 2-(dipyridin-2-ylmethyl)quinoline-8-carboxylic acid, 502

Scheme 5.31: Attempted synthesis of 2-(dipyridin-2-ylamino)quinoline-8-carboxylic acid, 540

Scheme 5.32: Proposed synthesis of 2,8-dibromoquinoline, 541

xxvii
Scheme 5.33: Synthesis of 8-bromo-2-(dipyridin-2-ylmethyl)quinoline, \textbf{537} 161

Scheme 5.34: Proposed synthesis of 8-bromo-N,N-di(pyridin-2-yl)quinolin-2-amine, \textbf{542} 161

Scheme 5.35: Synthesis of the tetra-coordinate ligand, \textbf{547} 162

Scheme 5.36: Generalised Schiff base condensations for ligands \textbf{L15, L16, L17, L19, L20 and L21} 163

Scheme 5.37: Generalised reaction scheme for tertiary amines \textbf{L15, L16, L17, L19, L20 and L21} 164

Scheme 5.38: Acid hydrolysis of \textbf{549} to achieve \textbf{L17} 167

Scheme 5.39: Mannich reaction to achieve \textbf{L18} 167

Chapter 6 167

Table 6.1: \textbf{9}Be NMR shifts and line widths of tetra-coordinate ligands in a number of different solvents 175

Table 6.2: Calculated \textbf{9}Be NMR shifts for tetra-coordinate ligands 176

Table 6.3: Calculated and experimental maximum absorption wavelengths 181

Table 6.4: Comparison of the angle of intersection between the aromatic phenol rings 186

Table 6.5: Major structural parameters for the geometry of the Cu(II) ion in [Cu\textsubscript{2}(\textbf{L16})\textsubscript{2}] 196

Table 6.6: Major structural parameters for the geometry of the Zn(II) ion in [Zn\textsubscript{2}(\textbf{L16})\textsubscript{2}] 199

Figure 6.1: Crystal structures of [Cu\textsubscript{2}(‘\textbf{L16}’\textsubscript{2})] and [Cu(‘\textbf{L16}’H)(OAc)] 171

Figure 6.2: 2-(((2-Hydroxybenzyl)(2-(pyridin-2-yl)ethyl)amino)methyl)-4-nitrophenol, \textbf{L15} 172

Figure 6.3: Crystal structure of [Fe(‘\textbf{L18}’)(bipy)] 172

Figure 6.4: 2-(((2-Hydroxybenzyl)(2-hydroxyphenyl)amino)methyl)-4-nitrophenol, \textbf{L19} 173

Figure 6.5: Previously unreported tertiary amine ligands 173

Figure 6.6: 2-(((2-hydroxybenzyl)(2-phenylquinolin-8-yl)amino)methyl)-4-nitrophenol, \textbf{L21} 174

xxviii
Figure 6.7: 9Be NMR shift of $\textbf{L18}$ coordinated to beryllium in DMF

Figure 6.8: Tetra-coordinate ligands with well correlated 9Be NMR shifts

Figure 6.9: Tetra-coordinate ligands with poorly correlated 9Be NMR shifts

Figure 6.10: Optimised model of $\text{[Be(L16)(H}_2\text{O)]]}$

Figure 6.11: Change in UV-Vis spectrum at 10^{-5} M of neutral $\textbf{L15}$ and after BeSO_4 addition

Figure 6.12: Change in UV-Vis spectrum at 10^{-5} M of neutral $\textbf{L17}$ and after BeSO_4 addition

Figure 6.13: Change in UV-Vis spectrum at 10^{-5} M of neutral $\textbf{L19}$ and after BeSO_4 addition

Figure 6.14: Change in UV-Vis spectrum at 10^{-5} M of neutral $\textbf{L18}$ and after BeSO_4 addition

Figure 6.15: Normalised absorption and emission spectras at 10^{-5} M of neutral $\textbf{L18}$ and after BeSO_4 addition in DMF and NEt$_3$

Figure 6.16: Normalised absorption and emission spectras at 10^{-5} M of neutral $\textbf{L19}$ and after BeSO_4 addition in DMF and NEt$_3$

Figure 6.17: Flexible tetra-coordinate ligands with a single conformer upon beryllium coordination

Figure 6.18: Optimised model of [Be(L17)]^- with anti geometry

Figure 6.19: 3,3',3''-nitrilotripropanoic acid, 601

Figure 6.20: Crystal structure of [Be(601)]^- with anti geometry

Figure 6.21: Strained four-coordinate ligands with two conformers upon beryllium coordination

Figure 6.22: Syn conformer (left) and anti conformer (right) of [Be(L18)]^-

Figure 6.23: Top view of the Syn conformer (left) and anti conformer (right) of [Be(L18)]^-

Figure 6.24: Molecular orbitals associated with the $\pi - \pi^*$ transition for [Be(L15)]^- (anti conformer)

Figure 6.25: Molecular orbitals associated with the $\pi - \pi^*$ transition for [Be(L17)]^- (anti conformer)

Figure 6.26: Molecular orbitals associated with the $\pi - \pi^*$ transition
for [Be(L18)]⁻ (syn conformer) 188
Figure 6.27: Molecular orbitals associated with the π – π* transition
for [Be(L18)]⁻ (anti conformer) 189
Figure 6.28: Molecular orbitals associated with the π – π* transition
for [Be(L604)]⁻ (syn conformer) 190
Figure 6.29: Second possible minimised structure of [Be(L19)]⁻ 190
Figure 6.30: Molecular orbitals associated with the π – π* transition for [Be(L19)]⁻ 191
Figure 6.31: Water-soluble encapsulating ligands 192
Figure 6.32: Change in UV-Vis spectrum at 10⁻⁵ M of neutral L18 and after
BeSO₄ addition in H₂O 192
Figure 6.33: Change in UV-Vis spectrum at 10⁻⁵ M of neutral L17 and after
BeSO₄ addition in H₂O 193
Figure 6.34: Normalised absorption and emission spectras at 10⁻⁵ M of neutral L18
and after BeSO₄ addition in H₂O 193
Figure 6.35: Asymmetric unit for the crystal of [Cu₂(L16)₂] 195
Figure 6.36: The bridged dimer [Cu₂(L16)₂] 195
Figure 6.37: UV-Vis of [Cu₂(L16)₂] at 10⁻⁴ M showing metal d – d transition
in MeOH 197
Figure 6.38: UV-Vis of [Cu₂(L16)₂] at 10⁻⁵ M showing ligand π – π* transitions
in MeOH 197
Figure 6.39: Crystal structure of [Zn₂(L16)₂] 198
Figure 6.40: Perspective view of [Zn₂(L16)₂] 199
Figure 6.41: UV-Vis of [Zn₂(L16)₂] at 10⁻⁵ M showing ligand π – π* transitions
in MeOH 200
Figure 6.42: Water-soluble and fluorescent encapsulating ligand, L18 200
Figure 6.43: Water-soluble and fluorescent encapsulating ligand, L18 202

Chapter 7 203

Figure 7.1: Benzo[h]quinolin-10-ol, 701 203
Figure 7.2: Quinolino[7,8-h]quinoline, L2 203
Figure 7.3: 2,2’-(pyridine-2,6-diyl)diphenol, **702**

Figure 7.4: 2-(bis(2-Hydroxy-3,5-dimethylbenzyl)amino)acetic acid, **L18**

Figure 7.5: A representation of the lack of selectivity of simple bidentate ligands

Figure 7.6: Successfully synthesised 2-(6-(dipyridin-2-ylamino)pyridin-2-yl)phenol, **L14**

Figure 7.7: A representation of the potential selectivity of the encapsulating ligand **L14**