Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Towards Selective Small Cation Chelation

A thesis presented
in partial fulfilment of the requirements
for the degree of
Doctor of Philosophy in Chemistry
at Massey University, Palmerston North

Karl Jürgen Shaffer

2010
Acknowledgements

First and foremost I would like to thank my supervisor Paul Plieger who was always friendly and supportive throughout my study. He encouraged me to put my own twist on the thesis and this has fostered the development of my independent research and problem-solving abilities.

I would like to thank Anthony Burrell and Mark McCleskey for hosting me when I visited the Los Alamos National Laboratory to conduct the beryllium coordination chemistry aspects of this thesis. Whilst there, Himashinie Diyabalanage provided much insight regarding the particular aspects of conducting this challenging field of chemistry.

Ross Davidson deserves a special mention for providing a wealth of knowledge on the inorganic chemistry and computational aspects of this thesis. Marco Wenzel must be thanked for taking time away from his own research to run most of my crystals on the diffractometer.

I would also like to acknowledge the New Zealand Government for providing financial support in the form of a Top Achiever Doctoral Scholarship.

Finally, I wish to thank my parents for supporting my efforts to pursue a PhD.
Abstract

This thesis sought to identify ligands which could be used in sensing or sequestering applications for the toxic element beryllium. The overall aim was to search for ligands with tight binding cavities and those capable of fully encapsulating the small Be(II) cation. Please refer to the foldout at the end of this book for ligand descriptions.

Proton sponge ligands L1 – L13 were synthesised and evaluated for their use as simple bidentate small cation chelators. An efficient modified route to L1 was developed. The derivatisation and properties of these unexplored ligands were investigated. X-ray crystallography gave insight into the structures of these unique molecules. Ligands of type L1 had an ideal size-fit for the small cation B(III), used as a structural analogue for Be(II), as indicated by the crystal structure of the boron complex. Due to their high basicity they were unsuitable for coordination to Be(II) in aqueous systems due to competition for protonation. The larger Cu(II) cation was a poor fit for these ligands and a rare crystal structure showed large distortions of the metal ion from the ligand plane. The Cu(II) complexes were unstable and hydrolysed readily.

A fundamentally new type of tetra-coordinate ligand, L14, was synthesised and while untested in this thesis offers promise as an ideal Be(II) chelator.

The ligands L15 – L21 were evaluated for use as fully encapsulating Be(II) chelators and those containing three oxygen donors were found to be most suitable. The rigidity imparted by the locking of certain conformations of the ligands L18 and L19 upon Be(II) coordination gave rise to fluorescence. The ligands containing carboxylic acid groups (L17 and L18) enabled good water solubility and L18 in particular showed the most promise as a ligand for beryllium sensing or sequestering applications.
Contents

Chapter 1: Literature Review .. 1

1.1 Introduction to Beryllium .. 1
 1.1.1 Properties, Production and Uses ... 1
 1.1.2 Health Hazards and Safety Precautions .. 3

1.2 Beryllium Coordination Chemistry ... 5
 1.2.1 Beryllium Complexes with Oxygen Donors .. 5
 1.2.2 Beryllium Complexes with Mixed Oxygen and Nitrogen Donors .. 10
 1.2.3 Beryllium Complexes with Nitrogen Donors ... 13
 1.2.4 Summary of Existing Beryllium Complexes ... 14

1.3 The Search for a Beryllium Selective Ligand .. 16
 1.3.1 Introduction ... 16
 1.3.2 Aryl Amine Proton Sponges .. 19
 1.3.3 Heterocyclic Imine Proton Sponges .. 20
 1.3.4 Aryl Imine Proton Sponges ... 21
 1.3.5 Proton Sponge Metal Coordination Complexes ... 21

1.4 Encapsulation of Beryllium ... 27
 1.4.1 Existing Ligands which Encapsulate Beryllium ... 27
 1.4.2 Design of New Ligands which Fully Encapsulate Beryllium ... 28

1.5 Boron as a Small Cation Analogue for Beryllium ... 31

1.6 Proposed Aims ... 32

Chapter 2: Synthesis of Proton Sponges ... 33
Chapter 2: Assessment of Proton Sponges

2.1 Assessment of Proton Sponges

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1 Introduction</td>
<td>33</td>
</tr>
<tr>
<td>2.1.2 Results / Discussion</td>
<td>33</td>
</tr>
<tr>
<td>2.1.3 Summary</td>
<td>39</td>
</tr>
</tbody>
</table>

2.2 Zirnstein and Staab Synthesis

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1 Introduction</td>
<td>40</td>
</tr>
<tr>
<td>2.2.2 Results / Discussion</td>
<td>41</td>
</tr>
</tbody>
</table>

2.3 Ila et al. Synthesis

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1 Introduction</td>
<td>52</td>
</tr>
<tr>
<td>2.3.2 Results / Discussion</td>
<td>52</td>
</tr>
</tbody>
</table>

2.4 Summary

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
</tr>
</tbody>
</table>

Chapter 3: Synthesis of Proton Sponge Derivatives

3.1 Introduction

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
</tr>
</tbody>
</table>

3.2 Modification of 4,9 Substitution of Quino[7,8-h]quinoline

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1 Results / Discussion</td>
<td>60</td>
</tr>
</tbody>
</table>

3.3 Modification of 2,11 Substitution of Quino[7,8-h]quinoline

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1 Results / Discussion</td>
<td>79</td>
</tr>
</tbody>
</table>

3.4 Summary

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
</tr>
</tbody>
</table>

Chapter 4: Coordination Chemistry of Proton Sponges

4.1 Complexation of Proton Sponges to Boron

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1 Introduction</td>
<td>88</td>
</tr>
</tbody>
</table>
4.1.2 Results / Discussion ... 90

4.2 Spectroscopy of Boron Proton Sponge Complexes 98
 4.2.1 Introduction .. 98
 4.2.2 UV-Vis Spectroscopy ... 98
 4.2.3 Fluorescence Spectroscopy .. 106
 4.2.4 Surface Enhanced Raman Spectroscopy .. 111

4.3 Complexation of Proton Sponges to Beryllium 112
 4.3.1 Introduction .. 112
 4.3.2 Aqueous Coordination Chemistry of Beryllium to Proton Sponges.... 113
 4.3.3 Non-Aqueous Coordination Chemistry of Beryllium to Proton Sponges..... 116

4.4 Complexation of Proton Sponges to Transition Metals 124
 4.4.1 Introduction .. 124
 4.4.2 Results / Discussion ... 124

4.5 Summary ... 135

Chapter 5: Synthesis of Tetra-Coordinate Ligands 138

5.1 Assessment of Tetra-Coordinate Ligands 138

5.2 Synthesis of a Phenol-Capped Tetra-Coordinate Ligand 142
 5.2.1 Introduction ... 142
 5.2.2 Results / Discussion ... 143

5.3 Synthesis of a Carboxylic Acid-Capped Tetra-Coordinate Ligand 152
 5.3.1 Introduction ... 152
 5.3.2 Results / Discussion ... 154
5.4 Synthesis of Amine-Capped Tetra-Coordinate Ligands 163
 5.4.1 Introduction.. 163
 5.4.2 Results / Discussion .. 164

5.5 Summary.. 169

Chapter 6: Coordination Chemistry of Encapsulating Compounds 171

6.1 Complexation of Encapsulating Compounds to Beryllium............... 171
 6.1.1 Introduction.. 171
 6.1.2 ⁹Be NMR Analysis... 174
 6.1.3 UV-Vis Spectroscopy in Organic Solvents................................. 179
 6.1.4 Fluorescence Spectroscopy in Organic Solvents......................... 182
 6.1.5 UV-Vis and Fluorescence Spectroscopy in Water......................... 193

6.2 Complexation of Encapsulating Compounds to Transition Metals 196

6.3 Summary.. 203

Chapter 7: Conclusions .. 204

Appendix A: Experimental ... 209

A.1 General Experimental... 209
 A.1.1 Reagents and Solvents... 209
 A.1.2 Synthetic Methods... 209
 A.1.3 Chromatography... 210
 A.1.4 Characterisation... 210
 A.1.5 Computational... 211

A.2 Beryllium Coordination Chemistry Safety Considerations 213
A.2.1 Safe Handling ... 213
A.2.2 Testing for Contamination ... 214

A.3 Chapter 2 Experimental ... 215
A.3.1 Tetramethyl 2,2'-(naphthalene-1,8-diylbis(azanediyl))difumarate (205) ... 215
A.3.2 Dimethyl 4,9-dioxo-1,4,9,12-tetrahydroquinolino[7,8-h]quinoline-2,11-
dicarboxylate (206) .. 215
A.3.3 Quinolino[7,8-h]quinoline-4-9-(1H,12H)-dione (208) .. 216
A.3.4 4,9-Dichloroquinolino[7,8-h]quinoline (L1) .. 217
A.3.5 Quinolino[7,8-h]quinoline (L2) .. 218
A.3.6 [H(L1)]BF₄ .. 218
A.3.7 [H(L2)]BF₄ .. 222
A.3.8 3,3-bis(Methylthio)acrylaldehyde (217) ... 225
A.3.9 N-(2-(Methylthio)benzo[h]quinolin-10-yl)acetamide (214) 225

A.4 Chapter 3 Experimental ... 229
A.4.1 9-(4-tert-Butylphenoxy)quinolino[7,8-h]quinolin-4(1H)-one (L4) 229
A.4.2 4-(4-tert-Butylphenoxy)-9-chloroquinolino[7,8-h]quinoline (L5) 233
A.4.3 (E)-N-(9-Chloroquinolino[7,8-h]quinolin-4(1H)-ylidene)-4-methylaniline (L6) ... 236
A.4.4 (E)-N-p-tolyl-9-(p-tolylimino)-9,12-dihydroquinolino[7,8-h]quinolin-4-amine (L7) ... 239
A.4.5 [H(L7)]BF₄ .. 243
A.4.6 (E)-Methyl 2-(9-(o-tolylamino)quinolino[7,8-h]quinolin-4(1H)-ylideneamino)benzoate (L8) ... 246
A.4.7 4,9-Dichloro-6,7-dinitroquinolino[7,8-h]quinoline (L9) 249
A.4.8 9-Oxo-9,12-dihydroquinolino[7,8-h]quinoline-4-sulfonic acid (L10) 252
A.4.9 4,9-Dimethoxyquinolino[7,8-h]quinoline (L11) ... 255
A.4.10 4,9-Dibromoquinolino[7,8-h]quinoline (L12) .. 258
A.4.11 Dimethyl 4,9-Dichloroquinolino[7,8-h]quinoline-2,11-dicarboxylate (L13) 261
A.4.12 [H(L13)]BF₄ ... 264
A.5 Chapter 4 Experimental ... 267
 A.5.1 \([\text{BF}_2(L1)]\text{BF}_4\) ... 267
 A.5.2 \([\text{BF}_2(L2)]\text{BF}_4\) ... 271
 A.5.3 Attempted beryllium complex with L1 275
 A.5.4 Attempted beryllium complex with L5 275
 A.5.5 \([\text{Cu}(L1)(\text{CH}_3\text{CN})_3](\text{ClO}_4)_2\) .. 275
 A.5.6 \([\text{Cu}(L2)(\text{CH}_3\text{CN})_3](\text{ClO}_4)_2\) .. 276
 A.5.7 Fluorescence Experimental ... 277
 A.5.8 Surface Enhanced Raman Spectroscopy Experimental 279

A.6 Chapter 5 Experimental ... 281
 A.6.1 2-(2-Pyridylmethyl)pyridine (504) ... 281
 A.6.2 2-(2-Methoxyphenyl)pyridine (508) ... 281
 A.6.3 2-Chloro-6-(2-methoxyphenyl)pyridine (509) 282
 A.6.4 2-Bromo-6-(2-methoxyphenyl)pyridine (513) 283
 A.6.5 2,2’-(Bromomethylene)dipyridine (514) 286
 A.6.6 6-(2-Methoxyphenyl)-N,N-di(pyridin-2-yl)pyridin-2-amine (518) 286
 A.6.7 2-(6-(Dipyrind-2-ylamino)pyridin-2-yl)phenol (L14) 290
 A.6.8 N-(2-Bromophenyl)cinnamamide (533) 293
 A.6.9 8-Bromo-2(1H)-quinolinone (523) .. 293
 A.6.10 8-Bromo-2-chloroquinoline (524) ... 294
 A.6.11 2-Chloroquinoline-8-carboxylic acid (519) 294
 A.6.12 Methyl 2-chloroquinoline-8-carboxylate (535) 298
 A.6.13 Methyl 2-cinnamamidobenzoate (536) 301
 A.6.14 2-Chloroquinoline-8-carbonitrile (538) 304
 A.6.15 8-Bromo-2-(dipyrindin-2-ylmethyl)quinoline (537) 307
 A.6.16 2-(Dipyrindin-2-ylmethyl)quinoline-8-carbonitrile (539) 310
 A.6.17 2-((2-(Pyridin-2-yl)ethylamino)methyl)phenol (545) 313
 A.6.18 2-(((2-Hydroxybenzyl)(pyridin-2-ylethyl)amino)methyl)-4-nitrophenol (L15) ... 313
A.6.19 2-((2-(Pyridin-2-yl)methylamino)methyl)phenol (560) 317
A.6.20 2-(((2-Hydroxybenzyl)(pyridin-2-ylmethyl)amino)methyl)-4-nitrophenol (L16) .. 317
A.6.21 Methyl 3-(2-hydroxybenzylamino)propanoate (562). 321
A.6.22 Methyl 3-((2-hydroxy-5-nitrobenzyl)(2-hydroxybenzyl)amino)propanoate (549) .. 324
A.6.23 3-((2-Hydroxy-5-nitrobenzyl)(2-hydroxybenzyl)amino)propanoic acid (L17) ... 327
A.6.24 2-(bis(2-Hydroxy-3,5-dimethylbenzyl)amino)acetic acid (L18) 330
A.6.25 2-(2-Hydroxybenzylamino)phenol (567) .. 330
A.6.26 2-(((2-Hydroxybenzyl)(2-hydroxyphenyl)amino)methyl)-4-nitrophenol (L19) .. 331
A.6.27 2-((Quinolin-8-ylamino)methyl)phenol (569). .. 334
A.6.28 2-(((2-Hydroxybenzyl)(quinolin-8-yl)amino)methyl)-4-nitrophenol (L20) 334
A.6.29 2-((2-Phenylquinolin-8-ylamino)methyl)phenol (571) 338
A.6.30 2-(((2-Hydroxybenzyl)(2-phenylquinolin-8-yl)amino)methyl)-4-nitrophenol (L21) .. 341

A.7 Chapter 6 Experimental .. 344
A.7.1 Be complex with L15 .. 344
A.7.2 Be complex with L16 .. 345
A.7.3 Be complex with L17 .. 346
A.7.4 Be complex with L18 .. 347
A.7.5 Be complex with L19 .. 348
A.7.6 Be complex with L20 .. 350
A.7.7 Be complex with L21 .. 351
A.7.8 Cu complex with L16 .. 353
A.7.9 Zn complex with L16 .. 354

Appendix B: Abandoned Proton Sponge Syntheses ... 356
B.1 Introduction ... 356

B.2 Muthusubramanian and Misra Synthesis199 .. 357
 B.2.1 Introduction .. 357
 B.2.2 Results / Discussion ... 357
 B.2.3 Experimental ... 358
 B.2.3.1 3-(8-Aminonaphthalen-1-ylamino)propanenitrile (B10) 359

B.3 Schmittel and Ammon Synthesis111 .. 360
 B.3.1 Introduction .. 360
 B.3.2 Results / Discussion ... 360
 B.3.3 Experimental ... 361
 B.3.3.1 Ethyl-2-phenylacetate (B16) ... 361
 B.3.3.2 Ethyl-3-hydroxy-2-phenylacetate (B18) .. 362
 B.3.3.3 1H-Perimidine (B21) ... 363

B.4 Molock and Boykin Synthesis202 .. 364
 B.4.1 Introduction .. 364
 B.4.2 Results / Discussion ... 364
 B.4.3 Experimental ... 365
 B.4.3.1 Tetraethyl 2,2'-(naphthalene-1,8-diylbis(azanediyl))bis(methan-1-yl-1-ylidene)dimalonate (B27) ... 365

B.5 Montalban et al. Synthesis203 .. 367
 B.5.1 Introduction .. 367
 B.5.2 Results / Discussion ... 367

B.6 Summary ... 368

References .. 370
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acac</td>
<td>Acetylacetonate</td>
</tr>
<tr>
<td>BODIPY</td>
<td>Boron dipyrrmethene</td>
</tr>
<tr>
<td>Bu</td>
<td>Normal butyl group</td>
</tr>
<tr>
<td>Bu</td>
<td>Tertiary butyl group</td>
</tr>
<tr>
<td>CBD</td>
<td>Chronic beryllium disease</td>
</tr>
<tr>
<td>CCSD</td>
<td>Cambridge crystal structure database</td>
</tr>
<tr>
<td>Cg</td>
<td>Centroid</td>
</tr>
<tr>
<td>COSY</td>
<td>Correlation spectroscopy</td>
</tr>
<tr>
<td>DFT</td>
<td>Density functional theory</td>
</tr>
<tr>
<td>DMAD</td>
<td>Dimethylacetylene dicarboxylate</td>
</tr>
<tr>
<td>DMAE</td>
<td>Dimethyaminoethanol</td>
</tr>
<tr>
<td>DMAN</td>
<td>1,8-Bis(dimethylamino)naphthalene</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>Dppe</td>
<td>1,2-Bis(diphenylphosphino)ethane</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>ESR</td>
<td>Electron spin resonance</td>
</tr>
<tr>
<td>Et</td>
<td>Ethyl group</td>
</tr>
<tr>
<td>GIAO</td>
<td>Gauge including atomic orbital</td>
</tr>
<tr>
<td>HEPA</td>
<td>High efficiency particulate air</td>
</tr>
<tr>
<td>Hfac</td>
<td>Hexafluoroacetylacetone</td>
</tr>
<tr>
<td>HMQC</td>
<td>Heteronuclear multiple quantum coherence</td>
</tr>
<tr>
<td>HOMO</td>
<td>Highest occupied molecular orbital</td>
</tr>
<tr>
<td>LUMO</td>
<td>Lowest unoccupied molecular orbital</td>
</tr>
<tr>
<td>Me</td>
<td>Methyl group</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectroscopy</td>
</tr>
<tr>
<td>NBS</td>
<td>N-Bromosuccinimide</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>-OAc</td>
<td>Acetoxy group</td>
</tr>
<tr>
<td>-Ph</td>
<td>Phenyl group</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>SERS</td>
<td>Surface enhanced Raman spectroscopy</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>TMS</td>
<td>Tetramethyilsilane</td>
</tr>
<tr>
<td>TOF</td>
<td>Time of flight</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>Ultraviolet-Visible spectroscopy</td>
</tr>
</tbody>
</table>
List of Figures, Tables and Reaction Schemes

Chapter 1

Table 1.1: Relative selectivity of proton sponge ligands for metal cations 18
Table 1.2: Similarities between B(III) and Be(II) 31
Figure 1.1: Structure of beryllium acetate 6
Figure 1.2: Selection of dicarboxylic acids and a representative complex of K₂[Be(102)₂] 7
Figure 1.3: Crystal structure of beryllium bound to dicarboxyimidazole, 105 7
Figure 1.4: Resonance structure of hydroxy-keto-heterocycles 8
Figure 1.5: Selection of hydroxy-keto-heterocycles and a representative complex of [Be(106)₂] 8
Figure 1.6: Salicylic acid, 108, and its sulfonated analogue, 109, and the complex of K₂[Be(108)] 9
Figure 1.7: Catechol, 110, and related polyols, and the complex of Na₂[Be(110)₂] 9
Figure 1.8: Crystal structure of beryllium bound to nitrilotripropionic acid, 114 10
Figure 1.9: Salicylaldimines which formed bis-ligand chelates with beryllium 11
Figure 1.10: 2-(Pyridin-2-yl)phenol, 117, and the bis-ligand beryllium chelate 11
Figure 1.11: Hydroxyphenyl indole ligand, 118 12
Figure 1.12: Benzo[h]quinolinol-10-ol, 119 12
Figure 1.13: A colourmetric beryllium test kit utilising a sulfonated analogue of 119 13
Figure 1.14: 8-Hydroxyquinoline, 120 13
Figure 1.15: Crystal structure of beryllium bound to 2-(pyridin-2-yl)-1H-indole, 121 14
Figure 1.16: 1-Methyl-1H-imidazole-4,5-dicarboxylic acid with Be(II) bound 16
Figure 1.17: Benzo[h]quinolinol-10-ol, 119 showing the internal hydrogen bonding interaction 17
Figure 1.18: Mode of proton binding in 1,8-bis(dimethylamino)naphthalene 17
Figure 1.19: Naphthalene-1,8-diol, 122 18
Figure 1.20: Benzo[h]quinolinol-10-ol, 121 19
Figure 1.21: Benzo[h]quinolinol-10-amine, 123 19
Figure 1.2: Alkylated proton sponge; 1,8-bis(dimethylamino)naphthalene, 125
Figure 1.23: Fluorenediamine, 126, and related derivatives based on 127
Figure 1.24: Quino[7,8-h]quinoline, 124
Figure 1.25: Aryl imine type proton sponges
Figure 1.26: Metal complexes with 4,9-dichloroquino[7,8-h]quinoline, 131
Figure 1.27: Perspective view of the crystal structure of [Pt(131)Cl2]
Figure 1.28: Perspective view of the crystal structure of [Re(131)(CO)3Br]
Figure 1.29: Crystal structure of [Pd(β-dik-O, O’)(125)](Hfac)
Figure 1.30: Perspective view of the crystal structure of [Pt(128)Cl2]
Figure 1.31: Nitrilotripropionic acid, 114
Figure 1.32: 2,2’-(1E,1’E)-(1,1’-Binaphthyl-2,2’-diylbis(azan-1-yl-1-ylidene))-bis(methan-1-yl-1-ylidene)diphenol, 132
Figure 1.33: Beryllium complex of 2,6-bis(2-hydroxyphenyl)pyridine, 133
Figure 1.34: Creation of a tetra-coordinate ligand, 134
Figure 1.35: Conversion of a proton sponge into the third dimension
Figure 1.36: Location of an oxygen atom required to make tetrahedral binding cavity
Figure 1.37: Possible compounds containing tetrahedral binding cavities for beryllium

Chapter 2

Table 2.1: Important parameters from the optimised proton sponge beryllium complexes
Table 2.2: Estimated mean and standard deviation for bond lengths of neutral N-donors to beryllium
Table 2.3: Important bond lengths and angles associated with hydrogen bonding in quino[7,8-h]quinolines
Table 2.4: Proton sponge torsion angles in the solid state
Figure 2.1: Proton sponges analysed by computational methods
Figure 2.2: Highlighted structural parameters for the optimised models
Figure 2.3: 1,8-bis(Dimethylamino)naphthalene, L3
Figure 2.4: Computer model of the beryllium bis-ligand chelate of L3
Figure 2.5: N1,N8-bis(1,3-Dimethyl-1H-imidazol-2(3H)-ylidene)naphthalene-1,8-diamine, 201
Figure 2.6: Computer model of the beryllium bis-ligand chelate of 201 36
Figure 2.7: Quino[7,8-h]quinoline, L2 37
Figure 2.8: Computer model of the beryllium bis-chelate of L2 38
Figure 2.9: Quino[7,8-h]quinoline, L2 39
Figure 2.10: Quino[7,8-h]quinoline, L2, and misreported products formed, 202 and 203 40
Figure 2.11 IR spectrum for the tautomer of 208 44
Figure 2.12: Crystal structure showing twisting of the heterocyclic ring system in L1 45
Figure 2.13: Parameters describing π–π stacking interactions 46
Figure 2.14: Example of stacking π–π stacking interactions between two molecules of L1 47
Figure 2.15: Crystal structure of Zirnstein and Staab showing flattened heterocyclic ring system of L2 47
Figure 2.16: Face view of the crystal structure of [H(L1)][BF4] showing hydrogen bonding 48
Figure 2.17: Example of stacking π–π stacking interactions between two molecules of [H(L1)][BF4] 49
Figure 2.18: Classification of important bond lengths and angles associated with hydrogen bonding 49
Figure 2.19: Selection of proton sponges with recorded crystal structures 50
Figure 2.20: N-(2-(Methylthio)benzo[h]quinolin-10-yl)acetamide, 214 53
Figure 2.21: N-(Benzo[h]quinolin-10-yl)benzamide, 215 54
Figure 2.22: Crystal structure of 214, grown by D. Parr 54
Figure 2.23: Crystal packing of 214 55
Figure 2.24: Computer model of the beryllium bis-ligand chelate of 214 56
Figure 2.25: Successfully synthesised proton sponge ligands 57
Figure 2.26: 2,11-bis(Methylthio)quinolino[7,8-h]quinoline, 213 57
Scheme 2.1: Synthesis of quino[7,8-h]quinoline, L2 40
Scheme 2.2: Synthesis of tetramethyl 2,2’-(naphthalene-1,8-diylbis(azanediyl))-
difumarate, 205

Scheme 2.3: Synthesis of dimethyl 4,9-dioxo-1,4,9,12-tetrahydroquinolino-[7,8-h]quinoline-2,11-dicarboxylate, 206

Scheme 2.4: Synthesis of quinolino[7,8-h]quinoline-4,9(1H,12H)-dione, 208

Scheme 2.5: Microwave assisted ester cleavage of ethyl indole-2-carboxylate, 210

Scheme 2.6: Microwave assisted ester cleavage of dimethyl 4,9-dioxo-1,4,9,12-tetrahydroquinolino[7,8-h]quinoline-2,11-dicarboxylate, 206

Scheme 2.7: Synthesis of dimethyl 4,9-dichloroquinolino[7,8-h]quinoline-2,11-dicarboxylate, L13

Scheme 2.8: Synthesis of 4,9-dichloroquino[7,8-h]quinoline, L1

Scheme 2.9: Synthesis of quino[7,8-h]quinoline, L2

Scheme 2.10: Synthesis of 2,11-bis(methylthio)quino[7,8-h]quinoline, 213

Chapter 3

Table 3.1: Lack of relationship between 1H NMR NH shift and pK_{BH^+} 77

Table 3.2: Relative basicity of quino[7,8-h]quinolines 78

Table 3.3: Important bond lengths and angles associated with the hydrogen bonding of H2 and H2B in [H(323)][BF$_4$] 80

Figure 3.1: Potential sites for modification of on quino[7,8-h]quinoline 58

Figure 3.2: Computer model showing potential encapsulation of beryllium through 2,11 substitution of acetic acid moieties on quino[7,8-h]quinoline 59

Figure 3.3: Tautomerism of quinolin-4-ol, 302

Figure 3.4: Crystal structure of L4 showing the bridging proton, H9AA 62

Figure 3.5: Expanded crystal structure of L4 showing the bonds with single and double bond character 63

Figure 3.6: Crystal packing in L4 64

Figure 3.7: Crystal structure of L7 66

Figure 3.8: Hydrogen bonding and edge to face π packing interactions in L7 67

Figure 3.9: Crystal structure of [H(L7)][BF$_4$] 68

Figure 3.10: Crystal packing of [H(L7)][BF$_4$] 68
Figure 3.11: Hydrogen bonding in methyl 2-aminobenzoate, \[\textbf{304} \]

Figure 3.12: Compounds; (a) \[\textbf{L7} \], (b) [H(L7)][BF\(_4\)], (c) \[\textbf{L8} \], (d) [H(L8)][BF\(_4\)], viewed in the dark under a long wave 385 nm UV lamp \[\textbf{70} \]

Figure 3.13: Molecular orbitals associated with the \(\pi – \pi^* \) transition for [H(L7)][BF\(_4\)] \[\textbf{71} \]

Figure 3.14: Molecular orbitals associated with the \(\pi – \pi^* \) transition for [H(L8)][BF\(_4\)] \[\textbf{71} \]

Figure 3.15: \(^1\)H NMR of the nitrated quinolino[7,8-h]quinoline, \[\textbf{L9} \] \[\textbf{72} \]

Figure 3.16: Crystal structure of \[\textbf{L11} \] \[\textbf{74} \]

Figure 3.17: Crystal packing of \[\textbf{L11} \] \[\textbf{75} \]

Figure 3.18: Proton sponges with different chemical environments \[\textbf{77} \]

Figure 3.19: Crystal structure of [H(L13)][BF\(_4\)] showing H2 close contacts \[\textbf{80} \]

Figure 3.20: Crystal packing of [H(L13)][BF\(_4\)] \[\textbf{81} \]

Figure 3.21: Crystal structure of [H(L3)][BF\(_4\)] with a long range contact to a BF\(_4^-\) anion \[\textbf{82} \]

Figure 3.22: 4-(4-tert-Butylphenoxy)-9-chloroquinolino[7,8-h]quinoline, \[\textbf{L5} \] \[\textbf{86} \]

Scheme 3.1: General scheme for the synthesis of substituted \[\textbf{301} \]

Scheme 3.2: Synthesis of 9-(4-tert-butylphenoxy)quinolino[7,8-h]quinolin-4(1H)-one, \[\textbf{L4} \] \[\textbf{60} \]

Scheme 3.3: Synthesis of 4-(4-tert-butylphenoxy)-9-chloroquinolino[7,8-h]quinoline, \[\textbf{L5} \] \[\textbf{64} \]

Scheme 3.4: Synthesis of (E)-N-(9-chloroquinolino[7,8-h]quinolin-4(1H)-ylidene)-4-methylaniline, \[\textbf{L6} \] \[\textbf{65} \]

Scheme 3.5: Synthesis of (E)-N-p-tolyl-9-(p-tolylimino)-9,12-dihydroquinolino-[7,8-h]quinolin-4-amine, \[\textbf{L7} \] \[\textbf{65} \]

Scheme 3.6: Synthesis of (E)-methyl 2-(9-(o-tolylamino)quinolino[7,8-h]quinolin-4(1H)-ylideneamino)benzoate, \[\textbf{L8} \] \[\textbf{69} \]

Scheme 3.7: Attempted synthesis of the asymmetrically substituted \[\textbf{305} \]

Scheme 3.8: Synthesis of 4,9-dichloro-6,7-dinitroquinolino[7,8-h]quinoline, \[\textbf{L9} \] \[\textbf{72} \]

Scheme 3.9: Synthesis of 9-oxo-9,12-dihydroquinolino[7,8-h]quinoline-4-sulfonic acid, \[\textbf{L10} \] \[\textbf{73} \]

Scheme 3.10: Synthesis of 4,9-dimethoxyquinolino[7,8-h]quinoline, \[\textbf{L11} \] \[\textbf{74} \]

Scheme 3.11: General scheme for the synthesis of alkyl-substituted \[\textbf{307} \]
Scheme 3.12: Proposed generalised Suzuki coupling reaction with L12

Scheme 3.14: Proposed ester hydrolysis of L13

Scheme 3.15: Proposed synthesis of 2,2’-(4,9-dichloroquinolo[7,8-h]quinoline-2,11-diyl)diacetonitrile, 315

Scheme 3.16: Proposed synthesis of 2,2’-(4,9-dichloroquinolo[7,8-h]quinoline-2,11-diyl)diacetic acid, 316

Scheme 3.17: Proposed limitation of side reactions through substitution of the chlorides on 317

Scheme 3.18: Generalised tautomerised product when oxygen-containing groups were substituted

Scheme 3.19: Generalised tautomerised product when anilines were substituted

Chapter 4

Table 4.1: Comparison of the $\pi - \pi^*$ transitions and charge transfer peaks for quino[7,8-h]quinolines

Table 4.2: Comparison of bond parameters for the B(III) ion between the crystal structure and calculated models

Table 4.3: Calculation of relative quantum yields, $\Phi_{F(X)}$

Table 4.4: Related bands for the SERS and calculated Raman spectra of [BF$_2$(L1)][BF$_4$]

Table 4.5: NMR analysis of beryllium complexes with L1

Table 4.6: Major structural parameters for the geometry of the Cu(II) ion in [Cu(L1)(CH$_3$CN)$_3$][(ClO$_4$)$_2$]

Table 4.7: Major structural parameters for the geometry of the Cu(II) ion in [Cu(L2)(CH$_3$CN)$_3$][(ClO$_4$)$_2$]

Table 4.8: ESR data for the copper complexes of L1 and L2

Table 4.9: Atom distances to relate the size-fit of various cations for L1

Figure 4.1: Example of a boron-dipyrrromethene complex with a high quantum yield
Figure 4.2: Neutral nitrogen donor ligands with boron complexes; 2,2'-bipyridine, 1,10-phenanthroline, and 1,8-bis(dimethylamino)naphthalene respectively

Figure 4.3: Perspective view of the crystal structure of [Pt(L1)Cl2]

Figure 4.4: 4,9-Dichloroquino[7,8-h]quinoline, L1

Figure 4.5: Side view of the crystal structure of [BF2(L1)][BF4]

Figure 4.6: Top view of the crystal structure of [BF2(L1)][BF4]

Figure 4.7: Packing within the structure of [BF2(L1)][BF4]

Figure 4.8: Quino[7,8-h]quinoline, L2

Figure 4.9: Side view of the crystal structure of [BF2(L2)][BF4]

Figure 4.10: Top view of the crystal structure of [BF2(L2)][BF4]

Figure 4.11: Packing within the structure of [BF2(L2)][BF4]

Figure 4.12: Ligands which did not show good coordination to B(III)

Figure 4.13: UV-Vis spectra of [BF2(L2)][BF4] and [BF2(L1)][BF4] showing the $\pi - \pi^*$ transitions at 10^{-4} M

Figure 4.14: UV-Vis spectra of [BF2(L2)][BF4] and [BF2(L1)][BF4] showing the charge transfer peak for[BF2(L1)][BF4] at 10^{-6} M

Figure 4.15: UV-Vis spectra of L1 and [H(L1)][BF4] showing the $\pi - \pi^*$ transitions

Figure 4.16: Comparison between the IR spectra of [BF2(L1)][BF4]; measured as KBr disc, OLYP and B3LYP

Figure 4.17: Comparison between the IR spectra of L1; measured as KBr disc, OLYP and B3LYP

Figure 4.18: Comparison between the UV-Vis spectra of [BF2(L1)][BF4]; measured in MeCN at 10^{-6} M, OLYP and B3LYP

Figure 4.19: Comparison between the UV-Vis spectra of L1; measured in MeCN, OLYP and B3LYP

Figure 4.20: Normalised absorption and emission spectra of [BF2(L1)][BF4]

Figure 4.21: Molecular orbitals associated with the fluorescence for [BF2(L1)][BF4]

Figure 4.22: Normalised absorption and emission spectra of [H(L1)][BF4]

Figure 4.23: Molecular orbitals associated with the fluorescence for [H(L1)][BF4]

Figure 4.24: Raman spectra of [BF2(L1)][BF4]; calculated and SERS

Figure 4.25: Coordination of beryllium to 2,2'-bipyridine
Figure 4.26: Proton sponge ligands tested for beryllium coordination

Figure 4.27: 4,9-Dichloroquinol[7,8-h]quinoline, L1

Figure 4.28: Normalised absorption and emission spectra at 10^{-5} M of neutral L1 and after BeSO$_4$ or H$_2$SO$_4$ addition

Figure 4.29: Change in UV-Vis spectrum at 10^{-5} M of neutral L1 and after BeSO$_4$ or H$_2$SO$_4$ addition

Figure 4.30: Calculated distribution of beryllium hydroxo species at $C_{Be} = 0.002$ M

Figure 4.31: Normalised absorption and emission spectra at 10^{-5} M of neutral L1 and after BeSO$_4$ addition in DMF and NEt$_3$

Figure 4.32: Shift in UV-Vis spectrum at 10^{-5} M of neutral L1 and after BeSO$_4$ addition or simply heating L1 in DMF and NEt$_3$

Figure 4.33: 9Be NMR shift of L1 coordinated to beryllium and BeSO$_4$ in DMF / NEt$_3$

Figure 4.34: Quino[7,8-h]quinoline, L2

Figure 4.35: 1,8-bis(Dimethylamino)naphthalene, L3

Figure 4.36: 9-(4-tert-Butylphenoxy)quinolino[7,8-h]quinolin-4(1H)-one, L4

Figure 4.37: 4-(4-tert-butylphenoxy)-9-chloroquinolino[7,8-h]quinoline, L5

Figure 4.38: The broad 9Be NMR shift for the reaction mixture of beryllium and L5 in DMF / NEt$_3$

Figure 4.39: Shift in UV-Vis spectrum at 10^{-5} M of neutral L5 and after BeSO$_4$ addition in DMF and NEt$_3$

Figure 4.40: Normalised absorption and emission spectras at 10^{-5} M of neutral L5 and after BeSO$_4$ addition in DMF and NEt$_3$

Figure 4.41: Proton sponges with tautomers incapable of coordinating to Be(II)

Figure 4.42: Metal complexes with L1

Figure 4.43: Perspective view of the crystal structure of $[Cu(L1)(CH_3CN)_3][(ClO_4)_2]$

Figure 4.44: Space-filling diagram showing a perchlorate stabilising the acetonitriles

Figure 4.45: Crystal packing of $[Cu(L1)(CH_3CN)_3][(ClO_4)_2]$

Figure 4.46: UV-Vis of $[Cu(L1)(CH_3CN)_3][(ClO_4)_2]$ and copper perchlorate in acetonitrile

Figure 4.47: Summary of energy ranges for closely related CuN$_x$ chromophores
with different stereochemistries

Figure 4.48: Perspective view of the crystal structure of [Cu(L2)(CH3CN)3][(ClO4)2] 128

Figure 4.49: Crystal packing of [Cu(L2)(CH3CN)3][(ClO4)2] 129

Figure 4.50: UV-Vis of [Cu(L2)(CH3CN)3][(ClO4)2] and copper perchlorate in acetonitrile 130

Figure 4.51: Atoms used to relate the size-fit of various cations for quino[7,8-h]quinolines 131

Figure 4.52: Atomic motion relative to cation size 132

Figure 4.53: Coordination of boron trifluoride to quino[7,8-h]quinoline 133

Figure 4.54: Coordination of beryllium hydrate to benzo[h]quinolin-10-ol 134

Figure 4.55: Inactivation of quino[7,8-h]quinoline by protonation 135

Chapter 5 137

Figure 5.1: 2-(6-(Dipyridin-2-ylmethyl)pyridin-2-yl)phenol, 501 137

Figure 5.2: A related four-coordinate ligand to 501 138

Figure 5.3: Computer model of beryllium coordinated to 501 139

Figure 5.4: 2-(Dipyridin-2-ylmethyl)quinoline-8-carboxylic acid, 502 139

Figure 5.5: Computer model of beryllium coordinated to 502 140

Figure 5.6: Range of tetra-coordinate amine-capped ligands 140

Figure 5.7: Computer model of beryllium coordinated to L17 141

Figure 5.8: Disconnection of 2-(6-(dipyridin-2-ylmethyl)pyridin-2-yl)phenol, 501 142

Figure 5.9: Proposed model for external chelations in substituted phenylpyridines leading to chlorine substitution at the 2-position 143

Figure 5.10: Dipyridin-2-ylamine, 517 144

Figure 5.11: COSY of 6-(2-methoxyphenyl)-N,N-di(pyridin-2-yl)pyridin-2-amine, 518 145

Figure 5.12: HMQC of 6-(2-methoxyphenyl)-N,N-di(pyridin-2-yl)pyridin-2-amine, 518 146

Figure 5.13: 1H NMR of 2-(6-(dipyridin-2-ylamino)pyridin-2-yl)phenol, L14 showing the deshielded proton at 12.55 ppm. 147
Figure 5.14: 2-Chloro-3-(trifluoromethyl)quinoline-8-carboxylic acid, 520

Figure 5.15: 1H NMR of the trace amount of 525 (A) and the side-product (B) isolated in Scheme 5.19

Figure 5.16: 1H NMR of 2-chloroquinoline-8-carboxylic acid, 519

Figure 5.17: Successfully synthesised 2-(6-(dipyridin-2-ylamino)pyridin-2-yl)phenol, L14

Figure 5.18: Variety of amine-capped tetra-coordinate ligands

Figure 5.19: COSY of 2-(((2-hydroxybenzyl)(quinolin-8-yl)amino)methyl)-4-nitrophenol, L20

Figure 5.20: HMQC of 2-(((2-hydroxybenzyl)(quinolin-8-yl)amino)methyl)-4-nitrophenol, L20

Figure 5.21: Successfully synthesised 2-(6-(dipyridin-2-ylamino)pyridin-2-yl)phenol, L14

Figure 5.22: Unsuccessfully synthesised 2-(dipyridin-2-ylmethyl)quinoline-8-carboxylic acid, 502

Figure 5.23: Variety of amine-capped tetra-coordinate ligands

Scheme 5.1: Synthesis of 2-chloro-6-(2-methoxyphenyl)pyridine, 509

Scheme 5.2: Synthesis of 2-(2-pyridylmethyl)pyridine, 504

Scheme 5.3: Attempted synthesis of 2-(dipyridin-2-ylmethyl)-6-(2-methoxyphenyl)pyridine, 512

Scheme 5.4: Synthesis of 2-bromo-6-(2-methoxyphenyl)pyridine, 513

Scheme 5.5: Attempted synthesis of 2-(dipyridin-2-ylmethyl)-6-(2-methoxyphenyl)pyridine, 512

Scheme 5.6: Synthesis of 2,2'-(bromomethylene)dipyridine, 514

Scheme 5.7: Attempted synthesis of 2-(dipyridin-2-ylmethyl)-6-(2-methoxyphenyl)pyridine, 512

Scheme 5.8: Attempted synthesis of (6-(2-methoxyphenyl)pyridin-2-yl)dipyridin-2-ylmethanol, 516

Scheme 5.9: Proposed synthesis of 6-(2-methoxyphenyl)-N,N-di(pyridin-2-yl)pyridin-2-amine, 518

Scheme 5.10: Synthesis of 6-(2-methoxyphenyl)-N,N-di(pyridin-2-yl)pyridin-
2-amine, 518

Scheme 5.11: Synthesis of 2-(6-(dipyridin-2-ylamino)pyridin-2-yl)phenol, L14

Scheme 5.12: Disconnection of 2-(dipyridin-2-ylmethyl)quinoline-8-carboxylic acid, 502

Scheme 5.13: Proposed synthesis of 2-chloroquinoline-8-carboxylic acid, 519

Scheme 5.14: Proposed synthesis of ethyl 2-chloroquinoline-8-carboxylate, 525

Scheme 5.15: Proposed synthesis of methyl 2-chloroquinoline-8-carboxylate, 528

Scheme 5.16: Proposed synthesis of ethyl 2-(dipyridin-2-ylmethyl)quinoline-8-carboxylate, 529

Scheme 5.17: Synthesis of N-(dipyridin-2-yl(quinolin-2-yl)methyl)acetamide, 532

Scheme 5.18: Synthesis of 2-(2-pyridylmethyl)pyridine, 504

Scheme 5.19: Synthesis of 8-bromo-2-chloroquinoline, 524

Scheme 5.20: Unsuccessful esterification of 525

Scheme 5.21: Synthesis of 2-chloro-3-(trifluoromethyl)quinoline-8-carboxylic acid, 520

Scheme 5.22: Synthesis of 2-chloroquinoline-8-carboxylic acid, 519

Scheme 5.23: Synthesis of methyl 2-chloroquinoline-8-carboxylate, 535

Scheme 5.24: Attempted synthesis of methyl 2-oxo-1,2-dihydroquinoline-8-carboxylate, 527

Scheme 5.25: Attempted synthesis of 2-(dipyridin-2-ylmethyl)quinoline-8-carboxylic acid, 502

Scheme 5.26: Synthesis of 8-bromo-2-(dipyridin-2-ylmethyl)quinoline, 537

Scheme 5.27: Attempted synthesis of 2-(dipyridin-2-ylmethyl)quinoline-8-carboxylic acid, 502

Scheme 5.28: Synthesis of 2-chloroquinoline-8-carbonitrile, 538

Scheme 5.29: Synthesis of 2-(dipyridin-2-ylmethyl)quinoline-8-carbonitrile, 539

Scheme 5.30: Attempted synthesis of 2-(dipyridin-2-ylmethyl)quinoline-8-carboxylic acid, 502

Scheme 5.31: Attempted synthesis of 2-(dipyridin-2-ylamino)quinoline-8-carboxylic acid, 540

Scheme 5.32: Proposed synthesis of 2,8-dibromoquinoline, 541
Scheme 5.33: Synthesis of 8-bromo-2-(dipyridin-2-ylmethyl)quinoline, \(537\)

Scheme 5.34: Proposed synthesis of 8-bromo-N,N-di(pyridin-2-yl)quinolin-2-amine, \(542\)

Scheme 5.35: Synthesis of the tetra-coordinate ligand, \(547\)

Scheme 5.36: Generalised Schiff base condensations for ligands

\[\text{L15, L16, L17, L19, L20 and L21}\]

Scheme 5.37: Generalised reaction scheme for tertiary amines

\[\text{L15, L16, L17, L19, L20 and L21}\]

Scheme 5.38: Acid hydrolysis of \(549\) to achieve \(\text{L17}\)

Scheme 5.39: Mannich reaction to achieve \(\text{L18}\)

Chapter 6

Table 6.1: \(^9\)Be NMR shifts and line widths of tetra-coordinate ligands in a number of different solvents

Table 6.2: Calculated \(^9\)Be NMR shifts for tetra-coordinate ligands

Table 6.3: Calculated and experimental maximum absorption wavelengths

Table 6.4: Comparison of the angle of intersection between the aromatic phenol rings

Table 6.5: Major structural parameters for the geometry of the Cu(II) ion in \([\text{Cu}_2(\text{L16})_2]\]

Table 6.6: Major structural parameters for the geometry of the Zn(II) ion in \([\text{Zn}_2(\text{L16})_2]\]

Figure 6.1: Crystal structures of \([\text{Cu}_2(\text{L16})_2]\) and \([\text{Cu}(\text{L16}’\text{H})(\text{OAc})]\]

Figure 6.2: 2-(((2-Hydroxybenzyl)(2-(pyridin-2-yl)ethyl)amino)methyl)-4-nitrophenol, \(\text{L15}\)

Figure 6.3: Crystal structure of \([\text{Fe}(\text{L18}’)(\text{bipy})]\)

Figure 6.4: 2-(((2-Hydroxybenzyl)(2-hydroxyphenyl)amino)methyl)-4-nitrophenol, \(\text{L19}\)

Figure 6.5: Previously unreported tertiary amine ligands

Figure 6.6: 2-(((2-hydroxybenzyl)(2-phenylquinolin-8-yl)amino)methyl)-4-nitrophenol, \(\text{L21}\)
Figure 6.7: 9Be NMR shift of $\mathbf{L18}$ coordinated to beryllium in DMF

Figure 6.8: Tetra-coordinate ligands with well correlated 9Be NMR shifts

Figure 6.9: Tetra-coordinate ligands with poorly correlated 9Be NMR shifts

Figure 6.10: Optimised model of $[\text{Be}(\mathbf{L16})(\text{H}_2\text{O})]$

Figure 6.11: Change in UV-Vis spectrum at 10^{-5} M of neutral $\mathbf{L15}$ and after BeSO$_4$ addition

Figure 6.12: Change in UV-Vis spectrum at 10^{-5} M of neutral $\mathbf{L17}$ and after BeSO$_4$ addition

Figure 6.13: Change in UV-Vis spectrum at 10^{-5} M of neutral $\mathbf{L19}$ and after BeSO$_4$ addition

Figure 6.14: Change in UV-Vis spectrum at 10^{-5} M of neutral $\mathbf{L18}$ and after BeSO$_4$ addition

Figure 6.15: Normalised absorption and emission spectras at 10^{-5} M of neutral $\mathbf{L18}$ and after BeSO$_4$ addition in DMF and NEt$_3$

Figure 6.16: Normalised absorption and emission spectras at 10^{-5} M of neutral $\mathbf{L19}$ and after BeSO$_4$ addition in DMF and NEt$_3$

Figure 6.17: Flexible tetra-coordinate ligands with a single conformer upon beryllium coordination

Figure 6.18: Optimised model of $[\text{Be}(\mathbf{L17})]^-$ with anti geometry

Figure 6.19: $3,3',3''$-nitrilotripropanoic acid, 601

Figure 6.20: Crystal structure of $[\text{Be}(601)]^-$ with anti geometry

Figure 6.21: Strained four-coordinate ligands with two conformers upon beryllium coordination

Figure 6.22: Syn conformer (left) and anti conformer (right) of $[\text{Be}(\mathbf{L18})]^-$

Figure 6.23: Top view of the Syn conformer (left) and anti conformer (right) of $[\text{Be}(\mathbf{L18})]^-$

Figure 6.24: Molecular orbitals associated with the $\pi - \pi^*$ transition for $[\text{Be}(\mathbf{L15})]$ (anti conformer)

Figure 6.25: Molecular orbitals associated with the $\pi - \pi^*$ transition for $[\text{Be}(\mathbf{L17})]^-$ (anti conformer)

Figure 6.26: Molecular orbitals associated with the $\pi - \pi^*$ transition
for $[\text{Be(L18)}]^{-}$ (syn conformer)
Figure 6.27: Molecular orbitals associated with the $\pi - \pi^*$ transition for $[\text{Be(L18)}]^{-}$ (anti conformer)
Figure 6.28: Molecular orbitals associated with the $\pi - \pi^*$ transition for $[\text{Be(L604)}]^{-}$ (syn conformer)
Figure 6.29: Second possible minimised structure of $[\text{Be(L19)}]^{-}$
Figure 6.30: Molecular orbitals associated with the $\pi - \pi^*$ transition for $[\text{Be(L19)}]^{-}$
Figure 6.31: Water-soluble encapsulating ligands
Figure 6.32: Change in UV-Vis spectrum at 10^{-5} M of neutral L18 and after BeSO$_4$ addition in H$_2$O
Figure 6.33: Change in UV-Vis spectrum at 10^{-5} M of neutral L17 and after BeSO$_4$ addition in H$_2$O
Figure 6.34: Normalised absorption and emission spectras at 10^{-5} M of neutral L18 and after BeSO$_4$ addition in H$_2$O
Figure 6.35: Asymmetric unit for the crystal of $[\text{Cu}_2(\text{L16})_2]$
Figure 6.36: The bridged dimer $[\text{Cu}_2(\text{L16})_2]$
Figure 6.37: UV-Vis of $[\text{Cu}_2(\text{L16})_2]$ at 10^{-4} M showing metal d – d transition in MeOH
Figure 6.38: UV-Vis of $[\text{Cu}_2(\text{L16})_2]$ at 10^{-5} M showing ligand $\pi - \pi^*$ transitions in MeOH
Figure 6.39: Crystal structure of $[\text{Zn}_2(\text{L16})_2]$
Figure 6.40: Perspective view of $[\text{Zn}_2(\text{L16})_2]$
Figure 6.41: UV-Vis of $[\text{Zn}_2(\text{L16})_2]$ at 10^{-5} M showing ligand $\pi - \pi^*$ transitions in MeOH
Figure 6.42: Water-soluble and fluorescent encapsulating ligand, L18
Figure 6.43: Water-soluble and fluorescent encapsulating ligand, L18

Chapter 7

Figure 7.1: Benzo[h]quinolin-10-ol, 701
Figure 7.2: Quinolino[7,8-h]quinoline, L2
Figure 7.3: 2,2’-(pyridine-2,6-diyl)diphenol, 702

Figure 7.4: 2-(bis(2-Hydroxy-3,5-dimethylbenzyl)amino)acetic acid, L18

Figure 7.5: A representation of the lack of selectivity of simple bidentate ligands

Figure 7.6: Successfully synthesised 2-(6-(dipyridin-2-ylamino)pyridin-2-yl)phenol, L14

Figure 7.7: A representation of the potential selectivity of the encapsulating ligand L14
Chapter 1: Literature Review

1.1 Introduction to Beryllium

Beryllium has unique and unusual material properties which make it an important industrial metal. It is a key component in the aerospace and electronics industries, particularly when alloyed with metals such as copper.\(^1\) Beryllium is also used in nuclear applications due to its small neutron capture cross-section. Unfortunately, beryllium is one of the most toxic non-radioactive metals on the periodic table.\(^2\) It can cause the often-fatal lung disease CBD (Chronic Beryllium Disease)\(^3\)\(^-\)\(^5\) and it is listed as a Class A EPA carcinogen in the USA.\(^6\) Operations such coal-fired plants, industrial manufacturing, nuclear weapons production and disposal operations release beryllium to the environment. There is the potential to expose workers and the public to beryllium.

1.1.1 Properties, Production and Uses

Beryllium is a valuable metal as it is extremely lightweight, six times stiffer than steel, has a high melting point of 1285 °C and a high heat-adsorption capacity. It is nonmagnetic and corrosion resistant, and has the lowest thermal neutron adsorption cross-section of any metal.\(^7\) This property is utilised in X-ray windows for various instruments in the fields of science and medicine. Beryllium was isolated in 1828 but not used extensively until the 1920’s when it was alloyed with copper as a 2 % addition to give an alloy six times stronger than copper alone.\(^7\)\(^-\)\(^9\) The only available oxidation state for beryllium is +2. Beryllium has a relatively high ionisation potential, with a charge-to-size-ratio of 5.7 (+2/0.35 Å), and the highest Pauling electronegativity (6.3 kJ/g atom) of the alkali and alkaline earth elements.

Beryllium is mined from naturally occurring silicates including beryl (Al\(_2\)Be\(_3\)Si\(_6\)O\(_{18}\), 5 % by weight beryllium) and bertrandite (Be\(_4\)(OH)\(_2\)Si\(_2\)O\(_7\), 15 % by weight beryllium).\(^10\)
Bertrandite is primarily mined in the state of Utah in the USA, while beryl is imported to the USA from Argentina and Brazil. The world’s resources of beryllium are estimated at approximately 80,000 tons. The USA is the world’s leading producer, processor and consumer of beryllium products. In the year 2000 the USA used 390 tons of beryllium with an estimated value of USD $140 million.

Beryllium can be used as a pure metal, mixed with other metals to form high-strength alloys, processed to salts that dissolve in water, or processed to form oxides and ceramic materials. Its unique structural and mechanical properties find applications in the aerospace and electronics industries. Beryllium is used in aircraft bearing and bushings because it can sustain heavy loads without adding weight or losing material strength. Its material strength makes it useful as a component of fuel containers for solid propulsion jet and rocket fuel systems, gyros and re-entry vehicles. A beryllium-aluminium alloy (Beralcast®) is being used in the manufacture of US military fighter planes, helicopters and missile systems. In the electronics industry, beryllium is used to make springs, switches, relays, connectors and electronic systems for computers, telecommunications (fiber optics and cellular network communication systems), appliances (optical laser scanners in copy machines, photo separators, and airport luggage handlers), and automotive applications (air bag sensors, ignition switches, power steering systems). Beryllium oxide ceramics have a thermal conductivity second only to diamond among electrically insulating materials, dissipating nearly 300 W/mK at room temperature. The ceramics provide circuit performance at high frequencies and are stable under oxidising and reducing, high humidity environments making them excellent semiconductor devices and integrated circuits that require thermal dissipation. The medicinal community relies on beryllium for production of pacemakers, lasers, high-resolution X-ray images and dental alloys for manufacturing crowns, bridges and dental plates. The sports industry has utilised beryllium for golf clubs and bicycle frames. The nuclear defense industry uses beryllium for its neutron adsorption and reflection properties.
Although beryllium is an important industrial metal, it presents health hazards that are of critical importance to consider before proceeding with processing or handling pure beryllium metal, oxide or materials contaminated with beryllium. The significant health risk is developing the potentially fatal lung disease, berylliosis or Chronic Beryllium Disease (CBD).3-5 CBD is a granulomatous lung disease that develops from a cell-mediated immune response to inhaled beryllium in 1 – 15 \% of exposed individuals.17-19 It is characterised by a hypersensitivity that can be delayed in onset several months to 40 years. There is no clear relationship between the extent of exposure and the severity of the resultant disease.3, 17-21 Beryllium disease is treatable but incurable.19

The primary route of potential human exposure to beryllium and beryllium compounds is inhalation. In the current biomolecular understanding of how beryllium initiates CBD, beryllium inhaled into the lungs is solubilised and transported into the cell. Once in the cell, it is believed that beryllium interacts with a specific protein that binds beryllium at a receptor site. The binding of the beryllium results in auto-immune presentation of the protein, initiates the body’s immune response, and triggers the onset of beryllium sensitisation and CBD.5 The human immune system responds to beryllium by producing blood cells that engulf beryllium particles in the lung forming granulomas and eventually fibroids that make it increasingly difficult for victims to breathe.5, 19 Occupational workers are the highest risk group for contracting CBD, although individuals with minimal exposure such as plant secretaries, security staff and spouses of the beryllium workers have also contracted the disease.

The evidence suggests that the development of CBD in certain individuals may be due to two risk factors, beryllium exposure and genetic susceptibility. Research associated with genetic susceptibility has shown that a high degree of association exists between individuals with CBD and a variation in a specific gene, the HLA-DPB1 locus, which is believed to code for the beryllium binding protein.5, 22 Research on homozygous substitution of a glutamic acid in the Glu69 portion of the HLA-DPB1 gene translated into
a higher risk for the development of beryllium sensitisation and CBD. In a study of CBD victims, 30% possessed homozygous glutamic acid in Glu69 while 1.3% of beryllium exposed workers that were not affected by CBD possessed this variation of chain alleles.

Aside from causing CBD, beryllium has high cytotoxicity. Beryllium binds strongly to sites in complex biomolecules that are unavailable to most other metals. It can displace divalent cations (such as magnesium) in these environments. Beryllium can impact enzyme function, DNA synthesis, protein phosphorylation and cell division. In animal studies, beryllium is a known carcinogen causing lung tumours and carcinomas. These effects occur for beryllium metal, alloys, ore, and as salts when the animals are exposed by inhalation and intratracheally.
1.2 Beryllium Coordination Chemistry

Study in the area of beryllium coordination chemistry has been aimed toward developing chelation agents for the treatment of CBD,27 the development of fluorescent sensors for studying biological systems,28 and environmental remediation.29 There are two main groups worldwide who are actively pursuing research in the area of beryllium coordination chemistry.27, 30 As of 2010, it is getting increasingly difficult to establish collaborations with research groups still active in this area.

Oxygen and nitrogen donor ligands are pertinent when comparing the complexes studied in this thesis. Complexes with donor atoms other than oxygen or nitrogen have been omitted. The following sections are not comprehensive; rather, they provide an overview of the types of chelates beryllium forms with oxygen and nitrogen donor ligands. This is a summary of the numerous reviews15, 24, 31, 32 and the references cited therein, with a focus on those complexes with direct structural evidence for coordination to beryllium with the aim of identifying the key components needed in a beryllium selective ligand.

1.2.1 Beryllium Complexes with Oxygen Donors

The most widely studied complexes to beryllium involve ligands with strong σ oxygen donors such as carboxylic acid and phenolic moieties. The following examples were found in the CCSD (v5.30, Nov 2008, 1 update). In aqueous environments an equimolar ratio of L (L being a two-oxygen chelating ligand) with Be(II) at low pH will typically give the mono-ligand chelate [BeL(H₂O)₂]ⁿ⁺ while a 2:1 ratio of L to Be(II) at pH greater than 7 will typically give the bis-ligand chelate [BeL₂]ⁿ⁺ (n is the charge of the complex and is dependent on whether L can be singly or doubly deprotonated for complexation).32 At intermediate pH of approximately 5 – 7, complicated beryllium hydroxo cluster species usually form.32 One example of such a cluster complex is basic beryllium acetate Be₄O(O₂CMe)₆, with four Be(II) ions tetrahedrally arranged around one O²⁻ with six bridging acetates along the edges of the tetrahedron (Figure 1.1).33 The role of beryllium –
oxygen cluster formation at physiological pH has been studied to understand the
development of chronic beryllium disease and identify possible chelation treatments,34, 35 including the investigation of beryl-like structures which were stable and soluble in
phosphate media.36 While an important class of beryllium complexes, the following
discussion will be limited to mono-ligand and bis-ligand chelates.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{beryllium_acetate.png}
\caption{Structure of beryllium acetate33}
\end{figure}

\begin{itemize}
\item Beryllium
\item Oxygen
\item Carbon
\end{itemize}

Dicarboxylic acid ligands offer very strong σ oxygen donors to beryllium. Beryllium retains a tetrahedral geometry with one or two chelating dicarboxylic acid ligands depending on the pH range; e.g. $\text{[BeL(H}_2\text{O)}_2], [\text{BeL}_2]^2$−. Dicarboxylic acid complexes with six-membered chelate rings (e.g. beryllium complexes of 102, 104, Figure 1.2) offer the best “fit” for beryllium. These have the least ring and torsional strain and are most compatible with the tetrahedral geometry of the beryllium ion. The dicarboxylic acids in Figure 1.2 have reported crystal structures complexed to Be(II) of the form $[\text{BeL}_2]^2$− and are balanced by suitable cations (such as K+).37-40 The crystal structure of $\text{K}_2[\text{Be(104)}_2]$ had bond lengths (for one ligand Be – O; 1.598(3) and 1.613(3) Å) and a bite angle of (for one ligand O–Be–O; 107.5(1)°), both units of 104 were symmetrical.41
An interesting dicarboxylic acid which was modified for solid support was **105** (Figure 1.3). A single ligand and two water molecules were bound tetrahedrally to beryllium as shown in the crystal structure with an equimolar ratio of **105** to Be(II). The crystal structure of [Be(105)(H2O)2][H105] had bond lengths (Be – O; 1.599(2) Å) and a bite angle of (O–Be–O; 115.4(1)°). The lengths of the Be – O bonds water molecules were slightly elongated at 1.616(2) and 1.643(2) Å. When two equivalents of **105** were used the bis-ligand chelate formed. Beryllium was also shown in a rare instance to bind to **105** after it was grafted onto a polymer. Polymer binding of metals is well established in water treatment and many other processes that require the purification and sequestering of metal ions.43, 44

Figure 1.3: Crystal structure of beryllium bound to dicarboxyimidazole, 105

Hydroxy-keto-heterocycles have a pseudo-aromatic tautomer arising from π donation from the heteroatom into the aromatic ring (Figure 1.4). These ligands were developed for
chelation therapy of iron overload; however, the unusually strong chelation of pyridinones observed with Fe(III) does not apply to the Be(II) ion.

![Figure 1.4: Resonance structure of hydroxy-keto-heterocycles](image)

Ceconi and co-workers crystallised the 1:2 adducts of 106 and 107 with beryllium as part of an investigation into a series of related compounds (Figure 1.5). Compared to the dicarboxylic acid ligands above, these ligands are weaker and competition with the beryllium hydroxo species present in aqueous systems was evident. The Be – O bond lengths for [Be(106)2] were elongated to 1.646(4) Å for the ketone donor and 1.617(4) Å for the alcohol donor. The bite angle; O–Be–O, of the five-membered chelate ring was 98.8(1)°.

![Figure 1.5: Selection of hydroxy-keto-heterocycles and a representative complex [Be(106)2]](image)

Hydroxy-carboxylic-heterocycles such as salicylic acid, 108, and its derivatives have been investigated for chelation therapy for the treatment of beryllium poisoning (Figure 1.6). Deprotonation of the phenolate moiety is achieved through delocalisation of charge onto the aromatic ring and coordination of beryllium to 108 offers an ideal six-membered chelate ring. Both the mono-ligand (dihydrate) and bis-ligand chelates to beryllium have been determined by X-ray crystallography. The Be – O bond lengths for [Be(108)(H2O)2] were 1.572(2) Å for the phenol donor and 1.612(2) Å for the carboxyl donor. The bite angle; O–Be–O, of the unstrained six-membered chelate ring was an ideal 109.7(1)°. The Be – O bond lengths for K2[Be(108)2] were 1.59(1) Å for the phenol donor and 1.63(1) Å.
for the carboxyl donor. The bite angle; O–Be–O, of the unstrained six-membered chelate ring was an ideal 108.7(6)°. The sulfonated analogue, 109, is typically used for solution studies due to the increased water solubility.15,49

![Image: Salicylic acid, 108, and its sulfonated analogue, 109, and the complex of K_2[Be(108)]]}

Polyols such as catechol, 110,50 and its derivatives have also been proposed for use in chelation therapy of beryllium (Figure 1.7).15 The Be – O bond lengths for Na_2[Be(110)_2] were 1.641(5) and 1.638(6) Å for the phenol donors. The bite angle; O–Be–O, of the five-membered chelate ring was now 99.8(3)°. Tiron, 111,51 conferred increased water solubility and reduced oxidation to semiquinones and benzoquinones. The strongest chelate in this series was a related ligand, chromotropic acid, 112,52 demonstrating a preference for Be(II) to form six-membered chelates rather than the five-membered chelates of the phenolic two oxygen donor sets of 110 and 111. A related aliphatic diol; 113, was shown to form a \textit{bis}-ligand complex with beryllium by Klufers and co-workers.53

![Image: Catechol, 110, and related polyols, and the complex Na_2[Be(110)_2)]}
1.2.2 Beryllium Complexes with Mixed Oxygen and Nitrogen Donors

When coupled with a strong oxygen donor, beryllium coordinates effectively to nitrogen donor ligands; the following were obtained from the CCSD (v5.30, Nov 2008, 1 update).

One interesting complex was that formed between nitrilotripropionic acid, **114**, and beryllium (Figure 1.8).\(^{54}\) The authors complexed a series of polyamino carboxylic acids to beryllium and found that coordination could be achieved close to physiological pH which is one of the criteria in selecting suitable chelators for beryllium poisoning. Beryllium binds to **114** through the central amine and the three carboxyl groups wrap around creating the tetrahedral cavity for beryllium. The bond lengths for Na[Be(114)] were (Be – O; 1.596(1) Å) for the carboxyl donors and (Be – N; 1.780(3) Å) for the amine donor. The bond angles were (O–Be–O; 110.0(1)°) and for the unstrained six-membered chelate rings (O–Be–N; 108.9(1)°).

![Figure 1.8: Crystal structure of beryllium bound to nitrilotripropionic acid, 114](image)

Salicylaldimines were shown to form *bis*-ligand chelates to beryllium which had slightly distorted tetrahedral geometries; the following two ligands have reported crystal structures (Figure 1.9).\(^{55}\) The *bis*-ligand chelates were formed by refluxing two equivalents of salicylaldehyde and the appropriate amine with beryllium sulfate in a basic water / ethanol mixture. A precipitate developed which was collected, recrystallised and structurally
characterised. The bond lengths for [Be(116)₂] were (Be – O; 1.53(2), 1.54(2), 1.59(2), 1.63(2) Å) for the phenol donors and (Be – N; 1.73(2), 1.73(2), 1.75(2), 1.77(2) Å) for the imine donors (two independent molecules were present in the asymmetric unit). The bite angles were (N–Be–O; 104.5(12), 105.2(12), 105.8(12), 106.6(12)°) for the unstrained six-membered chelate rings.

![Figure 1.9: Salicylaldimines which formed bis-ligand chelates with beryllium](image)

Hydroxyphenyl pyridine, 117, is a molecule with a similar donor set configuration to salicylaldimines (Figure 1.10). Tetrahedral bis-ligand chelates were formed by reacting two equivalents with of hydroxyphenyl pyridine to beryllium sulfate in basic methanol to give a precipitate which was recrystallised and analysed by X-ray crystallography. The bond lengths for [Be(117)₂] were (Be – O; 1.564(2) Å) for the phenol donors and (Be – N; 1.747(2) Å) for the pyridine donors with bite angle (N–Be–O; 105.2(1)°). The luminescent properties of the beryllium complex were investigated and the complex could be used as a blue emitting material or as a host material to fabricate organic electroluminescent devices.

![Figure 1.10: 2-(Pyridin-2-yl)phenol, 117, and the bis-ligand beryllium chelate](image)
Tong and co-workers57 examined the photoluminescence of the hydroxyphenyl indole ligand 118 coordinated as a bis-ligand chelate to beryllium formed analogously to 117 above also for the purpose of constructing light-emitting devices (Figure 1.11). The luminescence could be tuned slightly by varying $X = \text{NH, O or S}$. They obtained crystal structures for all three ligands which coordinate to beryllium in the standard bis-ligand tetrahedral arrangement. The three different crystal structures all showed slight variation in bond lengths and angles; Be – O lengths ranged from 1.560(3) – 1.598(3) Å, Be – N lengths ranged from 1.698(3) – 1.754(3) Å. The O – Be – N bite angles ranged from 103.6(1) – 105.6(1)$^\circ$.

![Figure 1.11: Hydroxyphenyl indole ligand, 118, X: NH, O, or S these do not participate in coordination](image)

The beryllium bis-ligand chelate of 119 has also received much attention for use as an electroluminescent device (Figure 1.12).$^{58-60}$

![Figure 1.12: Benzo[h]quinolin-10-ol, 119](image)

The colourmetric properties of Be(II) complexation with a sulfonated analogue of 119 is currently used in commercial test kits for the detection of beryllium contamination on surfaces (Figure 1.13).61
Oxine, 120, and its substituted derivatives also form bis-ligand chelates with beryllium in tetrahedral geometry (Figure 1.14). The tetrahedral geometry of the bis-ligand chelates with beryllium was distorted due to the five-membered chelate rings formed.

\[\text{Figure 1.14: 8-Hydroxyquinoline, 120} \]

1.2.3 Beryllium Complexes with Nitrogen Donors

Ligands containing nitrogen donors coordinated to beryllium with crystal structures are uncommon. In fact, a search of the CCSD (v5.30, Nov 2008, 1 update) for beryllium complexes consisting of only nitrogen donors yields only rare instances. These
examples cannot be considered similarly to the ligands discussed above as they require the
generation of an anionic ligand in anhydrous conditions and use of reactive beryllium salt
to achieve complexation. The examples discussed previously all complex to hydrated
beryllium sulfate in either water or alcoholic solvents.

2-(Pyridin-2-yl)-1\(H\)-indole, \textbf{121}, is one such example of a nitrogen-only donor where a
tetrahedral five-membered \textit{bis}-ligand chelate was formed with beryllium (Figure 1.15).66 The complex was formed under anhydrous conditions by treating \textbf{121} with \textit{n}-butyllithium in THF at low temperature then reacting the anionic ligand with beryllium chloride. It is
unlikely such a complex would form under aqueous conditions. The bond lengths for
[Be(\textbf{121})\textsubscript{2}] were (Be – N; 1.753(6) Å) for the pyridine donors and (Be – N; 1.668(5) Å) for
the indole donors with a bite angle for the five-membered chelate ring of (N–Be–N;
93.3(2)\textdegree). The complex; [Be(\textbf{121})\textsubscript{2}], was synthesised for the purpose of constructing
electroluminescent devices.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig15.png}
\caption{Crystal structure of beryllium bound to 2-(pyridin-2-yl)-1\(H\)-indole, \textbf{121}}
\end{figure}

\subsection*{1.2.4 Summary of Existing Beryllium Complexes}

Almost all beryllium complexes are four-coordinate and have tetrahedral geometry, often
with some minor distortion owing to the particular orientation of the donor atoms on the
particular ligand. In fact, there are only a few rare instances where beryllium forms two
and three-coordinate complexes.63, 67 The tetrahedral geometry can accommodate a wide variety of ligands forming five, six and seven membered chelate rings once coordinated to beryllium. The six-membered chelate ring is considered to be the most favourable as steric and torsional strain within the ligand is minimised.15

Beryllium binds most readily to ligands which contain ionisable protons. The best examples of such ligands are those which contain carboxylic acid or phenolic moieties. A ligand containing nitrogen donors usually requires the additional presence of ionisable oxygens in the donor set to provide initial association followed by complexation via chelation. Ligands containing only nitrogen donors are considered weak, and typically only coordinate under special circumstances and certainly not in aqueous environments. The hard Be(II) cation requires coordination with hard oxygen donors in aqueous environments in order to displace the water solvent shell surrounding the beryllium cation.
1.3 The Search for a Beryllium Selective Ligand

1.3.1 Introduction

In the preceding section, beryllium was shown to form many complexes with a variety of different ligands. However, all of the molecules discussed in Section 1.2 coordinate not only to beryllium, but, to a host of other metal cations. If there were a ligand that could bind preferentially to beryllium over other metal cations then it may be used to separate beryllium from a source containing a mixture of metal ions. Beryllium is an expensive metal whereby recovery of this element from waste sources instead of disposal may prove valuable. Additionally, due to the toxicity of beryllium, separating this element from waste sources could simplify expensive disposal measures.

If a ligand was found such that the cavity was small enough to predominantly bind Be(II) and exclude other larger metal cations, it could be used to separate beryllium from waste sources. The work of Plieger, John and coworkers\(^{42}\) designed a ligand which could bind the Be(II) cation (Figure 1.16). The crystal structure revealed a cationic beryllium complex and an anionic form of the ligand to balance the charge.

```
\[
\begin{align*}
\text{H}_2\text{O} & \quad \text{O} \\
\text{Be} & \quad \text{N} \\
\text{H} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\end{align*}
\]
\text{+1}
```

```
\[
\begin{align*}
\text{H} & \quad \text{O} \\
\text{O} & \quad \text{N} \\
\text{O} & \quad \text{O} \\
\end{align*}
\]
\text{-1}
```

Figure 1.16: 1-Methyl-1H-imidazole-4,5-dicarboxylic acid with Be(II) bound (left) and the associated anionic ligand (right)

Comparing the cationic and anionic components of the structure highlights the tendency for Be(II) to coordinate in place of deshielded protons arising from strong hydrogen bonding interactions. This is an emerging theme in recent papers striving to achieve beryllium selective ligands.\(^{28}\) A test kit for the detection of beryllium on surfaces was developed based on the fluorescence of Be(II) bound to the sulfonated analogue (for water solubility)
of 119 (Figure 1.17). The Be(II) cation displaces a tightly bound hydrogen bonded proton located between the phenolic oxygen and the heterocyclic nitrogen.

![Figure 1.17: Benzo[h]quinolin-10-ol, 119 showing the internal hydrogen bonding interaction](image)

As the Be(II) cation appears to behave like a proton, a potentially ideal class of molecules which are as yet untested for coordination to Be(II) are “proton sponges”. Proton sponges are generally derived from 1,8-diaminonaphthalene and have very high basicities. The unique separation of the two nitrogen atoms causes a destabilising overlap of lone electron pairs. To overcome this destabilisation they form especially strong hydrogen bonds effectively “trapping” a highly deshielded proton in the process (Figure 1.18).

![Figure 1.18: Mode of proton binding in 1,8-bis(dimethylamino)naphthalene](image)

While there is no precedence for Be(II) coordinating to neutral nitrogen donors in aqueous environments the highly deshielded proton might be displaced by Be(II) in this instance. Further, these neutral nitrogen donor ligands show poor coordination to larger metal cations largely due to the cavity size meaning potential coordination of Be(II) would not be complicated by competition from other metals in sensing and sequestering applications. This can be exemplified by Table 1.1:
The four ligands shown all have a similar bite angle and rigid naphthalene backbone and form six-membered chelate rings upon metal coordination. The decreasing number of metal complexes reported is directly tied to the binding strength of each ligand. The first two ligands, 119 and 122, contain ionisable oxygen donors which have a high affinity for most metal cations. The ligand containing one ionisable nitrogen and one neutral nitrogen, 123, has been scarcely studied with several palladium complexes reported and an unverified account of beryllium, aluminium and zinc complexes in a patent. Lastly, the proton sponge ligand with two neutral nitrogen donor atoms, 124, only binds to particular metal cations in special cases. Most importantly, this type of ligand has not been tested for its ability to complex beryllium, while the others already have reported beryllium complexes.

Naphthalene-1,8-diol, 122, is a commercially available ligand which has been extensively used in the formation of transition metal complexes (Figure 1.19). It was shown to coordinate with beryllium tetrahedrally via a bis-ligand chelate.52
Although 119 has a similar rigidity and bite angle to proton sponges, the binding strength of the phenol moiety enables the ligand to also bind to most other metal and non-metal cations (Figure 1.20). The test kit utilising a sulfonated analogue of 119 for the detection of beryllium on surfaces required an excess of EDTA to remove the interfering metal cations. Given that proton sponges are neutral nitrogen donors, their weak binding to larger metal cations may support the preferential binding of small cations such as beryllium.

![Figure 1.20: Benzo[h]quinolin-10-ol, 119](image)

The mid-point between 119 and the neutral nitrogen donor 124 is the ligand 123 (Figure 1.21)73 This has the same bite angle and rigidity as 119, only, the phenol has been replaced by a sp^3 hybridised nitrogen. The ability for this ligand to bind beryllium has been proposed in a patent dealing with electroluminescent materials but has yet to be proven.68 This ligand has also been shown to bind zinc,68 aluminium68 and palladium.69-71

![Figure 1.21: Benzo[h]quinolin-10-amine, 123, $R= -SO_2C_6H_4NO_2, -C_6H_5, -Ac$](image)

This leaves the class of compounds known as proton sponges which will be discussed in the following sections.

1.3.2 Aryl Amine Proton Sponges

The first example of a aryl amine proton sponge was shown by Alder where methylation of 1,8-diaminonaphthalene yielded 125 (Figure 1.22).74
The pK_{BH^+} was measured as 12.1 (in H$_2$O and 35% DMSO/H$_2$O) and it was extracted into aqueous solutions at pH 8 and below. The pK_{BH^+} is the affinity for the protonated conjugate acid of the neutral proton sponge to release a proton according to the following equation:

$$pK_{BH^+} = -\log K_{BH^+} \text{ and } K_{BH^+} = [B][H_3O^+] / [BH^+] \text{ for } BH^+ + H_2O \rightarrow B + H_3O^+$$

In TFA the 1H NMR of 125 revealed the bound proton bridging the two nitrogen atoms. The four methyl groups were split into a doublet due to the coupling of this bound proton. The molecule was clearly strained and the stresses are relieved upon protonation. Subsequently, a host of derivatives involving varying alkylation on the nitrogens$^{75, 76}$ and substitution at the 2,6-positions on the naphthalene backbone adjacent to the amines were reported.$^{77-82}$

By analogy to the above work, Staab and co-workers synthesised methyl-substituted fluorene, 126, and derivatives based on 127 ($Y = O, S, NH$, Figure 1.23).$^{83, 84}$ The slightly shorter N-N distance angled the lone electron pairs further toward each other. This gave a higher pK_{BH^+} of 13.5 when compared to 125.

Figure 1.23: Fluorenediamine, 126, and related derivatives based on 127 ($Y = O, S, NH$)

1.3.3 Heterocyclic Imine Proton Sponges
The first and only fully heterocyclic proton sponge, 124, was reported by Zirnstein and Staab in 1987 (Figure 1.24). The pK\textsubscript{BH+} was estimated to be 12.8 by analogy to 125. The cavity created between the two fused pyridine rings is not sterically hindered compared to the aryl amine-based proton sponges making it an attractive target for potential coordination of small metal cations.

![Figure 1.24: Quino[7,8-h]quinoline, 124](image)

The crystal structure was later reported and revealed 124 had a flattened aromatic ring structure with a N\textsubscript{1} – N\textsubscript{2} distance of 2.727(2) Å and a C\textsubscript{5} – C\textsubscript{6} distance of 2.450(2) Å. The repulsion of electron density on the two nitrogens accounts for the slight elongation of the N\textsubscript{1} – N\textsubscript{2} distance and the compressed C\textsubscript{5} – C\textsubscript{6} distance.

1.3.4 Aryl Imine Proton Sponges

Raab and co-workers presented a series of new proton sponges having guanidino, 128, 129, and phosphazene, 130, type motifs (Figure 1.25). The pK\textsubscript{BH+} of 128 – 130 was 25.1, 25.8 and 29.9 respectively, and were classified as “super basic” proton sponges.

![Figure 1.25: Aryl imine type proton sponges](image)

1.3.5 Proton Sponge Metal Coordination Complexes
The use of proton sponges as metal chelators has received relatively little study. This is in stark contrast to other neutral nitrogen donor ligands such as 1,10-phenanthroline or 2,2’-bipyridine which have thousands of reported complexes. It was only in recent years that a select few papers have been published on the coordination chemistry of proton sponges.

In 2001 Wustefeld and co-workers\(^{72}\) reported that they had made complexes of 4,9-dichloroquino[7,8-\(h\)]quinoline, \(\text{131}\), with Pt(II), Pd(II), Re(I), and Mn(I) (Figure 1.26). They obtained crystal structures for the Pt(II) and Re(I) derivatives (Figures 1.27 and 1.28).

![Figure 1.26: Metal complexes with 4,9-dichloroquino[7,8-\(h\)]quinoline, \(\text{131}\)](image)

The small nitrogen – nitrogen distance along with the high basicity of \(\text{131}\) limited the use to an aprotic solvent in the synthesis of these complexes. The platinum complex was formed by treating Zeise’s dimer \([\text{Pt}_{2}(\text{H}_2\text{C}=\text{CH}_2)_2\text{Cl}_4]\) in \(\text{CH}_2\text{Cl}_2\) with \(\text{131}\). The crystal structure (Figure 1.27) of the complex revealed that the Pt ion sat out of the plane of the aromatic ring system and the aromatic system was strongly bowed. The extent of bowing was measured by averaging the displacement of the atoms in the aromatic system to give a “mean plane”. The bend of the bow was 0.742 \(\text{Å}\), compared to 0.151 \(\text{Å}\) in the unbound ligand. The platinum ion sat 1.432 \(\text{Å}\) above the mean plane (inset, Figure 1.27). The \(\text{N}_1 – \text{N}_2\) distance was elongated to 2.812(2) \(\text{Å}\) relative to the crystal structure of the unbound ligand\(^86\) while the \(\text{C}_5 – \text{C}_6\) distance (Figure 1.24) on the rear of the ligand was compressed to 2.410(2) \(\text{Å}\). While this complex would appear to be unstable, the exceptionally strong Pt –N bonds meant heating of the complex at 380 °C in concentrated \(\text{H}_2\text{SO}_4\) for several days did not cause decomposition.
For the rhenium complex the metal ion sat 1.419 Å above the mean plane (Figure 1.28). The N₁ – N₂ distance was elongated to 2.804(2) Å while the C₅ – C₆ distance on the rear of the ligand was compressed to 2.390(2) Å.
In 2004 Yamasaki and co-workers90 reported complexes of ligand 125 with palladium. They achieved this by first reacting [Pd(hfac)$_2$]2 (hfac is hexafluoroacetylactonate) and 125 in hexane to form a charge transfer complex [Pd(hfac)$_2$](125) in 80 \% yield as dark violet crystals. After standing for one week these crystals disappeared and red crystals of [Pd(hfac)(125)](hfac) in 63 \% yield which could be reacted with β-diketones in ether to give yellow crystals of [Pd(β-diketone-O,O')(125)](hfac), in 50 – 80 \% yields (Figure 1.29). It was proposed that the intermediate charge transfer complex was necessary for the complexation to occur.
When the mean plane was calculated in the context of this thesis from the ten carbons of the naphthalene ring, the palladium ion sat 0.825 Å above this plane. While this distortion was smaller than that of 131, the mode of binding differs. The two amine groups orient in opposite directions from the mean plane, +0.629 Å and -0.564 Å, leaving the palladium ion more centralised. The large steric interference around the nitrogen donor atoms greatly decreases the coordination ability of 125. Despite being a strong base, 125 is a very weak nucleophile. There was no indication of the complex’s stability.

There are no known complexes for the proton sponges 126 and 127 (Figure 1.23).

In 2008, Wild and co-workers,91 provided the first example of 128 bound to both Pd and Pt. The Pt cation sat 1.337 Å above the mean plane of the aromatic system and the ligand was slightly bowed (Figure 1.30). The Pd complex was nearly identical to the Pt complex and sat 1.331 Å above the mean plane.
With only three papers ever published on the coordination chemistry of proton sponges, the scope of metal complexes formed by these ligands remains largely unexplored. In all three proton sponge complexes, the metal ions sat a large distance out of the plane of the molecule and the proton sponge ligands showed unusual distortions. The spacing between the nitrogen atoms clearly restricts most metals from forming chelates. In the above cases, the metals used were known to bind strongly with nitrogen donor ligands (e.g. Pt, Pd). There was also careful choice of the starting metal compound, usually in the form of a dimer, where breakdown of the dimer during the reaction would lead to a naked site on the metal ion greatly enhancing complexation to the sterically hindered proton sponges.

It is possible that due to the smaller ionic radius of Be(II), coordination of beryllium to proton sponges may not proceed with such difficulty as with other larger metal cations. Under the aprotic conditions employed for the above metal complexations, along with suitable choice of a reactive beryllium metal salt, there is unlikely to be any difficulty in coordinating Be(II). The difficulty is expected to arise from investigation of the aqueous coordination chemistry of Be(II) and proton sponges as there will be competition between coordination and protonation of the ligands.
1.4 Encapsulation of Beryllium

1.4.1 Existing Ligands which Encapsulate Beryllium

A tetrahedral geometry is essentially the only possible geometry for a beryllium coordination complex. While the proton sponges discussed in the previous section would offer a tight binding cavity suited for small cations they would need to form bis-ligand chelates in order to fully encapsulate beryllium. A single compound which offered four donor atoms in a tetrahedral environment would be better suited to selectively coordinating beryllium. One example of such a complex fully encapsulating beryllium was 114 (Figure 1.31). Complexes of 114 form with most other metals, a Scifinder search revealed 41 other metal complexes with 114. The flexibility of 114 enabled the same four-coordinate mode of binding for beryllium with Cu, Zn and Co. The selectivity of 114 toward beryllium has yet to be tested.

![Figure 1.31: Nitrilotripropionic acid, 114](image1)

A recent example of full encapsulation of beryllium was with 132 (Figure 1.32). The beryllium cation coordinated via tetra-dentate tetrahedral coordination with both phenol and imine donors. A Scifinder search gave 241 metal complexes of 132 (and substituted structural analogues) to other metals; some were M₂L₂ phenolate bridged complexes, while others adopted a MLX binding mode where X is was an appropriate mono- or bi-dentate ligand which completed the coordination sphere around the particular metal ion. Metal competition studies were not performed with this ligand.
An example of partial encapsulation of beryllium was shown with 133 (Figure 1.33).28 The two basic phenolates bind strongly to the Be(II) centre while the pyridine ring acted to transfer protons off the phenols. A water molecule completed the coordination sphere. A Scifinder search of 133 (and structural analogues) gave 102 other reported metal complexes, when 133 bound to Cu and Zn, multiple metals were involved with bridging phenolates to give 1D polyers.97

1.4.2 Design of New Ligands which Fully Encapsulate Beryllium

Coordination to beryllium may be further enhanced by combining the features of 114 and 133 and constructing tetra-coordinate ligands capable of fully encapsulating beryllium. If the aromaticity of 133 was broken, an additional donor arm could be incorporated to give 134 (Figure 1.34).
The tight proton sponge cavity may also be extended into the third dimension to give a compound capable of full encapsulation. Anything other than this geometry would be too large to offer selective binding to small cations (e.g. the geometry of phenanthroline). It is more desirable to use nitrogen donors rather than oxygen donating moieties in an attempt to lower selectivity for other metal cations. To extend the cavity of 124 into three dimensions it is not possible retain the aromaticity, so, the central carbon must become \(sp^3 \) hybridised. In a tetrahedral arrangement, this would lead to 135, offering three of the four points of the required tetra-coordinate ligand (Figure 1.35).

135 is already extensively reported in the literature and has been shown to complex with most metals. As the aim of this section is to create a compound capable of fully encapsulating beryllium, a fourth donor atom is required. A compound which offered a tetrahedral binding cavity would need a donor atom at the following position shown in Figure 1.36:
There is no literature precedence of a compound with this exact arrangement of donor atoms, so an extensive synthetic effort would be required to design such ligands. Two examples of possible compounds are shown in Figure 1.37:

Figure 1.37: Possible compounds containing tetrahedral binding cavities for beryllium

The design and synthesis of new classes of tetra-coordinate ligands will be explored in this thesis for use as potential Be(II) chelators.
1.5 Boron as a Small Cation Analogue for Beryllium

Due to the safety considerations involved in handling beryllium there are only a handful of laboratories around the world set up to conduct this research. As none of the beryllium research will be conducted at Massey University, a small cation analogue was required to investigate the complexation of the ligands synthesised to small cations without heavy restrictions.

<table>
<thead>
<tr>
<th></th>
<th>CN</th>
<th>Radius Å</th>
<th>Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>B(III)</td>
<td>4</td>
<td>0.25</td>
<td>Tetrahedral</td>
</tr>
<tr>
<td>Be(II)</td>
<td>4</td>
<td>0.27</td>
<td>Tetrahedral</td>
</tr>
</tbody>
</table>

Table 1.2: Similarities between B(III) and Be(II)

Boron(III) was chosen as the most suitable analogue as the size-to-charge ratio is similar. While boron is a non-metal and doesn’t display the same aqueous solution chemistry as Be(II), formation of boron complexes under aprotic conditions would allow for full characterisation. Determination of solid state structures by X-ray crystallography will allow comparison of the size-fit of the ligand’s cavities for small cations over large metal cations.

The Lewis acidity of boron compounds (for example boron trifluoride) should provide favourable coordination to the proton sponges analysed, given that the lone electron pairs on the nitrogen atoms readily accept a proton to stabilise the overlapping electron pairs. Subsequent loss of one fluoride would lead to \([\text{BF}_2(\text{proton sponge})]^+\).

While the use of boron is feasible for simple bidentate neutral nitrogen ligands such as the proton sponges, there is no precedent for the encapsulation of boron with a tetradentate ligand containing mixed oxygen / nitrogen donors. The thermodynamic stability of boron trihalides would prevent such an interaction. This is where the similarity between boron and beryllium ends as boron; being a non-metal, cannot be strictly used at a small metal cation analogue in all circumstances.
1.6 Proposed Aims

The objectives of this thesis can be divided into several major themes:

- Selection of a suitable candidate from the class of compounds known as proton sponges to test for coordination to Be(II) using the hypothesis that Be(II) can displace strongly deshielded protons.

- Exploration of the properties of the proton sponges through functionalisation to alter the physical and electronic properties of the molecules with the intention of enhancing the coordination strength and detection ability primary via enhanced fluorescence.

- Use the idea of a tight cavity for selective beryllium coordination and extend it to synthesising new molecules capable of forming tetra-coordinate fully encapsulated beryllium complexes.

- Complexation when possible of boron to these ligands to investigate predominantly structural aspects which are otherwise not possible using aqueous beryllium solution chemistry.

- Analyse the beryllium coordination chemistry of these ligands in aqueous environments and characterise using safe solution-based techniques such as 9Be NMR and UV-Vis and fluorescence spectroscopy supported with computational chemistry to identify the beryllium species.

- Complexation of representative larger metal cations to gauge the ligand’s ability to exclude large metal cations.
Chapter 2: Synthesis of Proton Sponges

2.1 Assessment of Proton Sponges

2.1.1 Introduction

There are a number of different types of proton sponges which are synthetically challenging to various degrees. It was therefore necessary to identify which type would make an ideal candidate to begin the investigation of proton sponge coordination to beryllium. It is only after successful initial studies that other proton sponge types should be synthesised and tested. Computational chemistry and literature precedent was utilised to select which type of proton sponge should be initially pursued.

2.1.2 Results / Discussion

To select the best candidate for beryllium coordination, the proton sponges were classified into three representative types; guanidine (e.g. 201, introduced in Chapter 1 as 129), quinoline derivative (e.g. L2, introduced in Chapter 1 as 124) and aryl amine (e.g. L3, introduced in Chapter 1 as 125). Using 201, L2 and L3 as models for each type, they were optimised (B3LYP, 6-31(d)) as their beryllium bis-ligand chelate to exclude the influence of counter-ligands.

Figure 2.1: Proton sponges analysed by computational methods
As these calculations were initial guesses of theoretical compounds, diffuse functions were not included and only a single d function for heavy atoms was used. Diffuse functions allow orbitals to occupy a larger region of space and become important for systems where electrons are relatively far from the nucleus. Including diffuse functions and extra functions for heavy atoms and hydrogen atoms generally increases the precision of the computational results; however, with no experimental data to compare to it was unnecessary to perform the calculations at a higher level.

A summary of the important features of each optimised structure is given in Table 2.1. The Be – N distance can be related to known crystallographically observed structures to assess the likelihood of such a bond. The Be – mean plane distance is the perpendicular distance beryllium lies outside of the plane of the ligand cavity. The N-C-C-N torsion angle measures the twist present in the cavity of the ligand upon coordination.

![Figure 2.2: Highlighted structural parameters for the optimised models; [a] Be – N bond lengths, [b] Be – mean plane distance, [c] torsion angle](image)

<table>
<thead>
<tr>
<th>Bis-Chelate Complex</th>
<th>Be – N (Å)</th>
<th>Be – Mean Plane (Å)</th>
<th>φ(N-C-C-N) (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Be(201)₂]²⁺</td>
<td>1.811</td>
<td>0</td>
<td>24.99</td>
</tr>
<tr>
<td>[Be(L2)₂]²⁺</td>
<td>1.706</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[Be(L3)₂]²⁺</td>
<td>1.881, 1.843</td>
<td>0.836</td>
<td>26.39</td>
</tr>
</tbody>
</table>

Table 2.1: Important parameters from the optimised proton sponge beryllium complexes

A summary of the bond lengths for neutral N-donor complexes is shown in Table 2.2 (CCSD, v5.30, Nov 2008, 1 update). These were separated into neutral sp^3 and sp^3 N-donors, all anionic Be – N bonds (e.g. those where a covalent N – H bond is displaced for coordination) were excluded. An estimated mean and standard deviation was calculated based on these data sets.
<table>
<thead>
<tr>
<th>Neutral N-Donor</th>
<th>Mean ± 3σ (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp^2</td>
<td>1.745 ± 0.132a</td>
</tr>
<tr>
<td>sp^3</td>
<td>1.781 ± 0.137b</td>
</tr>
</tbody>
</table>

Table 2.2: Estimated mean and standard deviation for bond lengths of neutral N-donors to beryllium, a N = 88, b = 34, no outliers were present at Q(95%)

The proton sponge $L3$ is non-nucleophilic and sterically crowded (Figure 2.3). This molecule shows very poor affinity toward binding metals, with only one rare example reported previously.90

![Figure 2.3: 1,8-bis(Dimethylamino)naphthalene, L3](image)

The optimised structure of [Be($L3$)$_2$]$^{2+}$ indicated that in order for the beryllium ion to adopt the necessary tetrahedral geometry the ligand had to distort significantly from planarity with the beryllium ion located 0.836 Å from the mean plane of each ligand and the nitrogen atoms of each ligand twisted 26.39° away from each other (Figure 2.4). The eight methyl groups surrounding the beryllium ion would cause severe steric hindrance to the initial formation of this complex. The Be – N bond lengths fell within 3σ of those documented crystallographically for a neutral sp^3 N-donors.
Metal complexation to a guanidine-type proton sponge related to 201 discussed in Chapter 1 was achieved under anhydrous conditions with careful choice of reactive metal reagents.91

The optimised structure of \([\text{Be}(201)_2]^{2+}\) showed the beryllium ion sits directly within the mean planes of the ligands; however, the nitrogen atoms of each ligand twisted 24.99° away from each other (Figure 2.6). This emphasises the inherent strain with such a tight bite angle. The imidazole moieties should cause less steric hindrance at the binding site compared to the methyl groups in L3. The alignment of the auxiliary imidazole moieties by π-stacking appeared to stabilise the interaction of two-equivalents of 201 with beryllium. The Be – N bond lengths were well within 3σ of those documented crystallographically for a neutral \(sp^2\) N-donor.
The proton sponge 201, and its analogues, would potentially be the most suitable ligands for testing whether beryllium can displace a strongly deshielded proton bound to the ligand in aqueous environments due to their extremely high basicity. The only problem is the steric hindrance associated with the substituted imidazole moieties. In aqueous environments the water solvent shell must first be displaced for Be(II) to coordinate; ligands having sterically blocked coordination sites may cause further hindrance.

The compromise between extremely high basicity and a sterically hindered coordination site may come in the form of L2 (Figure 2.7).
The sp^2 hybridisation of the nitrogen atoms offers minimal steric hindrance compared to the alkylated nitrogen donors of L_2. It does not have the high basicity of 201 meaning a bound proton is not as significantly deshielded. While metal coordination was shown in anhydrous media with careful choice of reactive metal reagents,72 the scope of metal coordination to L_2 has not been investigated.

![Computer model of the beryllium bis-chelate of L_2, hydrogens are removed for clarity](image)

Figure 2.8: Computer model of the beryllium bis-chelate of L_2, hydrogens are removed for clarity

The optimised structure of $[\text{Be}(L_2)_2]^{2+}$ showed the beryllium ion sits directly within the mean plane of the ligands and there was no twisting present in the ligands (Figure 2.8). The ligand was free from any obvious steric hindrance due to substitution seen in 201 and L_3, which may account for the remarkably short $\text{Be} - N$ bond lengths. Despite having a structurally ideal cavity for beryllium coordination, it is not possible to predict whether this ligand will chelate to beryllium using theoretical methods alone. In aqueous environments there is expected to be competition between protonation of L_2 and coordination to beryllium.
2.1.3 Summary

All the proton sponges have the potential to coordinate beryllium; the choice is essentially limited to the conditions imposed for safely conducting beryllium coordination chemistry research. The only available beryllium source for these investigations was an aqueous solution of beryllium sulfate as this avoided the need to handle beryllium powders. If there were no such restrictions, a suitable beryllium reagent (e.g. beryllium chloride) and use of anhydrous conditions would likely coordinate beryllium to the neutral form of the proton sponges as evidenced by the previous papers dealing with metal coordination chemistry to proton sponges.

Under the conditions imposed the proton sponges would be expected to exist as the cationic protonated species upon exposure to water. It is anticipated that Be(II) will coordinate only by displacement of the deshielded proton bound between the two nitrogen donors. For Be(II) to displace this proton it may be preferential to have a ligand which is not sterically encumbered by substitution so it is for this reason the initial investigation will utilise the ligand L2 (Figure 2.9).

![Figure 2.9: Quino[7,8-h]quinoline, L2](Figure 2.9: Quino[7,8-h]quinoline, L2)

L3 was commercially available and was used as a comparison to L2. The remaining proton sponges were synthetically challenging and they did not receive further examination in this initial study.
2.2 Zirnstein and Staab Synthesis

2.2.1 Introduction

The Staab synthesis is currently the only confirmed and reproducible method of achieving \(\text{L2.}^{85} \) The first reported synthesis of \(\text{L2} \) was in 1950,\(^99 \) but, was later shown to be the structural isomer; \(\text{202.}^{100} \) In 1967, the synthesis of \(\text{L2} \) was again reported after 1,8-bis(acetimido)naphthalene was subjected to a double Skraup reaction.\(^{101} \) However, this was proved incorrect and the product was subsequently correctly identified as \(\text{203.}^{85,102} \)

The first confirmed synthesis of \(\text{L2} \) was by Zirnstein and Staab,\(^{85} \) where they later provided a crystal structure.\(^{86} \) Their method is shown in Scheme 2.1 and was the starting point in the synthesis of \(\text{L2.} \)

![Figure 2.10: Quino[7,8-\text{h}]quinoline, \(\text{L2} \), and misreported products formed, \(\text{202 and 203} \)](Image)

![Scheme 2.1: Synthesis of quino[7,8-\text{h}]quinoline, \(\text{L2} \)](Image)
2.2.2 Results / Discussion

The original literature preparation of 205 (Scheme 2.2) used several recrystallisations for purification; however, when ethanol was used as the solvent in place of methanol, 205 precipitated from the reaction mixture was simply washed with ethanol and used directly in the next step.

Scheme 2.2: Synthesis of tetramethyl 2,2'-[(naphthalene-1,8-diylbis(azanediyl))difumarate, 205

Thermal cyclisation of 205 in phenyl ether gave 206 (Scheme 2.3). Thorough rinsing, sonication and filtration of the insoluble precipitate with three volumes of acetone was required to effectively remove impurities and solvent locked into the clay-like solid 206. Due to the insolubility of 206, full characterisation was not possible; however, elemental analysis gave good agreement with calculated CHN values and was closer than those previously reported.

Scheme 2.3: Synthesis of dimethyl 4,9-dioxo-1,4,9,12-tetrahydroquinolino[7,8-h]quinoline-2,11-dicarboxylate, 206

The next two steps in the Staab’s synthesis involved hydrolysis of the di-ester 206 followed by high temperature – low pressure thermal decarboxylation to achieve 208 (Scheme 2.4).
Scheme 2.4: Synthesis of quinolino[7,8-h]quinoline-4,9(1H,12H)-dione, 208

A related compound to 206 where ester cleavage was required is indole, 210. The Fischer Indole synthesis is widely used; however, a decarboxylation step is needed to generate 210. With the use of a microwave reactor, Strauss and Trainor,104 converted ethyl indole-2-carboxylate to indole in twenty minutes using the weak base sodium acetate in low concentration and water as the solvent (Scheme 2.5).

Scheme 2.5: Microwave assisted ester cleavage of ethyl indole-2-carboxylate, 210

This simple reaction was used to shorten the two steps utilised in the Staab synthesis (Scheme 2.6).

Scheme 2.6: Microwave assisted ester cleavage of dimethyl 4,9-dioxo-1,4,9,12-tetrahydroquinolino[7,8-h]quinoline-2,11-dicarboxylate, 206

The reaction did proceed as indicated; the microwave reactor could achieve this reaction in one hour at 250 °C. While 206 and 208 are insoluble in almost all solvents, including water, the combination of the heat and pressure of this reaction permits this reaction which was heterogeneous at RT to occur. However, despite being rated to 300 °C and 100 bar the microwave vessels would fail over time and were expensive to replace. The reaction was instead shifted to a Teflon-lined stainless steel bomb placed inside an oven at 250 °C.
overnight. This achieved the same result and also allowed the reaction to be performed on an increased scale (0.1 g scale to 0.8 g scale). When the conversion of 206 to 208 was incomplete due to insufficient reaction time, a side-product formed after the halide substitution reaction with phosphorus oxychloride, L13 (Scheme 2.7). This was also synthesised by directly reacting 206 with phosphorus oxychloride and will be discussed in Chapter 3.

Scheme 2.7: Synthesis of dimethyl 4,9-dichloroquinolino[7,8-h]quinoline-2,11-dicarboxylate, L13

Due to the insolubility of 208, full characterisation was not possible. The elemental analysis did not match calculated CHN values within acceptable limits; however, the impurity of 208 did not impact the subsequent dehydration reaction, which, after workup, did give an agreeable CHN analysis and full characterisation of L1. The unsubstituted 208 treated with phosphorus oxychloride to obtain L1 (Scheme 2.8). The overall yield for the revised two steps from 206 – L1 was 58 – 68 % which was similar to the reported yield of 57 % over three steps for the Staab synthesis.

Scheme 2.8: Synthesis of 4,9-dichloroquinino[7,8-h]quinoline, L1

While 208 has not been fully characterised, measurement of the infrared spectrum reveals what might be a more realistic structure for this molecule. As drawn in Scheme 2.8, the two protons lie close to one another requiring a twist in the molecule to overcome this unfavourable interaction. The infrared spectrum of 208 showed a characteristic broad OH stretch indicating that the tautomer of 208 may form instead (Figure 2.11). The tautomer
would relieve the strain by allowing intramolecular hydrogen bonding between the two nitrogen atoms resulting in a flattened molecule. Both 208 and the potassium bromide used to make the disc for measurement were dried in an oven at 110 °C overnight to exclude the possibility of atmospheric water giving rise to the signal. Crystallographic evidence of compounds resulting from nucleophilic substitutions on L1 which will be discussed in Chapter 3 also showed this similar tautomerism.

![IR spectra](image)

Figure 2.11 IR spectra for the tautomer of 208 showing a broad OH vibration at 2500 cm⁻¹

The stretching vibrations for standard phenols are typically around 3500 cm⁻¹, however, in this instance the vibration for the OH stretch was 2500 cm⁻¹. The lower energy vibration is due to delocalisation into the heterocyclic ring system. The IR spectra of 3-pyridinol showed an OH stretch at a similar energy of 2500 cm⁻¹. Energy calculations (B3LYP/6311++g(2d,p)) on both potential structures showed the tautomer of 208 drawn in Figure 2.11 was 48 kJ mol⁻¹ lower in energy than the sterically encumbered twisted form.

Finally, the unsubstituted L2 was formed by catalytic hydrogenation with Pd / C, glacial acetic acid, and sodium acetate (Scheme 2.9).
To further confirm the successful application of the synthesis, a crystal structure was obtained for L1 by slow cooling of a saturated solution in chloroform at 0 °C. The asymmetric unit consisted of one molecule of L1 and two chloroform molecules. This crystal structure was important as it revealed that in non-prootic media there was inherent distortion in the ring which had not been evidenced in previous examples of solid state structures of L2. The hydrogens on the two chloroform molecules are oriented toward the nitrogens on L1 with closest distances of H40A – N2 of 2.2900(18) Å and H30A – N1 of 2.3300(18) Å. The torsion angle between the nitrogens on L1 was 20.02(9)° which is enough to relieve the strain of the overlapping lone electron pairs on the nitrogens. Figure 2.13 shows this twisting of the fused aromatic rings on L1 with N1 – N2 2.7683(16) Å.
Due to the solvent molecules occupying a large proportion of the crystal and the buckling of the aromatic rings, there are very few \(\pi - \pi \) interactions typical for solid-state structures of aromatic molecules.106

The nature of the \(\pi - \pi \) stacking interactions can be described by the following parameters (Figure 2.13).107 The \(\text{Cg} - \text{Cg} \) distance is the distance between the centroids of two six-membered aromatic rings. The two angles of significance are: \(\alpha \), the angle between the two planes, and \(\beta \), the angle between the ring normal and the two centroids. The aromatic rings are considered to be interacting when the \(\text{Cg} - \text{Cg} \) distance is approximately 3.8 Å or lower and the \(\beta \) angle is 20° or less.

![Diagram of \(\pi - \pi \) stacking interactions](image)

Figure 2.13: Parameters describing \(\pi - \pi \) stacking interactions, modified diagram from ref 106

The edges of two molecules of \(\text{L1} \) overlap very weakly with a large offset \(\pi - \pi \) stacking interaction (Figure 2.14); \(\text{Cg1a} - \text{Cg3b} \ 3.6698(10) \ \text{Å} \), and \(\beta \ 19.29^\circ \), and \(\text{Cg3a} - \text{Cg1b} \ 3.6552(10) \ \text{Å} \), and \(\beta \ 18.55^\circ \).
The crystal structure of the unsubstituted L2 (Figure 2.15) originally reported by Zirnstein and Staab\(^86\) is in stark contrast to what was observed for L1. In this case the crystals of L2 were formed by slow evaporation of acetone and water. The result was a more closely packed structure with one water molecule bridging two molecules of L2. The presence of the water molecule alleviates the unfavourable N to N interaction resulting in a flattened ring structure (Figure 2.15) with N1 – N2 2.7271(18) Å.

The water molecules engage in similar hydrogen contact interactions seen in L1 with N2A – H11E of 2.324(14) Å and N1A – H11E of 2.390(14) Å. While not initially recognised as hydrogen bonding by Staab, recent classifications of hydrogen bonding in the solid state\(^108\) specify these interactions as a three centred\(^109\) moderate electrostatic hydrogen bonds, with
the closest O – H – N (N2A – H11E – O1A) angle being 138.6(13)° and the closest O – N (N2A – O1A) distance being 3.004(2) Å.

The relief in torsional strain upon proton binding is well documented for proton sponges, however, it was not previously observed in the solid state for quino[7,8-\(h\)]quinolines. To confirm this, the protonated tetrafluoroborate salt of \(\text{L1}\) was crystallised by vapour diffusion of diethyl ether into acetonitrile. This was a side product to the boron complex which formed upon treatment with boron trifluoride diethyl etherate. The asymmetric unit consisted of one molecule of [H(L1)][BF₄] and one tetrafluoroborate anion, modelled for disorder due to rotation along the B1 – F1 bond. The proton on the nitrogen was located by difference map. For this protonated species, the torsion angle between the nitrogens on \(\text{L1}\) was now 0.10(15)°. The proton has relieved the strain of the overlapping lone electron pairs on the nitrogens. The hydrogen bonding was three centred with N1 – N2 2.591(2) Å and N1 – F4 2.738(10) Å.

Figure 2.16: Face view of the crystal structure of [H(L1)][BF₄] showing hydrogen bonding, ellipsoids drawn at the 50% probability level
Without solvent present, as in the crystal structure of neutral L1, extensive offset π stacking was present between molecules of [H(L1)][BF₄] (Figure 2.17); Cg1a – Cg2b 3.4650(13) Å, and β 16.15°, and Cg2a – Cg1b 3.4417(13) Å, and β 14.77°. The tetrafluoroborate anions lie between the stacks.

![Figure 2.17: Example of stacking π–π stacking interactions between two molecules of [H(L1)][BF4]](image)

The hydrogen bonding interactions for the three crystal structures above are summarised in Table 2.3.

![Figure 2.18: Classification of important bond lengths and angles associated with hydrogen bonding, X = C (CHCl₃, L1), N, F (ring N, BF₄⁻, [H(L1)][BF4]), O (H₂O, L2)](image)
<table>
<thead>
<tr>
<th></th>
<th>N – H (Å)</th>
<th>N – X (Å)</th>
<th>N – H – X (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1-H30A</td>
<td>2.3300(18)</td>
<td>N1-C30 3.2383(18)</td>
<td>N1-H30A-C30 154.00(18)</td>
</tr>
<tr>
<td>N1-H40A</td>
<td>2.4500(17)</td>
<td>N1-C40 3.2110(17)</td>
<td>N1-H40A-C40 134.00(18)</td>
</tr>
<tr>
<td>N2-H30A</td>
<td>2.5700(18)</td>
<td>N2-C30 3.3227(18)</td>
<td>N2-H30A-C30 134.00(18)</td>
</tr>
<tr>
<td>N2-H40A</td>
<td>2.2900(18)</td>
<td>N2-C40 3.2091(18)</td>
<td>N2-H40A-C40 155.00(18)</td>
</tr>
<tr>
<td>[H(L1)][BF₄]⁻</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2-H1N</td>
<td>1.9000(2)</td>
<td>N1-N2 2.591(2)</td>
<td>N1-H1N-N2 136.00(2)</td>
</tr>
<tr>
<td>F4-H1N</td>
<td>2.0900(10)</td>
<td>N2-F4 2.738(10)</td>
<td>F4-H1N-N2 131.00(10)</td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1-H11</td>
<td>2.390(14)</td>
<td>N1-O1 3.1286(16)</td>
<td>N1-H11-O1 147.4(13)</td>
</tr>
<tr>
<td>N2-H11</td>
<td>3.324(14)</td>
<td>N2-O1 3.0038(19)</td>
<td>N2-H11-O2 138.6(13)</td>
</tr>
</tbody>
</table>

Table 2.3: Important bond lengths and angles associated with hydrogen bonding in quino[7,8-h]quinolines

A summary of the relief in torsional strain upon proton binding is shown for the main types of proton sponges in Table 2.4.

![Figure 2.19: Selection of proton sponges with recorded crystal structures](image)

<table>
<thead>
<tr>
<th>Proton Sponge</th>
<th>φ(N-C-C-N) (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Base</td>
<td>H⁺ Bound</td>
</tr>
<tr>
<td>L1</td>
<td>20.02(9)[a]</td>
</tr>
<tr>
<td>L2</td>
<td>3.73[86][b]</td>
</tr>
<tr>
<td>201</td>
<td>2.33[88][b]</td>
</tr>
<tr>
<td>211</td>
<td>32.36[87]</td>
</tr>
<tr>
<td>212</td>
<td>16.65[89]</td>
</tr>
</tbody>
</table>

Table 2.4: Proton sponge torsion angles in the solid state, [a] present work, [b] does not fit trend for reasons discussed below, [c] mean (N = 83)

The exceptions to the trend are when the stabilising effect of non-covalent interactions are present. Hydrogen bonding in L2 overcame the repulsion of the lone electron pairs on the
nitrogens. \(\pi - \pi \) stacking of the imidazoles of 201 essentially rotated the nitrogens 90\(^\circ\) rather than the nitrogens twisting out of plane as in 211. The large 3\(\sigma\) for H\(^+\)L3 was due to the wide variety of environments it was crystallised in.
2.3 Ila et al. Synthesis

2.3.1 Introduction

The Staab synthesis of L2 was reported in 1987 and subsequently modified in 2004. The alternate method was reported by Ila and co-workers which used a double Skraup condensation with 3-bis(methylthio)acrolein on 1,8-diaminonaphthalene 204 which gave 213 in 40 % yield. Although this was not attempted, it was mentioned that reduction with Raney Nickel would lead to the unsubstituted L2 (Scheme 2.10).

![Scheme 2.10: Synthesis of 2,11-bis(methylthio)quinol[7,8-h]quinoline, 213](image)

2.3.2 Results / Discussion

All attempts to follow the procedure of Ila et al. did not lead to the expected 213. Subsequent modification of both temperature and reaction time did not yield any discrete products after chromatography. A common problem encountered in this thesis when attempting to construct heterocycles starting from 204 was addition across the nitrogens (Appendix B). The NMR and MS of the crude reaction mixture did not show any evidence of 213 forming. The reaction failure was identified as specific to 204 as repeating the reaction with methoxy-substituted anilines reported gave the expected quinolines.

Eventually, by purifying the 3-bis(methylthio)acrolein by chromatography prior to the reaction, distilling the acetic acid and using a drying tube (i.e. using an air atmosphere) it
was possible to obtain a 2 % yield of the half product, 214. This was subsequently confirmed by single crystal X-ray determination.

![Figure 2.20: N-(2-(Methylthio)benzo[h]quinolin-10-yl)acetamide, 214](image)

Clearly there is discrepancy between these reactions and the particular case which would lead to 213. When the authors were contacted about this, they assured us that no special conditions were needed to form 213. As no spectroscopic and analytical data was supplied in the paper to support the formation of 213 it is debatable whether this molecule was ever synthesised. The method required chromatography and it is unlikely the compound they isolated could have been 213 as it is not possible to purify quino[7,8-h]quinolines using the silica gel column chromatography conditions described (9:1 hexanes / EtOAc). All of the quino[7,8-h]quinoline (including those with 2,11 substitution) compounds synthesised in this thesis stayed firmly at the baseline of a hexane and ethyl acetate gradient. Purification by chromatography of these compounds was only possible in the extremely polar gradient 47:47:6 CH$_2$Cl$_2$ / MeOH / NEt$_3$.

There is a patent concerning electroluminescent materials, of which 215 (Figure 2.21), a related ligand to 214 is proposed to coordinate beryllium as a bis-ligand chelate. While beryllium coordination to benzo[h]quinolin-10-amines had not been published in any journal, it is expected that with a suitable choice of beryllium reagent and reaction conditions, coordination would occur.

![Figure 2.21: N-(Benzo[h]quinolin-10-yl)benzamide, 215](image)
The asymmetric unit of the crystal structure of 214 consisted of one molecule of 214 and no solvent molecules. The acetamide group oriented such that a moderate electrostatic hydrogen bond\(^ {106} \) (located from a difference map) existed between the central nitrogen atoms; N2 – H 1.9400(14) Å, N1 – N2 2.6385(14) Å, N1 – H – N2 138.00(14)°. The \(^1\)H NMR shift of this hydrogen was 14.3 ppm indicating this hydrogen bond was also present in solution.

In the absence of any solvent, the adjacent molecules in the crystal structure were closely packed (Figure 2.23). Weak offset π stacking was present between the molecules of 214, however, there was only one pair of aromatic rings with a close π – π stacking interaction, Cg1 – Cg2 3.5896(8) Å, α 1.15(6)° and β 20.59(6)°. The other main packing interaction was the CH – Cg interaction shown in Figure 2.21; H21B – Cg3 2.68 Å, C21 – H21B – Cg3 148°, and C21 – Cg3 3.5257(16) Å.

Figure 2.22: Crystal structure of 214, grown by D. Parr, ellipsoids drawn at the 50% probability level
The beryllium bis-ligand chelate of 214 was computationally modelled (B3LYP - 6-31g(d)). This is shown (with hydrogens removed for clarity) in Figure 2.24. The beryllium ion lay nearly within the mean planes of the ligands (< 0.1 Å) which were almost perpendicular to one another (88.06°). The torsion angle between the two nitrogen atoms was 16.49°.
While offering the potential for beryllium coordination, due to the capricious nature of the reaction, sufficient quantities of 214 could not be produced for testing.
2.4 Summary

The ligands chosen as a result of computational analysis were synthesised by modification of the Staab synthesis. The alternative ester cleavage method offered a more readily accessible route to L1 and L2 without requiring specialised equipment. Aside from the original paper produced by Staab there had only been one investigation on the coordination chemistry of L1, perhaps due to the difficult synthetic procedure. A crystal structure of L1 provided a unique insight into the conformation adopted in the absence of protic media. The coordination chemistry of the ligands in Figure 2.25 will be investigated in Chapter 4.

![Figure 2.25: Successfully synthesised proton sponge ligands](image)

The methodology put forward by Ila and co-workers proceeded efficiently using activated methoxy-substituted anilines, the original focus of the paper. Unfortunately, this did not extend to the synthesis of 213.

![Figure 2.26: 2,11-bis(Methylthio)quinolinof[7,8-h]quinoline, 213](image)
Chapter 3: Synthesis of Proton Sponge Derivatives

3.1 Introduction

This chapter outlines attempts to functionalise the basic molecules encountered in Chapter 2 in order to enhance their coordination ability. The coordination ability of the ligand could be enhanced by increasing the number of donor arms to create tetra-dentate ligands (2,11 substitution at position \(R' \), Figure 3.1), or by adjusting the basicity and solubility through substitution of functional groups onto the ligand (4,9 substitution at position \(R \), Figure 3.1).

Incorporating groups which allow water solubility of the ligand is crucial for sensing beryllium ions in aqueous environment. Substituting either electron-withdrawing or electron-donating groups may tune the basicity of the central cavity to better meet the requirements for small cation complexation over protonation. Including bulky alkyl groups may enhance the solubility in kerosene in order to allow industrial extraction of beryllium from an aqueous waste source.

![Figure 3.1: Potential sites for modification of quinol[7,8-h]quinoline](image)

Incorporation of chromophores onto the ligand could enhance the fluorescence of the ligand upon beryllium coordination. Currently safe handling of beryllium requires that the beryllium concentration must not exceed 0.2 µg / m³ in beryllium work areas. A fluorescent sensor would be able to detect whether such trace amounts are present.

As shown in Figure 3.2, if more donor atoms were incorporated into quinol[7,8-h]quinoline, full encapsulation of beryllium or other small cations of interest may be possible. A tighter
cavity might enable better selectivity for sequestering beryllium over other metals from a waste source. Including oxygen donors will enhance the binding strength of the ligand to beryllium over the relatively weaker nitrogen donors on the native quino[7,8-\textit{h}]quinoline.

\textit{Figure 3.2: Computer model showing potential encapsulation of beryllium through 2,11 substitution of acetic acid moieties on quino[7,8-\textit{h}]quinoline, beryllium is shown in yellow}
3.2 Modification of 4,9 Substitution of Quino[7,8-h]quinoline

3.2.1 Results / Discussion

This section focuses on modification of the chlorides of 4,9-dichloroquino[7,8-h]quinoline, L1, to alter the physical and electronic properties of the resultant complexes.

Schmittel and Ammon demonstrated that a range of phenols and anilines could be substituted onto 4,7-dihalogenated 1,10-phenanthrolines as part of a paper dealing with the synthesis of precursors for macrocyclic oligophenanthrolines.112 This concept was utilised with L1 for the purpose of adding chromophores to give compounds with enhanced fluorescence (Scheme 3.1).

![Scheme 3.1: General scheme for the synthesis of substituted 301 where X is Ph-O or Ph-NH](image)

As a test reaction for chloride substitution on L1 with phenols, 4-tBu-phenol was used; however, nearly quantitative conversion to L4 after aqueous workup occurred (Scheme 3.2). L4 has good solubility and purification by chromatography and full characterisation was possible, contrasting with the neutral form of quino[7,8-h]quinolines.

![Scheme 3.2: Synthesis of 9-(4-tert-butylphenoxy)quinolino[7,8-h]quinolin-4(1H)-one, L4](image)
The tautomerism observed between quinolin-4-ol, 302 and quinolin-4(1H)-one, 303 (Figure 3.3),113 may offer an explanation for the formation of L4. Unlike 303, the high basicity of L4, appears to drive the tautomerism equilibrium towards the ketone with the hydrogen tightly bound between the nitrogen atoms. The reaction in Scheme 3.2 was performed in a melt of neat 4-tBu-phenol and KOH, under these conditions both chlorides were substituted by 4-tBu-phenol, as evidenced by the MS of the reaction mixture. Upon aqueous workup, conversion to L4 occurs, which could be enhanced by using dilute HCl. This suggests that initial protonation between the nitrogens destabilises the molecule and allows the tautomerism to L4 to occur via nucleophilic substitution of one phenol.

\begin{center}
\includegraphics[width=0.5\textwidth]{3.3.png}
\end{center}

Figure 3.3: Tautomerism of quinolin-4-ol, 302

Attempts to crystallise L4 in the presence of copper perchlorate by vapour diffusion of diethyl ether in acetonitrile resulted in the isolation of protonated L4 as the perchlorate salt and no metal complex (from an attempted reaction in Chapter 4). CHN analysis of the bulk crystallised material suggested the formulation L4.HClO\textsubscript{4}; however, upon analysis of a single crystal suitable for X-ray determination, the asymmetric unit consisted of two molecules of L4 and only one perchlorate. While this single crystal was a minor product compared to the bulk material, it allowed identification of the structural features of L4 to reinforce the NMR and MS results. The charge was balanced by a central proton (located via the difference Fourier map) which formed a bridge between the two molecules of L4 (Figure 3.4). The bulk material of formula L4.HClO\textsubscript{4} most likely had all O9 positions protonated with the charge balanced by a perchlorate anion.
Both carbonyls associated with this bridging hydrogen were elongated to a partial double bond length of 1.300(3) Å. The difference map placed the proton as a formal bond to O9A with a strong hydrogen bond\(^ {108} \) to O9; O9A – H9AA 1.610(2) Å, O9A – O9 2.444(2) Å, and an O9A – H9AA – O9 angle of 175.00(2)°. The expansion of the crystal structure shown in Figure 3.5 details the differences in the double-bond character resulting from the quinolinone part; C(9) – O(9), C(10) – C(11) and C(13) – C(14), and the quinolinol part; N(1) – C(2), C(3) – C(4) and C(17) – C(18).
Figure 3.5: Expanded crystal structure of L4 showing the bonds with single and double bond character, ellipsoids drawn at the 50% probability level

The crystal packed primarily via offset π stacking between adjacent heterocycles shown in Figure 3.6, there were also minor C-H π interactions between adjacent 4-t-Bu-phenol substituents.
In order to convert L4 back into a dipyridine-type donating ligand, treatment with phosphorus oxychloride gave the unsymmetrical L5 (Scheme 3.3). This may have interesting electronic properties due to net charge transfer across the ligand. Moreover, the substitution on L5 improved the solubility in a range of polar solvents compared with L1 which had solubility limited to halogenated solvents. It was subsequently found that L5 could be formed directly by refluxing L1 and 4-‘Bu-phenol (4 equiv.) in toluene; however, it was difficult to separate L5 from the unreacted 4-‘Bu-phenol. The ability to purify L4 by chromatography first was preferable to purification of L5 after direct synthesis from L1.

Substitution of the chlorides on L1 with anilines was also possible; p-toludine was used to test the reaction methodology. Mono-substitution of p-toludine (4 equiv.) onto L1 was achieved by refluxing in toluene (Scheme 3.4). This offered a clean and efficient method
of substitution as L1 would solubilise upon reaction with p-toludine then precipitate as L6 which allowed a convenient method of separating unreacted p-toludine by filtration.

Scheme 3.4: Synthesis of (E)-N-(9-chloroquinolo[7,8-h]quinolin-4(1H)-ylidene)-4-methylaniline, L6

The 1H NMR of L6 recorded in deuterated methanol did not show the nitrogen-bound proton as shown in Scheme 3.4 due to exchange. The proton shift could be detected as L6 was sparingly soluble in hot deuterated dimethylsulfoxide and the 1H NMR showed this proton at 14.62 ppm.

Di-substitution with p-toludine to form L7 could be achieved as a melt in neat p-toludine. Purification proved to be much more complicated compared to L6 (Scheme 3.5).

Scheme 3.5: Synthesis of (E)-N-p-tolyl-9-(p-tolylimino)-9,12-dihydroquinolo[7,8-h]quinolin-4-amine, L7

Quino[7,8-h]quinoline-based compounds are generally unable to be purified by silica gel column chromatography until the solvent gradient becomes excessively polar (e.g. 8:8:1 CH$_2$Cl$_2$ / MeOH / NEt$_3$). These compounds will not move in a CH$_2$Cl$_2$ / MeOH gradient alone. Usually, at high MeOH concentrations, silica gel begins to dissolve, however, if purification was started at 90:10 CH$_2$Cl$_2$ / MeOH to remove unreacted p-toludine, this appeared to deactivate the silica such that it didn’t dissolve when the higher methanol concentrations were used. Initial elution with 90:10 CH$_2$Cl$_2$ / MeOH removed most of the impurities, and then the gradient was increased to 50:50 CH$_2$Cl$_2$ / MeOH which shifted any insoluble degraded by-products and left L7 at the baseline of the column. Finally, L7 was slowly eluted using a 8:8:1 CH$_2$Cl$_2$ / MeOH / NEt$_3$ gradient. The product separated did not
give an agreeable CHN analysis, perhaps owing to the silica dissolution problem. A high resolution mass spectrum and NMR analysis confirmed the presence of L7.

A crystal structure was obtained by cooling L7 at 4 °C in CH₂Cl₂ / MeOH overnight. The asymmetric unit (Figure 3.7) unexpectedly revealed that upon crystallisation L7 had formed a tautomer stabilised by one methanol solvent molecule, with the hydrogen located on N2 rather than N91 (the hydrogen was located via the fourier difference map). The C9-N91 bond length, 1.311(2) Å, had partial double bond character relative to C4-N41, 1.367(2) Å. For this to occur, the basicity of this molecule must have increased due to the electron-donating substituted amine groups. The proton was also observed in the ¹H NMR spectra at 16.41 ppm; the large downfield shift is typical for a highly deshielded proton located between the ring nitrogens.

The methanol solvent interacts with a moderate electrostatic hydrogen bond¹⁰⁸ with O21 – H21 0.820(2) Å, N91 – H21 1.950(2) Å, O21 – N91 2.753(2) Å, and an O21 – H21 – N91 angle of 167.00(2)°. There was no significant π-stacking within the crystal lattice. Edge to face π packing was evident between two adjacent toludine substituents; H93A – Cg1 2.690(2) Å, C93 – H93A – Cg1 153.00(2)° and C93 – Cg1 3.551(2) Å, Figure 3.8.
Figure 3.8: Hydrogen bonding and edge to face π packing interactions in L7

A protonated form of L7 could be crystallised as the tetrafluoroborate salt by reaction with boron trifluoride diethyl etherate. The crystals formed by vapour diffusion of diethyl ether into a methanolic solution containing L7. The asymmetric unit consisted of one molecule of L7 and one tetrafluoroborate anion (Figure 3.9). The hydrogens on N4 and N9 and the proton on N1 were located via the fourier difference map. As expected, the C4 – N4, 1.354(4) Å, and C9 – N9, 1.374(4) Å, bonds lengths were now longer than those in the neutral form of L7 (Figure 3.7). The protonation state was additionally confirmed by 1H NMR which showed the central NH proton at 18.79 ppm and the two secondary amine protons at 10.11 ppm. The 1H NMR shift of the central NH was now further downfield compared to the 16.41 ppm shift for neutral form.
The tetrafluoroborate anion interacts with a moderate hydrogen bond \(\text{F}4 - \text{H}4A \ 2.080(3) \ \text{Å}, \text{N}4 - \text{F}4 \ 2.869(3) \ \text{Å}, \) and an \(\text{N}4 - \text{H}4A - \text{F}4 \) angle of 152.00(3). Compared to the tautomer, the packing was now primarily offset π-stacking interactions, the closest centroid interactions are shown in Figure 3.10.

With a route to forming diamine derivatives of \textbf{L1} established, methyl 2-aminobenzoate, \textbf{304}, was selected from a range of substituted anilines available because it was strongly...
fluorescent when viewed under an UV light. This is due to the hydrogen bonding interaction between the adjacent amine and methyl ester shown in Figure 3.11.

![Figure 3.11: Hydrogen bonding in methyl 2-aminobenzoate, 304](image)

Substitution of methyl 2-aminobenzoate gave the orange coloured compound L8 (Scheme 3.6), a marked change to L1 which did not absorb in the visible spectrum. The 1H NMR of L8 recorded in deuterated methanol did not show the nitrogen-bound proton as shown in Scheme 3.6 due to exchange. The proton shift could be detected as L8 was sparingly soluble in hot deuterated dimethylsulfoxide and the 1H NMR showed this proton at 15.69 ppm.

![Scheme 3.6: Synthesis of (E)-methyl 2-(9-(o-tolylamino)quinoline[7,8-h]quinolin-4(1H)-ylideneamino)benzoate, L8](image)

The enhanced fluorescence of the protonated form of L8 over L7 is best illustrated by Figure 3.12. Protonation occurs on the imine which is evidenced by the crystal structure of L7 described earlier (Figure 3.9). Although no crystals were grown, it is reasonable to assume protonation occurs at the same position for L8.
The strong fluorescence of \([\text{H(L8)}][\text{BF}_4]\), (d), must arise from delocalisation across the entire system as the neutral form \(\text{L8}\), (c), is not fluorescent. The crystal structures of \([\text{H(L7)}][\text{BF}_4]\) and neutral \(\text{L7.MeOH}\) both show the substituted anilines rotated away from the plane of the heterocyclic ring. Although no crystal structure was obtained, the hydrogen bonding present between the 2° amines and the methyl esters of \([\text{H(L8)}][\text{BF}_4]\) may align the aniline substituents with the central heterocycle. This shows that with careful choice of substituent, quino[7,8-\(h\)]quinoline can be modified into a fluorescent compound.

The optimised geometries of both \([\text{H(L7)}][\text{BF}_4]\) and \([\text{H(L8)}][\text{BF}_4]\) were calculated at the B3LYP/6-311++g(2d,p) level. The angles between the aniline substituents and the heterocyclic ring for \([\text{H(L7)}][\text{BF}_4]\) were 67.57° and 71.37°. The angles between the aniline substituents and the heterocyclic ring for \([\text{H(L8)}][\text{BF}_4]\) were reduced to 43.90° and 41.20° as a result of the hydrogen bonding.

Analysis of the molecular orbitals involved in the \(\pi - \pi^*\) transitions for \([\text{H(L7)}][\text{BF}_4]\) and \([\text{H(L8)}][\text{BF}_4]\) provide more evidence for these empirical observations (Figure 3.13). The weak fluorescence observed for \([\text{H(L7)}][\text{BF}_4]\), Figure 3.12, image (b), is due to a partial intramolecular charge transfer from one aniline substituent into the heterocyclic ring.
Based on this analysis, the strong fluorescence observed for [H(L8)][BF₄], Figure 3.12, image (d), is due to an intramolecular charge transfer from one aniline substituent into the heterocyclic ring and the opposite aniline substituent (Figure 3.14).
Substitution of \(p \)-toludine onto \(\text{L}_5 \) did not proceed selectively on the chloride; both the 4 and 9-positions were substituted to give \(\text{L}_7 \) (Scheme 3.7). While not offering the anticipated result, this does show the leaving ability of the phenol and explains why the tautomer \(\text{L}_4 \) forms instead of a di-aryl ether substituted product.

![Scheme 3.7: Attempted synthesis of the asymmetrically substituted \(305 \)](image)

In order to give enhanced fluorescence, it was desirable to have substitution that gave rise to increased conjugation. Nitration of \(\text{L}_1 \) for 2 min in fuming HNO\(_3\) / H\(_2\)SO\(_4\) gave selective electrophilic substitution of two NO\(_2\) groups (Scheme 3.8).

![Scheme 3.8: Synthesis of 4,9-dichloro-6,7-dinitroquinolino[7,8-h]quinoline, \(\text{L}_9 \)](image)

The mass spectra revealed the chlorides had remained intact and the NO\(_2\) groups had replaced two hydrogens. This was confirmed by a CHN analysis of the tetrafluoroborate salt. The compound had poor solubility; however, a \(^1\)H NMR recorded in DMSO-d\(_6\) was only able to definitively characterise the hydrogens 1, 2 and 3 shown in Figure 3.15.
The two nitro groups on \(\text{L9} \) are most likely substituted at the Hb’ and Hc positions. In the absence of a crystal structure it is only possible to speculate this; however, nitraions under similar conditions of the proton sponge \(\text{L3} \) lead to substitution at these positions. One of the nitrogen atoms of \(\text{L9} \) was protonated and exchange on the NMR timescale was slow, this causes the observed different chemical shifts and couplings in the \(^1\text{H} \) NMR spectrum for the otherwise symmetrically identical hydrogens. When the solid was viewed under 385 nm UV light the protonated form of \(\text{L9} \) was not fluorescent, most likely as a result of rotation of the NO\(_2\) groups out of the plane of the aromatic ring, the crystal structure of the nitrated \(\text{L3} \) showed the trigonal planar NO\(_2\) groups rotated 30.4° out of the aromatic plane. The nitro groups can potentially offer points for further substitution or attachment to polymers or surfaces.

To utilise ligands such as \(\text{L1} \) in analytical applications, water solubility is a desirable property, therefore the ability to sulfonate \(\text{L1} \) was explored. It should be possible to substitute the chloride groups with sulfonic acid groups by a reaction with sodium sulfite. An equivalent chloride-substitution reaction had been performed with 4-chloropyridine. A mass spectrum of the reaction mixture showed some di-substitution of the chloride on \(\text{L1} \) with sulfonic acid moieties, unfortunately, the only stable product formed over a range of reaction times and temperatures was \(\text{L10} \) (Scheme 3.8). The large downfield NH shift of 15.47 ppm in the \(^1\text{H} \) NMR spectrum and the carbonyl peak at 176.5 ppm \(^{13}\text{C} \) NMR spectrum confirmed the existence of \(\text{L10} \) rather than the phenol tautomer. Unfortunately, \(\text{L10} \) could not purified sufficiently to give an agreeable CHN analysis. This hydrolysed
product was consistent with the observed hydrolysis of L4 encountered earlier. When good leaving groups are substituted, tautomerism is favoured giving oxo-species such as L4 and L10. Attempted treatment of L10 with phosphorus oxychloride did not give the anticipated 306.

Scheme 3.9: Synthesis of 9-oxo-9,12-dihydroquinolino[7,8-h]quinoline-4-sulfonic acid, L10

Alkoxides may be used to exchange the chlorides with ether linkages. A greater range of solvent solubility was required for L1 as it was only soluble in halogenated solvents. An analogous reaction has been achieved with 4-chloroquinoline.113

Scheme 3.10: Synthesis of 4,9-dimethoxyquino[7,8-h]quinoline, L11

The displacement of the chlorides by methoxide substitution proceeded smoothly and gave the di-substituted product; L11 (Scheme 3.9). This was fully characterised and was resistant to the tautomerism observed for L4 and L10. This was exemplified when L11 was heated to dissolution in DMSO and upon slow cooling gave crystals of L11. The asymmetric unit consisted of three molecules of the neutral form of L11. As the methoxide moieties are poor leaving groups, the observed tautomerism in L4 and L10 did not occur. The only solvent with good solubility for L11 was methanol.
Aside from long range C-H π interactions, there were no notably strong packing interactions within the crystal (Figure 3.17). The three molecules of L11 in the asymmetric unit had N1-C17-C13-N2 torsion angles of 13.73(49), 8.83(49) and 8.13(50)°; less than the twisting in the crystal structure of the neutral form of L1 discussed in Chapter 2; 20.02(9)°. As both the chloride and methoxide substituents are electron withdrawing groups, the larger twisting observed for L1 is likely primarily due to the interaction between the heterocyclic nitrogens and the hydrogens on the two chloroform solvent molecules with the crystal structure. There were no solvent molecules in the crystal structure of L11 suggesting the torsion angles are representative of a neutral quino[7,8-h]quinoline molecule in the relaxed state.
A manganese-catalyzed cross-coupling reaction could potentially be used to replace the chlorides with a range of alkyl groups (Scheme 3.11). This should give better solubility in petroleum-based solvents, i.e. those which would be used in an industrial extraction of beryllium from an aqueous waste source. This reaction has been investigated successfully with 4-chloroquinoline.116

Scheme 3.11: General scheme for the synthesis of alkyl-substituted 307, \(R = \text{alkyl group} \)

The alkylation of L1 by manganese cross-coupling substituted at the chloro 4,9-positions; however, the 2,11-positions were also alkylated. The electron withdrawing effect of the nitrogen heteroatoms likely made the adjacent 2,11-positions more electropositive. With four possible sites of substitution, a number of products were observed by MS. By varying the ratio of tertiary butylmagnesium chloride and the temperature it was possible to change the ratio of products but never to a single product, so this route was abandoned. The products all had similar polarity and solubility so purification was not possible.

In order to access a range of other substitutions, it was desirable to have bromides instead of the chlorides at the 4,9-positions of L1. For Suzuki couplings,117, 118 the bromide is several orders of magnitude more reactive than the chloride. This was achieved by reacting 308 with phosphorus oxybromide in place of phosphorus oxychloride in the substitution step (Scheme 3.12). Bromination of 308 using phosphorus oxybromide proceeded analogously to the reaction with phosphorus oxychloride. An increase in the reaction time and temperature was required to achieve efficient conversion of 308 to L12, 120 to 200 °C and 8min to 30min. It was possible to achieve useful quantities of L12 for further reactions with the yield being on par with the analogous reaction with phosphorus oxychloride. Suzuki coupling reactions and conversion of the bromides into carboxylic acids is the
current focus of our research group. As a dicarboxylic acid, a potentially novel building block in the synthesis of metal organic frameworks may be achieved.

![Scheme 3.12: Proposed generalised Suzuki coupling reaction with L12](image)

Given the crystal structure of L7 showed a tautomer had formed, there is clearly a substituent influence on the basicity of each ligand. Due to the large differences in solubility of each ligand, measurement of the pK$_{BH^+}$ would not offer direct comparison between the series of quino[7,8-h]quinolines. Measurement of the 1H NMR shift of the NH shift is also not directly related to pK$_{BH^+}$ of proton sponges as this depends on the molecular structure of the compound and the solvent used for measurements. For example;

<table>
<thead>
<tr>
<th>Compound</th>
<th>Solvent</th>
<th>1H NMR NH Shift (ppm)</th>
<th>pK$_{BH^+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>DMSO-d6</td>
<td>19.4</td>
<td>12.8</td>
</tr>
<tr>
<td>L3</td>
<td>CD$_3$CN</td>
<td>18.6</td>
<td>18.2</td>
</tr>
<tr>
<td>L3</td>
<td>DMSO/H$_2$O</td>
<td>9.5</td>
<td>12.1</td>
</tr>
<tr>
<td>310</td>
<td>CD$_3$CN</td>
<td>14.3</td>
<td>25.1</td>
</tr>
</tbody>
</table>

Table 3.1: Lack of relationship between 1H NMR NH shift and pK$_{BH^+}$

![Figure 3.18: Proton sponges with different chemical environments](image)

As our series of compounds all had the same molecular cavity so long as the solvent environment was identical, the relative basicity could be investigated by looking at the NH shift. In this particular solvent system, 2:1 DMSO-d6 / MeOD, the NH shift was not as far downfield as in polar aprotic solvents; however, the relative magnitude of each shift reflects
the basicity. When the 1H NMR spectra were recorded immediately after dissolution, the exchange of the NH proton due to MeOD was not a problem.

<table>
<thead>
<tr>
<th>4,9 Substituents</th>
<th>δ NH ppm$^{[a]}$</th>
<th>Charge N$^{[b]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>L7; 2x NH-Ph</td>
<td>18.80</td>
<td>-0.241030, -0.232271</td>
</tr>
<tr>
<td>L6; 1x NH-Ph, 1x Cl</td>
<td>16.44</td>
<td>-0.251407, -0.193139</td>
</tr>
<tr>
<td>L5; 1x O-Ph, 1x Cl</td>
<td>15.76</td>
<td>-0.244144, -0.197436</td>
</tr>
<tr>
<td>L11; 2x O-Me</td>
<td>15.68</td>
<td>-0.227521</td>
</tr>
<tr>
<td>L2; 2x H</td>
<td>15.63</td>
<td>-0.212772</td>
</tr>
<tr>
<td>L1; 2x Cl</td>
<td>15.40</td>
<td>-0.214037</td>
</tr>
</tbody>
</table>

Table 3.2: Relative basicity of quino[7,8-h]quinolines, [a] 2:1 DMSO-d6 / MeOD, acetate salt, referenced to DMSO-d6 at δ 2.50, [b] B3LYP, 6-311++g(2d,p)

The calculated Mulliken charge on the central nitrogens becomes more negative as the NH shift of each compound increases. A greater negative charge suggests a stronger attraction for initial protonation. The NH shift is not solely related to the charge. The 1H NMR shifts of aromatic hydrogens are strongly deshielded by the aromatic ring. This is due to the ring current, which is the circulation of delocalised π electrons producing a small local magnetic field. It is reasonable to assume that an increase of electron density into the heterocyclic ring system from electron donating substituents will enhance this ring current. Hence the NH shift is more than 3 ppm downfield when the ring has electron donating substituents.
3.3 Modification of 2,11 Substitution of Quino[7,8-h]quinoline

3.3.1 Results / Discussion

In the Staab synthesis pursued in Chapter 2, the esters on 311 were cleaved; however, a reaction directly with phosphorus oxychloride led to a new methyl ester substituted proton sponge L13 (Scheme 3.13). The methyl esters provided a scaffold for potential further modification to create molecules which could fully encapsulate beryllium. To the best of our knowledge, this is currently the only confirmed quino[7,8-h]quinoline with 2,11 substitution and the best chance to create a tetra-coordinate ligand.

A crystal structure of the protonated L13 confirmed the esters were retained during this reaction. The tetrafluoroborate salt was obtained from a reaction with boron trifluoride diethyl etherate and crystals were formed by vapour diffusion of diethyl ether into acetonitrile (Figure 3.19). The asymmetric unit consisted of two molecules of L13 and two tetrafluoroborate anions. The protons on N2 and N2B (from the second molecule in the asymmetric unit) were found via the fourier difference map.
An important distinction between this molecule and the crystal structures of other protonated proton sponges was that there was no auxiliary three-centred hydrogen bonding from anions or solvent to the central proton. The three-centred hydrogen bond now consisted of an interaction between N1 and N2 and between N2 and O113.

<table>
<thead>
<tr>
<th>N – H (Å)</th>
<th>N – X (Å)</th>
<th>N – H – X (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2-H2 1.950(3)</td>
<td>N2-N1 2.643(3)</td>
<td>N2-H2-N1 135.00(3)</td>
</tr>
<tr>
<td>O113-H2 2.480(3)</td>
<td>O113-N1 2.790(3)</td>
<td>N2-H2-O113 101.00(3)</td>
</tr>
<tr>
<td>N1-H2B 1.960(3)</td>
<td>N1-N2 2.646(3)</td>
<td>N1-H2B-N1 135.00(3)</td>
</tr>
<tr>
<td>O31B-H2B 2.390(3)</td>
<td>O31B-N1 2.730(3)</td>
<td>N2-H2B-O31B 103.00(3)</td>
</tr>
</tbody>
</table>

Table 3.3: Important bond lengths and angles associated with the hydrogen bonding of H2 and H2B in [H(323)][BF₄]

The crystal packed primarily through anion-π interactions and similar π contacts with the chlorides and carbonyl oxygens. There was only very weak π-π stacking present due to the
large offset of adjacent heterocycles. The closest contacts are shown in Figure 3.19; F8 – Cg1 3.265(2) Å, B2 – F8 – Cg1 114.28(15)°, B2 – Cg1 4.052(4) Å and Cl2 – Cg2 3.4084(13) Å, C9 – Cl2 – Cg2 79.06(9)°, C9 – Cg2 3.514(3) Å.

Figure 3.20: Crystal packing of [H(L13)][BF₄]

The methyl esters appear to shield the proton binding site. In a recent review chapter on proton sponges, the authors proposed that four criterion needed to be met for a molecule to be classified as a proton sponge and that the unsubstituted quino[7,8-h]quinoline was in violation of the fourth requirement. That is, there needed to be the presence of a hydrophobic environment at the nitrogen atoms to account for the low rate of proton addition – elimination and to prevent coordination of all Lewis acids except the proton. In reality, there is no molecule which matches all the criteria perfectly. The original proton sponge, 1,8-bis(dimethylamino)naphthalene, L3, has been shown to complex to boron. It would appear that L13, meets the criterion of a proton sponge more effectively in this case as the cavity can only support a proton due to the greater steric influence of the methyl esters.

The previously reported crystal structure of the analogous tetrafluoroborate salt of L3 also reveals there were no significant auxiliary hydrogen bonding interactions. A symmetry generated tetrafluoroborate lies above the proton cavity, Figure 3.21, but the short contacts exceed what would be considered weak hydrogen bonding. For a molecule based on quino[7,8-h]quinoline, L13 replicates this shielding of the proton well.
As we were interested in coordinating more than just a proton, it was necessary to modify the methyl esters to reduce steric hindrance and incorporate additional donors. While sterically encumbered beryllium complexes can adopt flattened geometries in special cases,\(^{63,121}\) they are unstable and hydrolyse readily.\(^{121}\) Direct ester hydrolysis of L13 to 312 would provide additional donors for coordination to beryllium, but, be limited due to the rigid geometry of the donor set (Scheme 3.14). The ester hydrolysis of L13 was attempted; however the insolubility of the resulting compound made characterisation difficult. Attempts to re-crystallise the insoluble product by slow cooling in hot DMSO to obtain crystallographic evidence of the structure were unsuccessful.

While it would be interesting to test whether 312 formed a four coordinate species with beryllium, an extra CH\(^2\) group placed at the 2,11 substituents should enhance the flexibility
of the donor set to allow six-membered chelate ring formation (Scheme 3.15). A possible route could proceed via the following transformations; reduction of \(\text{L13} \) should give \(\text{313} \), activation of \(\text{313} \) with a suitable protecting group followed by nucleophilic substitution should lead to \(\text{315} \), extending the substituents by one carbon each. Functionalisations of the nitrile would then give the desired geometry to create a tetrahedral binding pocket.

Scheme 3.15: Proposed synthesis of 2,2'-(4,9-dichloroquinolino[7,8-h]quinoline-2,11-diyl)diacetonitrile, \(\text{315} \)

Finally, hydrolysis of \(\text{315} \) would give \(\text{316} \) as shown in Scheme 3.16. This is one example of the range of potential functionalisations of \(\text{315} \).

Scheme 3.16: Proposed synthesis of 2,2'-(4,9-dichloroquinolino[7,8-h]quinoline-2,11-diyl)diacetic acid, \(\text{316} \)

The first step was to convert the esters of \(\text{L13} \) into functional groups capable of further modification; in this case an alcohol was necessary. Two methods which could achieve this are lithium aluminium hydride reduction\(^{122} \) or sodium borohydride / methanol reduction.\(^{123} \)

Under standard conditions, the reduction with lithium aluminium hydride showed none of the desired product by mass spectrometry. This may be due to coordination of lithium to
the ligand causing deactivation. Sodium borohydride / methanol reduction did show some of the correct product by mass spectrometry, however, the reaction did not proceed cleanly as a number of side reactions occurred. Unfortunately, once the solvent was removed from the reaction mixture a completely insoluble precipitate developed. 313 might have been stabilised by solvent in solution and strong intermolecular hydrogen bonding could give the insoluble precipitate. Another possibility is the formation of a coordination polymer as deprotonation of the alcohol moieties, due to the high basicity of the ligand could allow side reactions to occur, e.g. nucleophilic displacement of the chlorides.

To elucidate what was occurring, it was necessary to isolate the esters and eliminate potential side reactions. One potentially novel route to achieving this was to form 317 (Scheme 3.17). Substituting the chlorides and blocking basic nitrogen centre, may avoid the potential side reactions encountered earlier. Substitution with t-butylphenol and subsequent oxidation upon purification should lead to 317.

![Scheme 3.17: Proposed limitation of side reactions through substitution of the chlorides on 317](image)

The substitution of both chlorides (as evidenced by MS) was achieved by refluxing in toluene for four hours. In contrast to L1 where only mono-substitution occurred, the greater solubility due to the presence of the ester groups allowed both chlorides to be displaced. Unfortunately the tautomerism which occurred for L4 could not be reproduced to give 317, which would have enabled purification by column chromatography. Unlike the tautomer L4 which could be purified by chromatography, the products associated with the attempted formation of 317 were inseparable. It seemed polymerisation was occurring as suggested by the streaking on the silica column and the lack of discrete products separated. The reaction also did not proceed using a stoichiometric quantity of t-butylphenol, the protonated form of L13 was predominantly formed.
Given the time constraints on the project, it was not possible to post-synthetically modify L13; creating tetra-coordinate ligands in this manner had to be abandoned.
3.4 Summary

The modification of quino[7,8-\(h\)]quinolines was difficult due to the insolubility of the products obtained and inability to purify using conventional chromatography or recrystallisation techniques. In spite of this, reactions which lead to single products could be fully characterised. Substitution of \(L_1\) with oxygen linked substituents lead to nucleophilic substitution of both substituents followed by hydrolysis and tautomerism of one when the substituent was a good leaving group (Scheme 3.18). The exception was found when methoxy groups were substituted, \(L_{11}\), which are relatively poor leaving groups and gave the di-substituted compound more stability.

![Scheme 3.18: Generalised tautomerised product when oxygen-containing groups were substituted, this occurred for \(L_4\) and \(L_{10}\)](image)

When possible, treatment with phosphorus oxychloride could reform the full heterocyclic ring system creating novel unsymmetrical compounds such as \(L_5\).

![Figure 3.22: 4-(4-tert-Butylphenoxy)-9-chloroquinolino[7,8-\(h\)]quinoline, \(L_5\)](image)

Mono- or di-substitution of anilines onto \(L_1\) could be achieved by altering the reaction conditions and using the solubility of the product in the reaction mixture. Mono-substitution occurred by refluxing in toluene where the precipitated product could be purified by filtration to give \(L_6\). Di-substitution was achieved in the melt of the appropriate aniline at a slightly higher temperature to give \(L_7\). Both \(L_6\) and \(L_7\) showed tautomerism
similar to that observed in Scheme 3.18, however, rather than hydrolysis, one of the nitrogens adopted partial double bond character, Scheme 3.19.

\[\text{Scheme 3.19: Generalised tautomerised product when anilines were substituted} \]

With a suitable choice of aniline, the substituents of gave rise to fluorescence due to enhanced \(\pi \)-delocalisation across the entire molecule. The protonated form of \(\text{L8} \) is worthy of further investigation to exploit the fluorescent properties of the molecule. Fluorescent dyes are often attached to light harvesting devices such as dye-sensitised solar cells.\(^{124}\)

Nitration of \(\text{L1} \) lead to substitution of two nitro groups at positions previously inaccessible, \(\text{L9} \), if required these could act as points for further substitution or attachment to polymers or surfaces.

The \(^1\text{H} \) NMR shift of the proton bound (in the protonated form of the molecules) between the nitrogen heteroatoms was shifted further downfield when electron-donating substituents were present, \(\text{L7} \). This trend was reflected in the calculated charge on nitrogen atoms which became more negative with increased electron-donation into the heterocyclic ring system.

Despite showing promise for creation of a four coordinate ligand, which might fully encapsulate beryllium, modification of the 2,11 positions on \(\text{L13} \) with useful functional groups proved technically difficult and had to be abandoned due to time constraints.
4.1 Complexation of Proton Sponges to Boron

4.1.1 Introduction

Boron was used as a size analogue for beryllium to better study small cation complexation to proton sponges. Boron complexes have received attention for their potential use as fluorescent dyes. For example, boron-dipyrromethene complexes are known to have intense fluorescence quantum yields. An example is a paper which utilised the ligands shown in Figure 4.1 reported quantum yields in the range of 0.56 – 0.98. These had sharp excitation and emission bands with small Stokes shifts.

![Figure 4.1: Example of a boron-dipyrromethene complex with a high quantum yield](image)

Complexes of boron with bidentate neutral N-donor ligands are reasonably well documented. A paper published by Hartman and Shoemaker, dealt with the ligands 2,2’-bipyridine, 1,10-phenanthroline, and L3 (Figure 4.2).
All were shown to form difluoroboron and dichloroboron cations and all except DMAN could form dibromoboron cations. All complexes were analysed by 19F and 11B NMR and Mass Spectrometry. There is currently no crystallographic structural evidence for these compounds. The flexibility imparted by the backbone of the dipyromethene unit allows all boron and transition metal complexes to be planar. Based on the two known transition metal structures, the rigidity of the fully aromatic quino[7,8-\textit{h}]quinoline proton sponge scaffold meant transition metal complexes had large out of plane distortions (Figure 4.3). Coordination of a smaller cation such as B(III) to these types of proton sponge types should offer a better size fit.
4.1.2 Results / Discussion

Boron trifluoride diethyl etherate was added to \(\text{L1} \) (Figure 4.4) in dry \(\text{CH}_2\text{Cl}_2 \) and a precipitate of \([\text{BF}_2(\text{L1})][\text{BF}_4]\) formed immediately. The precipitate was washed with diethyl ether and was crystallised by vapour diffusion of diethyl ether into an acetonitrile solution containing the complex.

![Figure 4.4: 4,9-Dichloroquino[7,8-h]quinoline, L1](image)

Pale yellow prismatic crystals suitable for X-ray determination were obtained. These crystals darkened in the presence of light so the crystallisation setup was kept in the dark. A side-product later identified to be \([\text{H(L1)}][\text{BF}_4]\) also crystallised co-currently as yellow needles, the crystal structure was discussed in Chapter 2.

The crystal structure of \([\text{BF}_2(\text{L1})][\text{BF}_4]\) had space group \(P2_1/n\) and the asymmetric unit consisted of one boron difluoride cation of \(\text{L1}\) balanced by one disordered tetrafluoroborate anion (Figure 4.5). The crystal structure revealed \(\text{L1}\) had a flattened aromatic ring system with the boron ion located only slightly above the mean plane of the aromatic ring (0.096(6) Å, the mean plane was calculated using the five central atoms N1, C17, C15, C13, N2). This was analogous to the crystal structure of \([\text{H(L1)}][\text{BF}_4]\) discussed in Chapter 2 (Figure 2.16) where the aromatic rings were flattened compared to the torsional twist present in the crystal structure of neutral \(\text{L1}\) (Figure 2.12). Thus, the cavity of \(\text{L1}\) was an ideal size to support the small B(III) cation.
Figure 4.5: Side view of the crystal structure of \([\text{BF}_2(\text{L1})][\text{BF}_4]\),
ellipsoids drawn at the 50% probability level

Figure 4.6: Top view of the crystal structure of \([\text{BF}_2(\text{L1})][\text{BF}_4]\), (tetrafluoroborate anion not shown),
ellipsoids drawn at the 50% probability level

The chlorine atoms and the tetrafluoroborate anions prevent the close packing of the flattened ring systems such that only minor \(\pi\)-stacking interactions outside of what would be considered an interaction were present in the crystal (Figure 4.7).
Recently, a series of theoretical studies126-128 investigated the presence of favourable non-covalent interactions between electron deficient (\(\pi\)-acidic) aromatic rings and anions. These had binding energies comparable to hydrogen bonds (20 – 50 kJ/mol). The majority of reported anion-\(\pi\) interactions are longer than 3.0 Å and it is considered rare that the contacts are shorter than this. Such a contact with the tetrafluoroborate anions to the centroid of the ring containing both the chloride and ring nitrogen was observed (Figure 4.7); \(\text{F}_24 \) – Cg1 2.808(8) Å, B2 – F24 – Cg1 145.5(8)°, B2 – Cg1 3.926(6) Å. This close interaction was presumably due to the electron-withdrawing effect of the ring nitrogen and the substituted chloride. There were no such interactions occurring on either of the two unsubstituted non-heterocyclic rings of the ligand. This distance is one of the shortest anion-\(\pi\) interactions that have been observed crystallographically.

An analogous reaction occurred with L2 (Figure 4.8) and boron trifluoride diethyl etherate giving both \([\text{BF}_2(L2)]\)[BF\(_4\)] and the side product \([\text{H}(L2)]\)[BF\(_4\)] discussed in Chapter 2.
The bulk of $[\text{BF}_2(\text{L2})][\text{BF}_4]$ crystallised as needles, which did not diffract; however, a single prismatic crystal was identified that was suitable for X-ray determination. The crystal structure of $[\text{BF}_2(\text{L2})][\text{BF}_4]$ grew in space group $P2_1/c$ and the asymmetric unit consisted of one boron difluoride cation of L2 balanced by one tetrafluoroborate anion with one acetonitrile solvent molecule (Figure 4.9). The crystal structure had a similar flattened aromatic ring system to $[\text{BF}_2(\text{L1})][\text{BF}_4]$ with the boron ion located 0.186(4) Å above the mean plane of the aromatic ring (Figure 4.10). This was further out of plane than the crystal structure for $[\text{BF}_2(\text{L1})][\text{BF}_4]$ and the variation may be due to crystal packing.
These crystals were suspected to contain ~10% of \([\text{BF}_2(\text{L}_1)][\text{BF}_4]\) present as indicated by a low percentage of electron density approximately 1.8 Å from C4 and C9. This contamination appeared to act as a template for crystal growth. The presence of \(\text{L}_1\) in this crystal indicated the conversion of \(\text{L}_1\) to \(\text{L}_2\) was not fully completed; however, only a minute trace of \(\text{L}_1\) was present. There were too few of these crystals to run an elemental analysis.

In the absence of the chlorine substitution in the 4 and 9 positions of the ligand, the anion-\(\pi\) interaction is more diffuse and distributed across two six-membered rings (Figure 4.11); F12 – Cg1 3.288(2) Å, B2 – F12 – Cg1 124.63(16)°, B2 – Cg1 4.249(3) Å and F12 – Cg2 3.326(8) Å, B2 – F12 – Cg2 108.59(15)°, B2 – Cg2 4.004(3) Å. There are closer offset \(\pi\)-stacking interactions present within the structure than the analogous \(\text{L}_1\) complex and also a \(\pi\)-ring interaction with the nitrogen on the acetonitrile solvent molecule is now present, interacting across two six-membered rings; N20 – Cg4 3.416(3) Å, C21 – N20 – Cg4 103.0(2)°, C21 – Cg4 3.845(3) Å and N20 – Cg3 3.413(3) Å, C21 – N20 – Cg3 85.9(2)°, C21 – Cg3 3.524(3) Å.
The platinum and rhenium ion complexes reported by Wustefeld and co-workers72 had coordinated metal cations which were 0.999 Å and 1.133 Å respectively above the mean plane. In addition, there was significant bowing of the aromatic heterocycles to accommodate metal chelation which was in stark contrast to the flattened ring systems and minor deviation from the aromatic mean plane observed in the B(III) complexes.

The remaining ligands investigated in Figure 4.12 did not show conclusive coordination to B(III) for a number of reasons outlined below, these are shown.
While the boron difluoride complex of \(\text{L3} \) has already been reported,\(^9\) no crystal structure has been documented. For comparison purposes, crystallisation was attempted, however, due to the weak nature of the ligand and the oxygen free conditions required for the formation of the boron complex, no crystals were ever achieved. The ligand had a strong preference for hydrolysis and deposition of protonated \(\text{L3} \).

\(\text{L4} \) did not complex with boron trifluoride diethyl etherate. The hydrogen was not displaced by boron and \(\text{L4} \) was recovered unreacted. The reaction was repeated in the presence of a number of bases (\(\text{NEt}_3, \text{nBuLi}, \text{NaH}, \text{NaOMe} \)) none of which were capable of promoting the reaction.

\(\text{L5} \) showed some coordination to boron; however, there was always a roughly equal ratio of the protonated species formed (according to the MS). Crystallisation could not be used to separate out the boron coordinated species for further analysis which was used successfully for \(\text{L1} \) and \(\text{L2} \).

\(\text{L6}, \text{L7} \) and \(\text{L8} \) showed no coordination to boron. As noted in Chapter 3, they exist as a tautomer with one hydrogen located on a central heterocyclic nitrogen and one of the auxiliary nitrogens displaying partial imine behaviour. Attempting to use the bases as above for initial deprotonation did not allow coordination.
The limitation of \textbf{L11} to coordinate boron arose from the inability to dissolve in a suitable polar aprotic solvent necessary for the reaction with boron trifluoride diethyl etherate to occur. While \textbf{L11} has good solubility in methanol, the use of this solvent caused exclusive formation of the protonated species and could not be suppressed using the bases as above.
4.2 Spectroscopy of Boron Proton Sponge Complexes

4.2.1 Introduction

Boron-dipyrrromethene (BODIPY) complexes are well-known as versatile fluorescent dyes with intense fluorescence quantum yields (Φ_F), sharp absorption and emission spectra, and high photo- and chemostability.129 It was hoped that the rigid, planar fused aryl systems of the quino[7,8-\textit{h}]quinoline-based proton sponges might give rise to a fluorescent complex when boron was coordinated.

The quantum yield (Φ_F) is the ratio of emitted photons to absorbed photons. When the correct equipment is not available to measure the absolute quantum yield, it is possible to measure the relative quantum yield.130 This is achieved by relating the fluorescence efficiency of an unknown sample to a standard dye with known quantum yield. The equation is given below:

$$\Phi_{F(X)} = \left(\frac{A_s}{A_X}\right)\left(\frac{F_X}{F_S}\right)\left(\frac{n_X}{n_S}\right)^2\Phi_{F(S)}$$

A is the absorbance at the excitation wavelength, F is the area under the corrected emission curve (expressed as number of photons), and n is the refractive index of the solvents used. Subscripts s and x refer to the standard and the unknown respectively. A accounts for the number of absorbed photons, F accounts for the number of emitted photons and the refractive index is a correction factor.

4.2.2 UV-Vis Spectroscopy

The normalised UV-Vis spectra of [BF$_2$(L1)][BF$_4$] and [BF$_2$(L2)][BF$_4$] at 10$^{-4}$ M are shown in Figure 4.13. The absorption spectrum for [BF$_2$(L1)][BF$_4$] was slightly red-
shifted. This placed the tail of the absorbance at 389 nm into the visible region and the resulting solution was pale yellow compared to the colourless solution of $[\text{BF}_2(L2)][\text{BF}_4]$.

![Figure 4.13: UV-Vis spectra of $[\text{BF}_2(L2)][\text{BF}_4]$ (blue) and $[\text{BF}_2(L1)][\text{BF}_4]$ (red) showing the $\pi - \pi^*$ transitions at 10^{-4}M in MeCN](image)

The other main difference between the two complexes is the presence of a very weak charge transfer peak for $[\text{BF}_2(L1)][\text{BF}_4]$. The intensity of the $\pi - \pi^*$ transitions masks this at concentrations of 10^{-4}M shown in Figure 4.13. However, at 10^{-6}M (the concentration typically required for fluorescence quantum yield determination) a charge transfer peak at 422 nm for $[\text{BF}_2(L1)][\text{BF}_4]$ becomes more prominent (Figure 4.14). The prominence of the charge transfer band at low concentration suggests that quenching due to solute – solute interactions may occur at higher concentrations. The presence of halides is a known cause of fluorescence quenching, BODIPY dyes substituted with chlorides had very low quantum yields of less than 1%. The chloride group is typically only used as a precursor to further functionalisation. The fluorescence resulting from excitation of this absorbance will be discussed in 4.2.3.
The UV-Vis spectrum of the protonated species; \([H(L1)][BF_4]\), showed a red-shift relative to the neutral \(L1\). When diluted to \(10^{-6}\) M, a charge transfer peak at 427 nm for \([H(L1)][BF_4]\), similar to that observed for \([BF_2(L1)][BF_4]\), was present. The fluorescence resulting from excitation of this peak will be discussed in 4.2.3.

Figure 4.14: UV-Vis spectra of \([BF_2(L2)][BF_4]\) (blue) and \([BF_2(L1)][BF_4]\) (red) showing the charge transfer peak for \([BF_2(L1)][BF_4]\) at \(10^{-6}\) M

Figure 4.15: UV-Vis spectra of \(L1\) (blue) and \([H(L1)][BF_4]\) (red) showing the \(\pi-\pi^*\) transitions
A summary of the differences in the major peaks between the various forms of quino[7,8-h]quinoline at wavelengths longer than 300 nm is shown in Table 4.1. The last row contains the minor charge transfer peaks of [H(L1)][BF₄] and [BF₂(L1)][BF₄]. The peaks of [BF₂(L1)][BF₄] were slightly red-shifted relative to [H(L1)][BF₄] indicating different species were present and the boron complex had not merely hydrolysed to the protonated species.

<table>
<thead>
<tr>
<th></th>
<th>[H(L1)][BF₄]</th>
<th>[BF₂(L2)][BF₄]</th>
<th>[BF₂(L1)][BF₄]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>331 nm</td>
<td>333 nm</td>
<td>336 nm</td>
</tr>
<tr>
<td>338 nm</td>
<td>346 nm</td>
<td>345 nm</td>
<td>350 nm</td>
</tr>
<tr>
<td>355 nm</td>
<td>363 nm</td>
<td>362 nm</td>
<td>369 nm</td>
</tr>
<tr>
<td>373 nm</td>
<td>382 nm</td>
<td>382 nm</td>
<td>389 nm</td>
</tr>
<tr>
<td>-</td>
<td>427 nm</td>
<td>-</td>
<td>422 nm</td>
</tr>
</tbody>
</table>

Table 4.1: Comparison of the π–π transitions and charge transfer peaks for quino[7,8-h]quinolines*

Theoretical structural optimisation of the boron difluoride complex of L1 revealed that the location of the B(III) ion within the mean plane may be influenced by solvent interaction and or crystal packing. The crystal structure and computer model utilising a solvent model (acetonitrile) both showed the B(III) ion in a similar position close to the mean plane of the aromatic ring. The gas phase computer model placed the B(III) ion a relatively larger distance of 0.385 Å out of the plane of the ring. Hence, the acetonitrile solvent model was used for all further calculations.

<table>
<thead>
<tr>
<th>[BF₂(L1)]⁺</th>
<th>Crystal Structure Å</th>
<th>Gas Phase Model[a] Å</th>
<th>Solvent Model MeCN[a] Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 – mean plane</td>
<td>0.096(6)</td>
<td>0.385</td>
<td>0.136</td>
</tr>
<tr>
<td>B1 – N1</td>
<td>1.566(6)</td>
<td>1.583</td>
<td>1.570</td>
</tr>
<tr>
<td>B1 – N2</td>
<td>1.564(7)</td>
<td>1.583</td>
<td>1.570</td>
</tr>
<tr>
<td>B1 – F1</td>
<td>1.360(6)</td>
<td>1.369</td>
<td>1.385</td>
</tr>
<tr>
<td>B1 – F2</td>
<td>1.367(6)</td>
<td>1.367</td>
<td>1.381</td>
</tr>
</tbody>
</table>

Table 4.2: Comparison of bond parameters for the B(III) ion between the crystal structure and calculated models, [a] B3LYP, 6-311++g(2d,p)
Next, calculations where the exchange correlation functionals were varied between B3LYP and OLYP were run. The basis set 6-311++g(2d,p) and an acetonitrile solvent model was used for both calculations. To assess which functional gave better precision, the IR spectrum of [BF$_2$(L1)][BF$_4$] and L1 were measured and compared with the frequency output for each functional (Figure 4.16). The following scaling factors were used to correlate the measured and experimental frequencies; B3LYP – 0.9679132 and OLYP – 0.9839133.

While the relative intensities were not predicted that well, the OLYP functional gave an overall better prediction of the relative spread of vibrational frequencies for [BF$_2$(L1)][BF$_4$]. The broad underlying peak around 1000-1200 cm$^{-1}$ in the experimental spectra (red) is attributed to the tetrafluoroborate anion and were not present in the calculations of the [BF$_2$(L1)]$^+$ cation. The broad peak at 1000-1200 cm$^{-1}$ is typical for tetrafluoroborate anions.105
Both the OLYP and B3LYP functionals gave reasonable predictions of the vibrational frequencies for \(\text{L1} \); OLYP predicted the relative spread and intensities slightly better (Figure 4.17).
Figure 4.17: Comparison between the IR spectra of L_1, measured as KBr disc (red), OLYP (blue) and B3LYP (green), the frequency is shown in cm$^{-1}$.

The OLYP functional gave a substantially better model of the UV-Vis spectrum for $[\text{BF}_2(L_1)][\text{BF}_4]$ than B3LYP (Figure 4.18).
The UV-Vis spectrum for L1 was not well predicted with either functional, however, OLYP gave a better account of the spectrum profile (Figure 4.19).
Overall, the OLYP functional was superior to B3LYP in this instance, and calculation of the molecular orbitals using this functional will be used when discussing the transitions which give rise to the observed fluorescence.

4.2.3 Fluorescence Spectroscopy

$[\text{BF}_2(L1)][\text{BF}_4]$ had a distinctive charge transfer peak at 422 nm. Excitation of the peak at 422 nm in a fluorometer showed an emission at 532 nm; none of the other absorbances were fluorescence active. $[\text{BF}_2(L2)][\text{BF}_4]$, did not fluoresce within several orders of magnitude of $[\text{BF}_2(L1)][\text{BF}_4]$, and the dye standards. The absorption and emission spectra of $[\text{BF}_2(L1)][\text{BF}_4]$ are shown in Figure 4.20.

![Figure 4.20: Normalised absorption and emission spectra of $[\text{BF}_2(L1)][\text{BF}_4]$, absorption (blue) and emission (red)](image)

The major molecular orbitals which gave rise to the fluorescence are the HOMO and LUMO shown in Figure 4.21. The donor orbitals are the aromatic system as well as the p orbitals on the substituted chlorides. As the boron complex of $L2$ (without chloride substitution) did not show this activity, electron donation from the chlorides appears to
make an important contribution to the fluorescence. The acceptor orbitals have contribution from the boron cation. The band gap difference between the HOMO and LUMO for the boron complexes of \textbf{L1} and \textbf{L2} was negligible suggesting the weak internal charge transfer occurring in [BF$_2$(L1)][BF$_4$] offers an alternate route of deactivation of the excited state.

![Molecular orbitals associated with the fluorescence for [BF$_2$(L1)][BF$_4$]](image)

Figure 4.21: Molecular orbitals associated with the fluorescence for [BF$_2$(L1)][BF$_4$]

The absorption and emission spectra of [H(L1)][BF$_4$] had a similar, but, weaker profile to [BF$_2$(L1)][BF$_4$]. Excitation of the peak at 427 nm in a fluorometer showed an emission at 532 nm. Given the protonated species can illicit this emission, the fluorescence is clearly associated with an intra-ligand charge transfer attributed to flattening of the aromatic ring system, rather than being specifically due to coordination to boron.
The major molecular orbitals which gave rise to the fluorescence were the HOMO and LUMO shown in Figure 4.23. In this instance the asymmetry of the molecule resulting from one of the nitrogens being protonated appears to account for the weak intramolecular charge transfer. As pictured in Figure 4.23, the donor orbitals are the aromatic system as well as the \(p \) orbitals on the substituted chlorides and the acceptor orbitals have contribution from the protonated nitrogen.

Figure 4.22: Normalised absorption and emission spectra of \([H(L1)][BF_4]\), absorption (blue) and emission (red)
Coumarin 153 and acridine orange were selected as the two standards as they had similar absorption and emission profiles to \([\text{BF}_2(\text{L1})][\text{BF}_4]\), Appendix A.5.7 has the details for each dye. The following equation was used to compare the precision of the measured relative quantum yields of the two dyes and measure the relative quantum yield of \([\text{BF}_2(\text{L1})][\text{BF}_4]\) to both dye standards.

\[
\Phi_{F(X)} = \frac{A_S}{A_X} \frac{F_X}{F_S} \frac{n_X}{n_S} \Phi_{F(S)}
\]

The following table summarises these calculations.
<table>
<thead>
<tr>
<th>Unknown (X)</th>
<th>Standard (S)</th>
<th>Literature Φ</th>
<th>Measured Φ_{F(X)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coumarin 153</td>
<td>Acridine Orange</td>
<td>0.56^{124}</td>
<td>0.47</td>
</tr>
<tr>
<td>Acridine Orange</td>
<td>Coumarin 153</td>
<td>0.20^{135}</td>
<td>0.24</td>
</tr>
<tr>
<td>[H(L1)][BF₄], new^{[a]}</td>
<td>Coumarin 153</td>
<td>-</td>
<td>0.03</td>
</tr>
<tr>
<td>[H(L1)][BF₄], new^{[a]}</td>
<td>Acridine Orange</td>
<td>-</td>
<td>0.02</td>
</tr>
<tr>
<td>[BF₂(L1)][BF₄], new^{[a]}</td>
<td>Coumarin 153</td>
<td>-</td>
<td>0.07</td>
</tr>
<tr>
<td>[BF₂(L1)][BF₄], new^{[a]}</td>
<td>Acridine Orange</td>
<td>-</td>
<td>0.06</td>
</tr>
<tr>
<td>[BF₂(L1)][BF₄], old^{[b]}</td>
<td>Coumarin 153</td>
<td>-</td>
<td>0.009</td>
</tr>
<tr>
<td>[BF₂(L1)][BF₄], old^{[b]}</td>
<td>Acridine Orange</td>
<td>-</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Table 4.3: Calculation of relative quantum yields, Φ_{F(X)} [a] fluorescence measured the same day the solution was prepared, [b] fluorescence measured after standing of the solution for one week

There is some discrepancy between the literature values of the standards and the measured relative quantum yield, however, the variation is acceptable for these types of experiments. Disappointingly, [BF₂(L1)][BF₄] had a very low relative quantum yield compared to similar boron difluoride heteroaryl nitrogen complexes. Moreover, the weak fluorescence was only observed in a freshly prepared solution suggesting contaminants (e.g. dissolved oxygen) quench the fluorescence.

While the fusion of aryl moieties extends the π-system of a ligand; it is not the determining factor for a complex to have a high fluorescence quantum yield. The low quantum yield of [BF₂(L1)][BF₄] could be due to the ligand being a neutral nitrogen donor and the resulting boron complex being cationic. Analogous boron complexes with dipyrrromethene form a neutral species (as a result of losing a proton upon complexation) giving more intense electronic transitions. Additionally, it is preferable to have π-sufficient heteroaryl moieties capable of intramolecular charge transfer rather than just aryl moieties when selecting a ligand to have a high fluorescence quantum yield. The only substituents on L1 are chlorides (which are known to cause poor fluorescence).^{131} These particular boron complexes in their present form are unsuitable for application as fluorescent dyes. However, it was shown in Chapter 3 that modification of L1 to increase the π–conjugation greatly enhanced the observed fluorescence, the protonated form of L8 (Figure 3.12) highlights this.
4.2.4 Surface Enhanced Raman Spectroscopy

In addition to the above fluorescence measurements, the Raman spectrum of [BF$_2$(L1)][BF$_4$] adsorbed on silver colloidal nanoparticles was measured (courtesy of T.M. McLean). This correlated well with DFT calculations of the Raman spectrum of the complex only at the B3LYP/6-311g(2d,p) level without using scaling factors (Figure 4.24 and Table 4.4).

![Raman spectra of [BF$_2$(L1)][BF$_4$]: calculated (red) and SERS (blue)](image-url)

Figure 4.24: Raman spectra of [BF$_2$(L1)][BF$_4$]: calculated (red) and SERS (blue)

The enhanced signals correspond to in-plane stretching and bending vibrations in the aromatic ring-system. Further investigations would be required to determine the mechanism for this SERS enhancement.

<table>
<thead>
<tr>
<th>V_{SERS} (cm$^{-1}$)</th>
<th>V_{CALC} (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1303</td>
<td>1298</td>
</tr>
<tr>
<td>1393</td>
<td>1372</td>
</tr>
<tr>
<td>1625</td>
<td>1630</td>
</tr>
</tbody>
</table>

Table 4.4: Related bands for the SERS and calculated Raman spectra of [BF$_2$(L1)][BF$_4$]
4.3 Complexation of Proton Sponges to Beryllium

4.3.1 Introduction

As discussed in Chapter 1, studies on the coordination of beryllium to neutral nitrogen donors are extremely scarce. Coordination is usually necessitated by having strong anionic counter ligands to balance the charge. A close analogue to quino[7,8-\textit{h}]quinoline investigated in this chapter is 2,2'-bipyridine, which was last investigated for coordination to beryllium nearly 50 years ago (Figure 4.25).\(^{136}\) The paper reported on beryllium 2,2'-bipyridine complexes with; dihalides, dicarbanions and diamides, using melting point and cryoscopy measurements for characterisation.

![Figure 4.25: Coordination of beryllium to 2,2'-bipyridine](image)

In order for beryllium to coordinate to 2,2'-bipyridine, reactive beryllium reagents were used such as dimethyl-beryllium and beryllium chloride. It was also necessary to use anhydrous solvents with Schlenk and dry-box techniques. Due to heavy safety restrictions on the handling of beryllium solids, a number of the techniques employed in the above paper are no longer conducted in laboratories today.

For an overview on the safety aspects of conducting beryllium coordination chemistry refer to Appendix A.2. The characterisation techniques employed in this section were essentially limited to NMR and UV-Vis spectroscopy (i.e. solution techniques) due to the safety considerations of performing this research. The beryllium source used for the coordination chemistry was limited to a 0.99 M beryllium sulfate solution in water. The beryllium coordination chemistry was conducted off-site at the Los Alamos National Laboratory, New Mexico during a three month trip. In order to be permitted to conduct research at this
facility, extensive training was required which was completed within six weeks of the three month period. Beryllium coordination chemistry should never be attempted without the proper safety precautions and training. At the time, the following quino[7,8-h]quinoline based ligands were available for testing:

![Figure 4.26: Proton sponge ligands tested for beryllium coordination](image)

4.3.2 Aqueous Coordination Chemistry of Beryllium to Proton Sponges

Given the conditions required to enable coordination of beryllium to 2,2'-bipyridine, and the significant problem of protonation of quino[7,8-h]quinolines, proving coordination to beryllium under the limited testing conditions was extremely challenging. The following experiments were performed to elucidate whether protonation or beryllium coordination was occurring.

The dichloro-substituted, L1 (Figure 4.27) in CHCl₃ was mixed with BeSO₄ (as a 0.99 M solution in H₂O, diluted with MeOH to allow a single phase reaction). An identical experiment was performed using dilute H₂SO₄ in place of the BeSO₄ to simulate the acidic pH generated by dissolving beryllium sulfate in water.
Colourless solids precipitated for both the beryllium and non-beryllium solutions, which were insoluble in all organic solvents and only water soluble. The mother liquor was drawn off each, taking care to leave the precipitates wetted. The precipitates were washed with aliquots of MeOH. The precipitates were dissolved in water and diluted to 10^{-5} M for spectral measurements (as no drying or weighing of the solids were permitted, the concentrations are approximations). The fluorescence spectra of both were measured, the excitation wavelength was 345 nm and the emission wavelength was 405 nm. Both experiments showed large increases in fluorescence intensity relative to the neutral ligand, but, gave identical spectra indicated in Figure 4.28.

![Figure 4.28: Normalised absorption (blue) and emission spectra (red) at 10^{-5} M of LI after BeSO$_4$ or H$_2$SO$_4$ addition](image)

The UV-Vis spectrum of both showed a large change relative to the neutral ligand, however, both the precipitates gave identical spectra (Figure 4.29).
There was evidently a significant problem in proving beryllium coordination was occurring over protonation and the above results suggest the acidic beryllium sulfate was merely causing precipitation of protonated \(\text{L1} \).

The aqueous soluble precipitate resulting from the reaction with beryllium sulfate did have a \(^{9}\text{Be} \) NMR shift of 0.87 ppm which was distinct from the reference \(\text{Be(H}_2\text{O)}_{4}^{2+} \) shift in water of 0 ppm. \(^1\text{H} \) and \(^{13}\text{C} \) NMR revealed that \(\text{L1} \) was present in the precipitate. The observed \(^{9}\text{Be} \) NMR chemical shift must have been a result of co-precipitation of a beryllium species with the protonated form of \(\text{L1} \). The beryllium species was most likely a cluster of the \([\text{Be}_n(\text{OH})_n(\text{H}_2\text{O})_{2n}]^{n+}\) type as the pH of the resulting aqueous solution (~ pH 4.5) was in the range where these form and the \(^{9}\text{Be} \) NMR shift was typical for such a cluster. \(\text{L1} \) in this case simply acted as a base and partially neutralised the acidic beryllium sulfate solution from pH 2.0 to pH 4.5.

Due to the extreme basicity of proton sponges, the problem of ligand protonation was expected. It was hoped that the Be(II) cation could displace this proton; however, there was no strong evidence to confirm coordination to \(\text{L1} \).
Unfortunately, there was no pH in an aqueous environment where beryllium showed coordination to L1. Be(II) is present as the soluble \([\text{Be(H}_2\text{O)}_4]\)^{2+} at pH ~ 5 and below, and L1 exists as the strongly bound protonated species which was not displaced by beryllium. Between pH ~ 5 and 12 the insoluble \([\text{Be(OH)}_2]\) precipitates. L1 can be deprotonated at pH ~ 12 where it then precipitates, at this pH the sparingly soluble \([\text{Be(OH)}_4]\)^{2-} starts to form, however, there was no evidence of coordination to L1. The general distribution of beryllium species is shown in Figure 4.30,\(^{137}\) however, with the inclusion of a coordinating ligand this is usually perturbed toward complex formation. This was not the case with L1 as the strongly bound protonated species was resistant to any interaction.

\[\text{Figure 4.30: Calculated distribution of beryllium hydroxo species at } C_{\text{Be}} = 0.002 \text{ M, from ref 137} \]

4.3.3 Non-Aqueous Coordination Chemistry of Beryllium to Proton Sponges

In order to counter the effect of the acidity of the aqueous beryllium sulfate causing protonation of L1, a slight excess of triethylamine (10 equiv.) in an organic solvent was used. The ideal solvent to observe apparent coordination of L1 to beryllium was DMF as this solubilised both the reactants and the resulting complex. DMSO appeared to cause breakdown of the resulting species and all other organic solvents did not solubilise the resulting beryllium species. The mixture of L1, BeSO₄(aq), NEt₃ in DMF was stirred at 50 °C for 16 h during this time the solution changed from colourless to yellow.
To determine the influence of DMF and NEt$_3$ on L1 and beryllium sulfate, two extra experiments were set up; one containing no L1 to observe whether the 9Be NMR shift was due to coordination of DMF or NEt$_3$ and the other using dilute H$_2$SO$_4$ in place of beryllium sulfate to determine if the UV-Vis spectrum was actually a protonated form of L1.

Excitation of the beryllium coordinated L1 at 425 nm showed an emission at 530 nm that was not present in the neutral or protonated form of the ligand. It should be noted that these were only weak as the background fluorescence observed for neutral L1 is a similar order of magnitude. This would suggest that the complex is either weakly fluorescent, or, if a complex formed it was only to a small extent.

![Figure 4.31: Normalised absorption and emission spectra at 10$^{-5}$ M of neutral L1 (blue) and after BeSO$_4$ addition (red) in DMF and NEt$_3$](image)

The UV-Vis spectrum (Figure 4.32) showed the appearance of a new peak which now absorbed in the visible part of the spectrum, accounting for the pale yellow colour. However, the heating of only L1 in DMF generated a very similar spectrum and also gave a yellow solution. The mass spectrum of this reaction showed no L1 remaining, rather peaks attributed to nucleophilic substitution of one or both chlorides with dimethylamine (a breakdown product of DMF) were observed.
Figure 4.32: Shift in UV-Vis spectrum at 10^{-5} M of neutral L1 (blue) and after BeSO$_4$ addition or simply heating L1 in DMF and NEt$_3$ (red)

The 9Be NMR spectra of both experiments containing Be(II) were measured. The solution containing L1 showed a very broad shift centred around 2.25 ppm which was distinct to the solution containing no L1 which was centred around 0.47 ppm. This suggested L1 had some influence on the 9Be NMR spectra; however, the 9Be signal was much too broad to be attributed to a single species. For single species the width at half height can be related to the coordination number of Be(II) and the only complexes to show high values (i.e. broad peaks) are two or three coordinate species. A four-coordinate species typically has a width at half height of around 50 Hz. The only plausible explanation is that more than one species is present, which is probably due to polymeric species. The solution containing no L1 was also broad suggesting a variety of coordination modes to the solvent and triethylamine. In addition, the apparent dimethylamine displacement of the chlorides on L1 would enable the now free chlorides to participate in beryllium coordination.
Potential beryllium complexes of L1 can be proposed via interpretation of the calculated 9Be NMR shift after optimisation of theoretical models (Table 4.5). This was investigated by Plieger and co-workers and has been used to confirm speciation in subsequent papers. In the present work, the theoretical models were optimised using Becke’s three-parameter hybrid exchange correlation functional containing the nonlocal gradient correlation of Lee, Yang, and Parr (B3LYP), in conjunction with the 6-311++g(2d,p) basis set. The shielding tensor is related to the NMR chemical shift by comparison to a standard of known chemical shift and its calculated shielding tensor. The GIAO (gauge-including atomic orbital) NMR method and the same gradient correlation and basis set as were used in the optimisation were used to calculate the shielding tensor for each model. Aqueous beryllium sulfate, Be(H$_2$O)$_4^{2+}$, is defined with a NMR shift of 0.00 ppm and a shielding tensor of 109.10 ppm at the 6-311++g(2d,p) level.

| Complex | δ$_{\text{ref}}$ | δ$_{\text{model}}$ | δ$_{\text{(ref-model)}}$ | δ$_{\text{exptl}}$ | |Δ$_{\text{exptl-calc}}$ |
|--------------------------------|------------------|---------------------|--------------------------|-------------------|--------------------------|
| Be(H$_2$O)$_4^{2+}$ | 109.10 | 109.10 | 0.00 | 0.00 | 0.00 |
| [Be(L1)$_2$]$^{2+}$ | 101.02 | 8.08 | 2.25 | 5.83 |
| [Be(L1)(H$_2$O)$_2$]$^{2+}$ | 104.11 | 4.99 | 2.25 | 2.74 |
| [Be(L1)(SO$_4$)] | 105.35 | 3.75 | 2.25 | 1.50 |
| [Be$_3$(OH)$_3$(L1)$_3$]$^{3+}$ | 103.19 | 5.91 | 2.25 | 3.66 |

Table 4.5: NMR analysis of beryllium complexes with L1

In this instance there were no calculated 9Be NMR shifts for beryllium complexes of L1 which correlated closely to experimentally observed value. The value of Δ should be close to 0 ppm if the theoretical model is a correct prediction of the experimentally observed species. It is possible to rule out [Be(L1)$_2$]$^{2+}$ as the Δ value of 5.83 ppm suggests two equivalents of L1 do not coordinate to beryllium. The species in solution may contain one equivalent of L1 to beryllium, but, the exact species cannot be determined. Complexes
where hydrogen bonding interactions are important are known to have poorly correlated calculated NMR shifts and can vary by 2 or more ppm. The closest beryllium complex with neutral nitrogen donors and a measured ^9Be NMR was $[\text{Be(NH}_3)_4]^{2+}$ and the Δ between the calculated and experimental shift was 2.1 ppm, so it is possible that a species such as $[\text{Be(L1)(SO}_4)]$ formed where Δ was 1.50. Characterisation was impeded by the complex reaction mixture. Attempted modelling of the four-coordinate complex $[\text{Be(L1-NMe}_2)]^{2+}$ where the chlorides on L1 were displaced by dimethylamine (from DMF) and the chlorides them coordinated to Be(II) gave a Δ of 5.93.

L2 did not give a similar result to L1. In the absence of triethylamine, L2 gave exclusive precipitation of the protonated ligand. In the presence of NEt$_3$ in DMF the protonated ligand also precipitated. This suggests that the ^9Be NMR shifts observed when L1 was present with NEt$_3$ in DMF may be the displaced chlorides interacting with beryllium to give a beryllium chloride species.

![Figure 4.34: Quino[7,8-h]quinoline, L2](image)

No complexation to L3 was observed with or without triethylamine, nor was a precipitate of the protonated species obtained. Protonation of the ligand most likely occurred; however, it was soluble and remained in solution.

![Figure 4.35: 1,8-bis(Dimethylamino)naphthalene, L3](image)

No complexation to L4 was observed, the hydrogen could not be displaced and attempted use of strong inorganic bases was not compatible with the aqueous beryllium sulfate solution.
A similar observation to L1 occurred for L5 as evidenced by a new beryllium species in the 9Be NMR (Figure 4.37). The mixture of L5, BeSO$_4$(aq), NEt$_3$ in DMF was stirred at 50 °C for 16 h during this time the solution changed from colourless to yellow.

The 9Be NMR of this mixture showed a broad peak at 1.69 ppm. The broad peak would likely contain a large number of beryllium species involving solvent and triethylamine. Chloride (from L5 displaced by the breakdown product of DMF) likely contribute to the observed 9Be NMR shift by participating in these complex beryllium species.

A 20 µL aliquot of the reaction mixture was diluted with DMF (10 mL) to give a concentration of 48.5 µmol L$^{-1}$ which was measured against an identical sample containing neutral L5 and a partial change was observed in the UV-Vis and fluorescence spectras.
Excitation of the reaction mixture at 405 nm showed a very weak emission at 495 nm that was not present in the neutral ligand.

Figure 4.39: Shift in UV-Vis spectrum at 10^{-5} M of neutral L5 (blue) and after BeSO$_4$ addition (red) in DMF and NEt$_3$

Figure 4.40: Normalised absorption and emission spectras at 10^{-5} M of neutral L5 (blue) and after BeSO$_4$ addition (red) in DMF and NEt$_3$
Due to the tautomer forms of \textbf{L7} and \textbf{L8}, they showed no coordination to beryllium. The central proton was not displaced in order to coordinate beryllium.

\begin{figure}[h]
\centering
\includegraphics[width=0.7\textwidth]{figure.png}
\caption{Proton sponges with tautomers incapable of coordinating to Be(II)}
\end{figure}
4.4 Complexation of Proton Sponges to Transition Metals

4.4.1 Introduction

In order to emphasise the size selectivity of proton sponges toward small cations, it was necessary to investigate whether they can be bound to larger cations such as transition metals. There are a few papers in existence where metal complexes were formed with various different types of proton sponges. These complexes were formed using metals that form strong M – N bonds. Carefully selected dimeric metal salts (such as Zeise’s dimer [Pt₃(H₂C=CH₂)₂Cl₄]), which have weakly coordinating bridging ligands also allowed easy displacement by the chelating ligand.

![Figure 4.42: Metal complexes with L1](image)

The following section will explore whether quino[7,8-h]quinolines can complex to various metal salts to deduce the strength of coordination with transition metals.

4.4.2 Results / Discussion

To begin with; a series of copper(II) salts were tested for their coordination to L1; copper sulfate, acetate, chloride and perchlorate. Acetonitrile was used as the solvent creating a polar aprotic environment (aside from the water present in the metal salts) and could provide additional coordinating ligands if required. In all cases an initial colour change to green was observed indicating formation of a copper complex followed by rapid precipitation of a colourless solid, which was the protonated form of L1, caused by hydrolysis. The exception to this was the perchlorate salt which did not give the rapid
precipitate of protonated L1 and could be analysed further. The perchlorate anion is one of the least coordinating anions and gave the greatest stability toward hydrolysis of the metal complex given by the following general equations (L = L1, M = Cu, X = anion):

\[
L + MX_2 \rightarrow [LM][X_2] \\
[LM][X_2] + H_2O \rightarrow [LH][X] + [MOH][X]
\]

Use of triethylamine as an auxiliary base did not hinder the formation of protonated L1 for the sulfate, acetate and chloride salts. According to the Hofmeister Series,139 the anion most likely influences the hydrolysis as a strongly hydrated anion brings water in close proximity to the metal complex, water is present in all the metal salt reagents. As perchlorate anions are weakly hydrated, they did not induce rapid hydrolysis.

With perchlorate established as a suitable anion for preventing hydrolysis, perchlorate salts of nickel, zinc and cobalt were also tested for coordination to L1. They all showed what appeared to be initial complexation followed by rapid precipitation within seconds of protonated L1. Thus, the only 1st row transition metal in the current investigation to show some stability was copper as a perchlorate salt. The stability of copper complexes relative to other 1st row transition metals is well documented according to the Irving-Williams series.140

The complexation of L1 with copper perchlorate in acetonitrile gave [Cu(L1)(CH3CN)3][ClO4]2. Single crystals suitable for X-ray determination were obtained by vapour diffusion of diethyl ether into acetonitrile containing [Cu(L1)(CH3CN)3][ClO4]2. The crystals were not air stable and collapsed due to solvent loss. In addition the crystals were transient, after initial crystallisation the crystals would redissolve and protonated ligand was precipitated within 24 hours. When care was taken not to expose the crystals to air it was possible to record the X-ray structure. Elemental analysis of the isolated dried crystals gave the formula of the complex as [Cu(L1)(H2O)3][ClO4]2, essentially the water molecules had replaced the coordinated
acetonitrile molecules in the inner coordination sphere during the drying and analysis process.

The structure crystallised in space group $P2_1/c$ and the asymmetric unit consisted of a complex and accompanying anions. The crystal structure revealed L1 had a bowed aromatic ring system with the copper ion located 0.867(4) Å above the mean plane of the aromatic ring. The aromatic ring was also bowed similar to the platinum and rhenium complexes reported previously. The cavity was not an ideal fit for the Cu(II) ion.

![Figure 4.43: Perspective view of the crystal structure of [Cu(L1)(CH3CN)3](ClO4)2, ellipsoids drawn at the 50% probability level, the second ClO4 is omitted for clarity.](image)

The complex adopts a square pyramidal geometry with one perchlorate providing a long range interaction of 2.626(4) Å filling the vacant sixth site. The second perchlorate lies to one side of the complex (not pictured). The bond angles passing through the metal centre all deviate from the ideal 90° (Table 4.5). A symmetry generated perchlorate from an adjacent molecule lies in a “pocket” created by the three coordinated acetonitrile molecules (Figure 4.44).
The complex also showed typical Jahn-Teller distortion of the axial ligands, the lengths are summarised in Table 4.6:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Length (Å)</th>
<th>Parameter</th>
<th>Angle (°)</th>
<th>Parameter</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu1–N1 (eq)</td>
<td>1.982(3)</td>
<td>N1–Cu1–N2</td>
<td>88.25(12)</td>
<td>N2–Cu1–O21A</td>
<td>95.18(13)</td>
</tr>
<tr>
<td>Cu1–N2 (eq)</td>
<td>1.966(3)</td>
<td>N1–Cu1–N100</td>
<td>101.69(13)</td>
<td>N100–Cu1–N200</td>
<td>88.40(13)</td>
</tr>
<tr>
<td>Cu1–N200 (eq)</td>
<td>2.008(4)</td>
<td>N1–Cu1–N200</td>
<td>92.83(12)</td>
<td>N100–Cu1–N300</td>
<td>88.42(13)</td>
</tr>
<tr>
<td>Cu1–N300 (eq)</td>
<td>2.022(3)</td>
<td>N1–Cu1–O21A</td>
<td>83.21(13)</td>
<td>N200–Cu1–N300</td>
<td>85.66(14)</td>
</tr>
<tr>
<td>Cu1–N100 (ax)</td>
<td>2.316(4)</td>
<td>N2–Cu1–N100</td>
<td>97.00(13)</td>
<td>N300–Cu1–O21A</td>
<td>86.54(13)</td>
</tr>
<tr>
<td>Cu1–O21A (ax)</td>
<td>2.623(4)</td>
<td>N2–Cu1–N300</td>
<td>92.26(14)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.6: Major structural parameters for the geometry of the Cu(II) ion in [Cu(L1)(CH₃CN)₃][ClO₄]₂

No significant π-stacking interactions were in the crystal; however, anion-π interactions of between the oxygens on the perchlorates and centroids on the rings of the heterocycle were present. The perchlorate associated with the copper had an intramolecular interaction with the heterocycle (Figure 4.45); O23A – Cg2 3.254(4) Å, Cl2A – O23A – Cg2 126.7(2)°, Cl2A – Cg2 4.287(3) Å. An intermolecular interaction with another symmetry generated perchlorate contacts via two oxygens and two six-membered rings; O13 – Cg2 2.967(7) Å, Cl10 – O13 – Cg2 124.2(3)°, Cl10 – Cg2 3.927(2) Å and O14 – Cg1 3.415(4) Å, Cl10 – O14 – Cg1 104.66(16)°, Cl10 – Cg1 4.029(2) Å.

Figure 4.44: Space-filling diagram showing a perchlorate stabilising the acetonitrile ligands
The UV-Vis spectrum showed a broad d-d transition at 625 nm with $\varepsilon = 50$ L mol$^{-1}$ cm$^{-1}$. The Cu(II) ion sat a large distance out of the plane of the ring system of L1 in the crystal structure so there was not expected to be any metal–ligand charge transfer interactions.
The shape and position of the d-d transition can sometimes distinguish the geometry of the ligands around a Cu(II) ion. According to Figure 4.47, the axial acetonitrile is coordinating in solution as well as the solid state. If the Cu(II) complex of \(\text{L1} \) was square-planar, a sharper d-d transition closer to 500 nm would be expected. In this instance the broad transition centred around 625 nm is closer to that observed for square-based pyramidal complexes.

![Figure 4.47: Summary of energy ranges for closely related CuN\(_x\) chromophores with different stereochemistries, figure from S. Kirk's thesis,141 adapted from Lever142](image)

The complexation of \(\text{L2} \) with copper perchlorate in acetonitrile gave the complex, \([\text{Cu(L2)}(\text{CH}_3\text{CN})_3][\text{ClO}_4]_2\) which had similar stability and crystallised under the same conditions to the complex with \(\text{L1} \). Elemental analysis of the isolated dried crystals gave \([\text{Cu(L2)}(\text{H}_2\text{O})_3][\text{ClO}_4]_2\), the expected outcome from solvent removal. The structure crystallised in space group \(P-1 \) and the asymmetric unit consisted of a complex and accompanying anions. The crystal structure revealed \(\text{L2} \) had a bowed aromatic ring system with the copper ion located 0.849(6) Å above the mean plane of the aromatic ring.
Figure 4.48: Perspective view of the crystal structure of [Cu(L2)(CH3CN)3][(ClO4)2], ellipsoids drawn at the 50% probability level, the second ClO4- is omitted for clarity.

The complex adopted a square pyramidal geometry with one perchlorate providing a long range interaction of 2.651(4) Å occupying the sixth site. The bond lengths and angles shows only minor deviations to [Cu(L1)(CH3CN)3][(ClO4)2].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Length (Å)</th>
<th>Parameter</th>
<th>Angle (°)</th>
<th>Parameter</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu1–N1 (eq)</td>
<td>1.963(4)</td>
<td>N1–Cu1–N2</td>
<td>88.83(19)</td>
<td>N2–Cu1–O21</td>
<td>84.47(17)</td>
</tr>
<tr>
<td>Cu1–N2 (eq)</td>
<td>1.984(5)</td>
<td>N1–Cu1–N101</td>
<td>91.47(19)</td>
<td>N101–Cu1–N201</td>
<td>86.2(2)</td>
</tr>
<tr>
<td>Cu1–N201 (eq)</td>
<td>1.971(5)</td>
<td>N1–Cu1–N301</td>
<td>95.36(19)</td>
<td>N101–Cu1–N301</td>
<td>89.80(19)</td>
</tr>
<tr>
<td>Cu1–N301 (eq)</td>
<td>2.032(5)</td>
<td>N1–Cu1–O21A</td>
<td>94.24(17)</td>
<td>N201–Cu1–N301</td>
<td>88.4(2)</td>
</tr>
<tr>
<td>Cu1–N101 (ax)</td>
<td>2.305(5)</td>
<td>N2–Cu1–N201</td>
<td>92.8(2)</td>
<td>N201–Cu1–O21</td>
<td>81.86(18)</td>
</tr>
<tr>
<td>Cu1–O21 (ax)</td>
<td>2.651(4)</td>
<td>N2–Cu1–N301</td>
<td>100.41(19)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.7: Major structural parameters for the geometry of the Cu(II) ion in [Cu(L2)(CH3CN)3][(ClO4)2]

No significant π-stacking interactions in the crystal; however, anion-π interactions between the oxygens on perchlorate and centroids on the rings of the heterocycle were present. The perchlorate associated with the copper had an intramolecular interaction with the heterocycle (Figure 4.48); O21 – Cg1 3.498(7) Å, Cl2 – O21 – Cg1 114.7(3)°, Cl2 – Cg1
4.291(3) Å. An intermolecular interaction with another symmetry generated perchlorate contacts via two oxygens and two six-membered rings; O12 – Cg2 3.102(5) Å, Cl1 – O12 – Cg2 130.7(3)°, Cl1 – Cg2 4.18(3) Å and O13 – Cg3 3.426(5) Å, Cl1 – O13 – Cg3 114.1(2)°, Cl1 – Cg3 4.226(3) Å. The lengths of these interactions are shorter for [Cu(L1)(CH3CN)3][ClO4]2 due to the electron withdrawing effect of the chlorides decreasing the electron density on the heterocyclic rings. A similar trend in the anion-π interactions was observed in the crystal structures of the boron complexes of L1 and L2.

![Figure 4.49: Crystal packing of [Cu(L2)(CH3CN)3][ClO4]2](image)

The UV-Vis of [Cu(L2)(CH3CN)3][ClO4]2 showed a similar weak d-d transition to the copper complex of L1, the maximum absorbance was at 613 nm with ε = 67 L mol⁻¹ cm⁻¹.
X-Band ESR spectra (Table 4.8) of both complexes were recorded in acetonitrile at liquid nitrogen temperatures, courtesy of E. Ainscough. Both complexes showed essentially identical spectra suggesting the chlorides on L1 have almost no influence on the Cu(II) complex relative to L2 containing only hydrogens. The $g_{∥} > g_{⊥}$ values are typical for monomeric axial Cu(II) complexes and confirm the crystal structures.143, 144 Well-resolved hyperfine lines in the $g_{⊥}$ region were not observed.

<table>
<thead>
<tr>
<th>Cu(II) Complex</th>
<th>ESR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$g_{∥}$</td>
</tr>
<tr>
<td>L1</td>
<td>2.3133</td>
</tr>
<tr>
<td>L2</td>
<td>2.3133</td>
</tr>
</tbody>
</table>

Table 4.8: ESR data for the copper complexes of L1 and L2

The size-fit of quino[7,8-h]quinolines can be analysed by comparing the distances between the following adjacent atoms (Figure, 4.51, Table 4.9).
A good size-fit cation shows shortened N1 – N2 and C13 – C17 distances and slightly lengthened C6 – C7 distances relative to the neutral ligand. The atomic displacements behave similarly to the opening and closing of a peg (Figure 4.52). For both the small B(III) and H⁺ cations the atomic distances are shortened around the binding cavity and lengthened on the opposing side of the pivot (red arrows). For the larger metal cations the atomic distances have the reverse trend (blue arrows).

The neutral ligand, L1, has a slightly elongated N1 – N2 distance of 2.768(2) Å due to the repulsion of the lone electron pairs on the nitrogens, which in turn compresses the C6 – C7 distances.
distance to 2.444(2) Å on the backend of the molecule. This strain is relieved in the protonated form of $\mathbf{L1}$ with the N1 – N2 distance now reduced to 2.591(2) Å with a slight elongation of the C6 – C7 distance to 2.467(3) Å. The B(III) cation offered a further improvement to this reduction in strain as the boron $\mathbf{L1}$ and $\mathbf{L2}$ complexes have the shortest N1 – N2 distances of 2.553(5) Å and 2.560(3) Å respectively. This is due to the presence of two covalent B – N bonds while the protonated form has one N – H bond and a weaker hydrogen bond to the adjacent nitrogen. The Cu(II) complex gave a slightly shorter N1 – N2 distance compared to the previously reported Pt(II) complex, which may be explained by the smaller ionic radii of Cu(II).
4.5 Summary

To better investigate the coordination of small cations to quino[7,8-\textit{h}]quinolines, boron difluoride complexes were formed and crystallographic evidence showed there was a good size-fit for small cations. It was hoped that the boron complexes would show potential as fluorescent dyes, however, these complexes exhibited very low quantum yields and the fluorescence was not preserved over time.

Boron trifluoride was ideally suited to coordinating quino[7,8-\textit{h}]quinoline as the incomplete electron octet of boron was readily filled by the lone electron pairs of the heterocyclic nitrogens of quino[7,8-\textit{h}]quinoline. Full coordination was facilitated by having a second boron trifluoride molecule remove a fluoride to give the tetrafluoroborate anion which balances the charge of the cationic boron difluoride complex of quino[7,8-\textit{h}]quinoline (Figure 4.53).

![Figure 4.53: Coordination of boron trifluoride to quino[7,8-\textit{h}]quinoline](image)

The excellent coordination to B(III) and poor coordination to Be(II) comes down to the differing reaction environments and choice of Be(II) starting reagent. Favourable ligand coordination to Be(II) in an aqueous environment is best explained comparing the coordination of Be(II) to the analogous benzo[\textit{h}]quinolin-10-ol (Figure 4.54).61 Benzo[\textit{h}]quinolin-10-ol has an electron-rich phenolic oxygen which has two sets of unpaired electrons. The pyridine adjacent to this phenol weakens the OH bond by forming a strong intramolecular hydrogen bond. The weakening of the OH bond enhances the nucleophilicity of the phenolic oxygen by facilitating the formation of the phenoxide ion. It is the nucleophilic phenoxide ion which coordinates to the Be(II) cation. After removal of
the pyridine-associated proton, complete coordination by one molecule of benzo\[h\]quinolin-10-ol to Be(II) is achieved by solvent loss and association of Be(II) with the remaining pyridine.

![Figure 4.54: Coordination of beryllium hydrate to benzo\[h\]quinolin-10-ol](image)

The crucial difference for quino[7,8-\(h\)]quinoline is there is apparently no driving force for initial Be(II) association. Each \(sp^2\) nitrogen in quino[7,8-\(h\)]quinoline has one lone electron pair which both get tied up upon protonation. Once this occurs the cationic molecule has no available electron pair capable of disrupting the cationic beryllium hydrate species, Figure 4.55.

![Figure 4.55: Inactivation of quino[7,8-\(h\)]quinoline by protonation](image)

The investigation into whether Be(II) would coordinate to proton sponges has confirmed the critical features for creating a suitable ligand for complexation of beryllium. Had the means and materials been available, it is more than likely a beryllium complex of quino[7,8-\(h\)]quinoline could have been formed in aprotic media with a suitable beryllium reagent, similar to that used for the boron complex. In aqueous systems the beryllium aqua species, whether it is the tetrahydrate species in acidic pH, a cluster species at intermediate pH or the hydroxide species at basic pH; are considered moderately stable species. It is imperative to utilise strong anionic oxygen donors to break this hydration sphere and
achieve coordination. Despite providing a cavity structurally suited for the small Be(II) cation, the binding strength of the quino[7,8-\textit{h}]quinolines after protonation was not sufficient to displace the water molecules surrounding Be(II) and achieve coordination. The tendency for the ligands to rapidly protonate effectively inactivates them toward beryllium complexation. Once this happened there was no longer a driving force to coordinate beryllium, and the anticipated displacement of strongly deshielded proton by beryllium did not occur.28,61 Displacement of a deshielded proton is necessitated by having a mixed oxygen – nitrogen donor ligand.

When coordination to transition metals was attempted, for all intents and purposes quino[7,8-\textit{h}]quinolines met the criteria for excluding large metal cations. Extremely weak copper complexes (copper having the highest stabilities according to the Irving-Williams series) were formed with copper perchlorate in acetonitrile which existed briefly. Crystallisation of this complex showed a large distortion of the copper ion out of the plane of the heterocyclic ring. No other 1st row transition metal complexes were formed.

Quino[7,8-\textit{h}]quinolines were generally unsuitable for making useful complexes and remain a structural novelty. While they do have an ideal size-fit for small cations, as shown in the crystal structure of the B(III) complex, the inherent weakness of the neutral nitrogen donors combined with the high susceptibility for protonation mean they would be a poor choice for any Be(II) sensing for sequestering applications in aqueous environments. The remainder of this thesis investigated compounds which should give stronger beryllium complexes and attempt to use encapsulation for selectivity.
Chapter 5: Synthesis of Tetra-Coordinate Ligands

5.1 Assessment of Tetra-Coordinate Ligands

In contrast to the proton sponges investigated in Chapter 4, the ligands described in this chapter have greater flexibility due to the less strained geometries. The binding cavities are still relatively tight and have the advantage of offering four donor atoms and the possibility for full encapsulation of Be(II). These ligands also incorporate oxygen donors to provide a better opportunity for initial association with Be(II) which was the likely shortfall of the proton sponges. While the remaining donor arms on these ligands have weak nitrogen donors, it is hoped that Be(II) will coordinate via chelation to all four donor atoms. This was the assumption made for the theoretical calculations, which were performed with the same level of theory used for assessing the proton sponges in Chapter 2; B3LYP and 6-31(d).

The first ligand, \textbf{501}, consists of three pyridine units with nitrogen donors linked via a central carbon atom (Figure 5.1). An oxygen donor in the form of a phenol moiety substituted onto one of the pyridines caps the tetrahedral binding cavity. Full encapsulation of Be(II) would involve all three nitrogen donors and an oxygen donor from the deprotonated phenol. There are currently no known ligands which provide this type of enclosed tetrahedral binding cavity.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure51.pdf}
\caption{2-(6-(Dipyridin-2-ylmethyl)pyridin-2-yl)phenol, \textbf{501}, $X = C, N$}
\end{figure}

The only ligand marginally related to \textbf{501} is shown in Figure 5.2 which appeared in a patent for use as a potassium ion channel modulator for therapeutic and diagnostic applications.145
This ligand would not provide an ideal tetrahedral geometry and the four neutral nitrogen donor atoms would be unsuitable for coordination to Be(II).

![Figure 5.2: A related four-coordinate ligand to 501](image)

A computer generated model of the beryllium complex of 501 is shown in Figure 5.3. The three nitrogen atoms make a trigonal pyramidal base providing three points of the tetrahedral cavity. The oxygen from the phenol caps the complex to give what appears to be an ideal tetrahedral geometry for beryllium with favourable bond lengths and angles around the Be(II) centre.

![Figure 5.3: Computer model of beryllium coordinated to 501, hydrogens removed for clarity](image)

The second ligand, 502, consists of quinoline-8-carboxylic acid and two pyridine units (Figure 5.4). Full encapsulation of Be(II) would involve all three nitrogen donors and an oxygen donor from the deprotonated carboxylic acid in a similar arrangement to 501.
A computer generated model of the beryllium complex of \(502 \) is shown in Figure 5.5. The three nitrogen atoms make a trigonal pyramidal base and the oxygen from the deprotonated carboxylic acid caps the complex. This provides a tetrahedral geometry for Be(II) analogously to \(501 \).

The final set of ligands considered in this thesis are based on tertiary amines, the central amine offers one point of coordination and the arms offer the remaining donors which consist of phenols, pyridines, carboxylic acids or quinoline moieties (Figure 5.6).
Unlike compounds 501 and 502 above, molecules L15 through L21 are open to coordination outside of the central cavity; however, when optimisation was attempted utilising the three donor arms with the fourth donor being a solvent molecule (H₂O) the minimised structure found displaced the water molecule and placed the Be(II) cation within the central cavity bound through the tertiary amine (Figure 5.7). The water molecule initially placed as the fourth point of coordination to Be(II) was displaced in favour of Be(II) coordination to the central amine.

Figure 5.6: Range of tetra-coordinate amine-capped ligands

Figure 5.7: Computer model of beryllium coordinated to L17 and the water molecule initially placed as the fourth coordination point displaced after geometry optimisation, hydrogen atoms have been removed for clarity
5.2 Synthesis of a Phenol-Capped Tetra-Coordinate Ligand

5.2.1 Introduction

If 501 is first considered with a carbon atom linking the three pyridine groups, the logical disconnection for would be to split it into the halide substituted 2-(pyridin-2-yl)phenol, 503, and the methylene-bridged dipyridine, 504 (Figure 5.8).

![Figure 5.8: Disconnection of 2-(6-(dipyridin-2-ylmethyl)pyridin-2-yl)phenol, 501](image)

The desired 503 has been reported previously. The methylated phenol, 509, should hopefully avoid undesired side reactions from the phenol group participating in the coupling with 504. A Corriu-Kumada-Tamao coupling between the Grignard of the commercially available 505 and 507 gives 508 (Scheme 5.1).

[Scheme 5.1: Synthesis of 2-chloro-6-(2-methoxyphenyl)pyridine, 509]

The substitution of a chloride selectively at the 2-position on 508, was proposed to occur via chelation of the aggregate BuLi-DMAE (LiDMAE = Me₂N(CH₂)₂OLi, Figure 5.9).
While 504 is available commercially, it was more cost effective to synthesise it from the constituent pyridines. A number of papers have reported the synthesis of 504, the most convenient was deemed to be that by Dyker and Muth.147

\begin{center}
\includegraphics[width=0.5\textwidth]{figure5.9.png}
\end{center}

\textit{Figure 5.9: Proposed model for external chelations in substituted phenylpyridines leading to chloride substitution at the 2-position}

5.2.2 Results / Discussion

The synthesis of 504 and 509 proceeded as described in the literature. The coupling of 504 and 509; however, did not proceed (Scheme 5.3).

\begin{center}
\includegraphics[width=0.5\textwidth]{scheme5.2.png}
\end{center}

\textit{Scheme 5.2: Synthesis of 2-(2-pyridylmethyl)pyridine, 504}

Firstly, the coupling was attempted by generating a carbanion of 504 with \textit{n}-butyllithium. Although the exact coupling is unprecedented, a carbanion formed at the methylene bridge of 504 generated by treatment with \textit{n}-butyllithium has been used in several carbon – carbon bond forming reactions previously.147-150 The carbanion was formed by treatment of 504 with \textit{n}-butyllithium at -78 °C in one hour, then the electrophile, 509, was introduced and the reaction was either warmed slowly to RT over 4 hr or heated to reflux for 30 min.
There was no evidence of formation of 512 in either case by mass spectrometry of the reaction mixture or discrete products isolated by silica gel column chromatography.

In an attempt to make a better leaving group on 509, a bromide was placed at the 2-position on the pyridine ring instead of the chloride to give 513. The methodology of Parmentier and co-workers146 was followed to give the previously unreported pyridylphenol; 513. This was achieved by using carbon tetrabromide as the electrophile source in place of hexachloroethane in the final step of Scheme 5.1.

![Scheme 5.4: Synthesis of 2-bromo-6-(2-methoxyphenyl)pyridine, 513](image)

There was also no evidence for the formation of 512 when 513 was the electrophile in the attempted carbanion coupling reaction (Scheme 5.5).

![Scheme 5.5: Attempted synthesis of 2-((dipyridin-2-ylmethyl)-6-(2-methoxyphenyl)pyridine, 512](image)

Nucleophilic substitution should occur at the 2-position of 509 or 513 as halides typically make good leaving groups and the 2-carbon should be slightly more electrophilic due to the influence of the slightly electron withdrawing nitrogen. The carbanion of 504 may not be a strong nucleophile, perhaps due to charge delocalisation onto the adjacent pyridine rings. Next, the roles in the coupling reaction were reversed by attempting to make carbanions of 509 and 513 by displacing the halides with n-butyllithium and using derivatives of 504 as the electrophile. 504 was substituted with a bromide at the methylene bridge using N-bromosuccinimide (NBS)151 (Scheme 5.6) to add a leaving group and promote nucleophilic displacement by 509 or 513.
The coupling still did not proceed when the carbanion of 509 or 513 was reacted with 514 (Scheme 5.7). Although there was no precedence of 514 acting as an electrophile in carbon–carbon bonding forming reactions, it was hoped that n-butyllithium would displace the halides on 509 and 513 making a carbanion at the 2-position on the pyridine ring. Charge delocalisation may also make 509 and 513 poor nucleophiles.

Similarly, when dipyridin-2-ylmethanone, 515, was used as the electrophile in place of 514 there was still no coupling observed (Scheme 5.8). A coupling of 515 and an aromatic bromide has been reported152 and with a N-substituted pyrrole with a bromide at the 2-position.153 The problem must be isolated to the attempted use of 509 or 513 as the nucleophiles.

It was apparently not possible to construct 512 or 516 using this methodology. Finally, the coupling via nucleophilic substitution of carbanions was abandoned altogether and the nucleophile was switched to dipyridin-2-ylamine, 517 (Figure 5.10).
While 517 would change the backbone of the resultant tetra-coordinate species to 518 (Scheme 5.9) there is no obvious drawback to having an amine in place of the central carbon of 512. The central amine would not be expected to participate in coordination to Be(II) as unfavourable four-membered N(amine) – Be – N(pyridine) chelate rings would need to form. It is expected that Be(II) coordination would still proceed via the three pyridines and phenol.

\[
\text{Scheme 5.9: Proposed synthesis of 6-(2-methoxyphenyl)-N,N-di(pyridin-2-yl)pyridin-2-amine, 518, } X=\text{Br, Cl}
\]

Nucleophilic substitution of 517 onto aromatic bromides is a known coupling reaction as reported by Aubouy and co-workers.154 This reaction involved a melt of 517 and an aromatic bromide with K\textsubscript{2}CO\textsubscript{3} and CuSO\textsubscript{4}.5H\textsubscript{2}O heated to 210 °C for 6 hr.

When the same reaction conditions were applied to 513 and 517 only trace quantities of 518 were formed as evidenced by TLC and mass spectrometry. The solventless high-temperature thermal reaction was not suitable in this instance and significant charring of reagents occurred over the course of the reaction.

The solventless reaction was also attempted with microwave heating for shorter time periods of 5 – 15 min at 160 °C; however, only trace quantities of 518 were formed as evidenced by TLC. Attempted microwave heating for longer time periods 15 – 60 min at lower temperature, 120 °C did not improve coupling. The problem was most likely caused by inadequate mixing of the reagents and the stability of 513 so the reaction was re-designed to use 6M KOH as both the solvent and base (in place of K\textsubscript{2}CO\textsubscript{3}). Now, the
reaction proceeded smoothly after 15 min at 160 °C heating by microwave irradiation. The only minor issue was in purification as both unreacted 517 and the product 518 had similar polarity making silica gel column chromatography difficult. This was solved by using two equivalents of 513 and this achieved nearly quantitative conversion of 517 to 518. This represented a novel and efficient route to 518 (Scheme 5.10).

Scheme 5.10: Synthesis of 6-(2-methoxyphenyl)-N,N-di(pyridin-2-yl)pyridin-2-amine, 518

The synthesis of 518 was confirmed by ¹H, ¹³C NMR and high resolution mass spectroscopy. While the aromatic signals were overlapped in the ¹H NMR, a 2D COSY NMR experiment in conjunction with comparison of some of the original shifts for 513 and 517 allowed identification of the three distinct regions of coupled aromatic protons (Figure 5.11).
Figure 5.11: COSY of 6-(2-methoxyphenyl)-N,N-di(pyridin-2-yl)pyridin-2-amine, 518
Finally a 2D HMQC NMR experiment identified the 15 carbons coupled to protons (the carbons in red are symmetric so 11 actual carbon peaks are observed) and 6 quaternary carbons (the carbons in red are symmetric so 5 actual carbon peaks are observed) (Figure 5.12).

Figure 5.12: HMQC of 6-(2-methoxyphenyl)-N,N-di(pyridin-2-yl)pyridin-2-amine, 518
Demethylation of 518 was achieved using BBr$_3$ to give L14 in 79 % yield (Scheme 5.11), a ligand potentially capable of fully encapsulating Be(II). The HBr generated upon aqueous workup protonated the nitrogen atoms on L14, the aqueous phase was neutralised with 2M NaOH where L14 moved into the organic phase. The correct product was identified by NMR and high resolution mass spectroscopy after purification by silica gel column chromatography. The notable difference from the NMR of 518 and L14 was the disappearance of the methoxide peak at 3.87 ppm and the appearance of phenol proton at 12.54 ppm in the 1H NMR spectrum. A misleading peak in the low resolution mass spectrum with the same mass as 518 could be seen when the solvent was dichloromethane. This is actually L14.CH$_2^+$ as pyridine is known to slowly react with dichloromethane to form methylenebispyridinium salts and is readily observed in the ionising conditions of the mass spectrometer.155

$\text{Scheme 5.11: Synthesis of } 2\cdot(6\cdot(\text{dipyridin-2-ylamino})\text{pyridin-2-yl})\text{phenol, L14}$

The overall yield of L14 over four steps was 29 %. The 1H NMR of L14 highlights the promise for an ideal Be(II) chelator (Figure 5.13). The phenolic proton is deshielded due to hydrogen bonding to the adjacent pyridine and appears at 12.55 ppm. This should enhance the ability of the phenolic oxygen to initially coordinate to Be(II) while the proton is shuttled off via the pyridine. After initial coordination to Be(II) via the phenol, full encapsulation of Be(II) through the remaining pyridines will hopefully readily occur via chelation.
Figure 5.13: 1H NMR of 2-(6-(dipyridin-2-ylamino)pyridin-2-yl)phenol, **L14**
showing the deshielded proton at 12.55 ppm.
5.3 Synthesis of a Carboxylic Acid-Capped Tetra-Coordinate Ligand

5.3.1 Introduction

As with 501, the logical disconnection for 502 would be to split it into a substituted quinoline 519 and the methylene-bridged dipyridine used earlier, 504 (Scheme 5.12). Both 519 and 504 are accessible using existing literature syntheses.

![Scheme 5.12: Disconnection of 2-(dipyridin-2-ylmethyl)quinoline-8-carboxylic acid, 502](image)

The exact quinoline, 519, had not been previously fully characterised. However, Cottet and co-workers156 synthesised a range of trifluoromethyl-substituted quinolinecarboxylic acids, one of which was 520 (Figure 5.14).

![Figure 5.14: 2-Chloro-3-(trifluoromethyl)quinoline-8-carboxylic acid, 520](image)

The synthesis of 520 can be altered by avoiding the 3-trifluoromethyl substitution step such that the final compound would be the desired 519 (Scheme 5.13).

![Scheme 5.13: Proposed synthesis of 2-chloroquinoline-8-carboxylic acid, 519](image)
Attempting to couple the free carboxylic acid, 519, with 504 may be problematic due to undesired side-reactions so the carboxylic acid will be protected. Alternatively, ethyl chloroformate might form a protected ester directly from 524 (Scheme 5.14). The esterification of an aromatic bromide has been reported previously.157

Scheme 5.14: Proposed synthesis of ethyl 2-chloroquinoline-8-carboxylate, 525

An alternative to this synthesis might be to start off with an ester at the 2-position of the aniline by using 526 instead of 2-bromoaniline, 521 (Scheme 5.15). There is no precedent for quinoline formation resulting in an ester at the 8-position directly, however, the cheap starting material 526 makes this route worthwhile to attempt.

Scheme 5.15: Proposed synthesis of methyl 2-chloroquinoline-8-carboxylate, 528

It is hoped the carbanion of 504 generated by treatment with \(n \)-butyllithium will couple by nucleophilic substitution of the chloride at the 2-position on 525 (Scheme 5.16).

Scheme 5.16: Proposed synthesis of ethyl 2-(dipyridin-2-ylmethyl)quinoline-8-carboxylate, 529

A related compound was formed shown in Scheme 5.17.158 A carbanion of 530 was generated by treatment with \(n \)-butyllithium and reacted first with 507, and then finally in a
second analogous carbanion reaction with 531 as the electrophile. The central amine was protected by treatment with acetic anhydride to give 532.

\[
\begin{align*}
530 + 507 + 531 &\rightarrow 532 \\
\end{align*}
\]

Scheme 5.17: Synthesis of N-(dipyridin-2-yl(quinolin-2-yl)methyl)acetamide, 532

532 was part of a larger paper which dealt with tripodal pyridine complexes of copper and zinc. No crystal structures of metal complexes with 532 was obtained, however, it was deduced to have the structure [Cu(SO\(_4\))(532)(H\(_2\)O)].3H\(_2\)O. A crystal structure of a similar complex with the tridentate pyridine showed a distorted square pyramidal geometry. A non-coordinated water molecule occupied the sixth coordination site in octahedral geometry. The target compound in this section should hopefully provide a steric hindrance to coordination of most metals ions larger than Be(II).

5.3.2 Results / Discussion

The synthesis of 504 proceeded in nearly quantitative yield as described previously (Scheme 5.18). After aqueous workup and solvent evaporation, 504 was used without purification.

\[
\begin{align*}
510 + 511 &\rightarrow 504 \\
\end{align*}
\]

Scheme 5.18: Synthesis of 2-(2-pyridylmethyl)pyridine, 504

The synthesis of the quinoline precursor, 524, proceeded without difficulty in accord with the literature preparation (Scheme 5.19). 533 was used without recrystallisation as stated
in the original preparation. In the cyclisation step to form 523, toluene was used as the solvent in place of chlorobenzene and silica gel column chromatography was required instead of recrystallisation. Purification of 524 by silica gel column chromatography was followed by recrystallisation by slow cooling of a solution of 524 in hot hexane.

Conversion of the bromide at the 8-position of 524 to an ester directly was unsuccessful. When ethyl chloroformate was added to the carbanion of 524 over a range of reaction conditions, only trace amounts (< 1%) of 525 could be isolated by chromatography which contained a side-product with the same polarity as 525. As no other discrete products were isolated self-polymerisation of 524 most likely occurred as there are two electrophilic sites on the molecule.

Under optimal conditions the side-product (B, Figure 5.15) was present in a 6:5 ratio over 525 (A, Figure 5.15) according to 1H NMR integrals. Full characterisation of 525 and the side-product B was not attempted due to the poor yielding reaction. Instead, an alternate route to placing an ester at the 8-position of 525 was successfully pursued in two steps by carboxylation then protection of the carboxylic acid as an ester.
The carboxylation reaction reported by Cottet and co-workers156 (Scheme 5.21) shows that upon treatment with n-butyllithium a carbanion forms by displacing the bromide preferentially to the chloride and then reacts with carbon dioxide to give \textbf{520}.

![Figure 5.15: 1H NMR of the trace amount of 525 (A) and the side-product (B) isolated in Scheme 5.19](image)

\textit{Scheme 5.21: Synthesis of 2-chloro-3-(trifluoromethyl)quinoline-8-carboxylic acid, 520}

The above reaction used dry ice as the CO\textsubscript{2} source; however, bubbling of CO\textsubscript{2} gas from a cylinder through the reaction mixture could achieve \textbf{519} (Scheme 5.22). While \textbf{520} was obtained in 68\% yield, the yield of \textbf{519} was only 42\%. The trifluoromethyl group at the 3-postion of \textbf{520} appears to prevent an elimination side reaction which was apparently more problematic with \textbf{524}. Nevertheless, small quantities of \textbf{519} were formed in 18 \% yield over 4 steps.

![Scheme 5.22: Synthesis of 2-chloroquinoline-8-carboxylic acid, 519](image)
The 1H NMR of 519 highlights why this makes an excellent ligand precursor for potential Be(II) coordination (Figure 5.16). The proton on the carboxylic acid is deshielded as a result of hydrogen bonding to the heterocyclic nitrogen and appears at 14.82 ppm. This is reminiscent of the deshielded protons seen for proton sponges but has the added benefit of the oxygen donor to promote initial coordination to Be(II) while the deshielded proton may be removed via the heterocyclic nitrogen.

![Figure 5.16: 1H NMR of 2-chloroquinoline-8-carboxylic acid, 519](image)

Finally, the carboxylic acid group of 519 was protected as a methyl ester by treating the caesium salt with methyl iodide (Scheme 5.23) according to a standard procedure for protecting carboxylic acids.159

![Scheme 5.23: Synthesis of methyl 2-chloroquinoline-8-carboxylate, 535](image)

When the ester substituted aniline, 526, was used to attempt to form 535 directly, the cyclisation step did not proceed. The amide 536 formed without issue in 95 % yield;
however, 536 did not undergo cyclisation upon treatment with AlCl$_3$. There were no discrete products obtained and no formation of 527.

![Scheme 5.24: Attempted synthesis of methyl 2-oxo-1,2-dihydroquinoline-8-carboxylate, 527](image)

The coupling of the carbanion of 504 with 519 or 535 was attempted; however no desired reaction was observed (Scheme 5.25). The carbanion of 504 most likely removed the proton from the carboxylic acid on 519, yet, when two equivalents of n-butyllithium were used to compensate for the presence of the carboxylic acid there was still no coupling. The ester protected variant, 535, also did not show the desired substitution at the 2-chloro position. There was no indication by mass spectroscopy that 502 had formed.

![Scheme 5.25: Attempted synthesis of 2-((dipyridin-2-ylmethyl)quinoline-8-carboxylic acid, 502, R=H, Me](image)

Since direct coupling proved problematic with the carboxylic acid or ester in place, it may be possible to substitute the carboxylic acid in a later step. When the carbanion of 504 was coupled with 524, the reaction proceeded as indicated in Scheme 5.26. The carbanion selectively substituted at the 2-chloride and not with the 8-bromide as confirmed by mass spectroscopy. While a bromide typically makes a better leaving group than a chloride, the 2-position is likely activated by being adjacent to the slightly electronegative nitrogen atom. The yield was 75 – 78%.
Unfortunately, all attempts to modify the bromide on 537 to a carboxyl group by treatment with \(n\)-butyllithium and carbon dioxide were unsuccessful (Scheme 5.27). After first acidifying the reaction mixture with 2M HCl then neutralising to pH 7 with 2M NaOH, there was no indication by mass spectroscopy or \(^1\)H NMR that the organic layer extracted contained 502. When treated with \(n\)-butyllithium, both the central \(sp^3\) proton (there was an absence of this distinct peak in the \(^1\)H NMR) and the bromide were displaced and the lack of discrete product formation suggested degradation or polymerisation was occurring. Using two equivalence of \(n\)-butyllithium to simultaneously displace both the bromide and the central \(sp^3\) proton in an attempt to curb possible polymerisation did not solve this problem and a similarly messy \(^1\)H NMR spectrum was obtained.

An alternative route to 502 may be hydrolysis of a nitrile at the 8-position on the quinoline. A cyanation using copper cyanide with an aromatic bromide allows substitution of a nitrile.\(^{160}\) When this reaction was attempted on 524, the reaction proceeded selectively on the 8-bromide and not the 2-chloride to give 538 in 63 % yield (Scheme 5.28). This was confirmed by high resolution mass spectroscopy and a new nitrile peak in the \(^{13}\)C NMR spectra.
Subsequently the nitrile-substituted quinoline, 538, was used as the electrophile in the coupling reaction with 504, which proceeded by selective displacement of the chloride on 546 to give 539 in 69% yield (Scheme 5.29).

Hydrolysis of the nitrile on 539 was attempted in both acidic (6M HCl) and basic (6M NaOH) conditions, refluxing for 4 h at 110 °C. After neutralisation and organic extraction, in both cases none of the desired product, 502, was observed by 1H NMR or mass spectroscopy. Again, the lack of discrete products obtained is apparently owed to the reactive nature of the central sp^3 proton as this distinct peak was absent in the 1H NMR spectrum.

Lastly, the same reaction methodology which enabled the successful synthesis of L14 in Section 5.2 was attempted with 519 and 535 (Scheme 5.31). Sadly, in this instance the chlorides were not susceptible toward nucleophilic attack of 517 under the reaction
conditions and no evidence of coupling was observed, a bromide at the 2-position may be required.

![Scheme 5.31: Attempted synthesis of 2-(dipyridin-2-ylamino)quinoline-8-carboxylic acid, 540, R=H, Me](image)

As a representative ligand of this type had eventually been synthesised with a phenol as the oxygen donor, L14 (Figure 5.17); further investigation into synthesis of the carboxylic acid variant was halted due to the time restrictions on this project. Should the phenol variant L14 prove an excellent ligand for beryllium the synthesis of the carboxylic acid variant; 540, could be restarted.

![Figure 5.17: Successfully synthesised 2-(6-(dipyridin-2-ylamino)pyridin-2-yl)phenol, L14](image)

One possible route to achieving 540 laid out in Scheme 5.30 could be to form 541 by using phosphorus oxybromide in the dehydration step of the quinoline synthesis (Scheme 5.32).

![Scheme 5.32: Proposed synthesis of 2,8-dibromoquinoline, 541](image)

While it seems counter-intuitive to have bromides at both the 2- and 8-positions, the 2-position should be activated due to the influence of the nitrogen atom. The successful coupling of 524 and 504 showed the 2-position was activated toward nucleophilic substitution and the 2-chloride was displaced in favour of the 8-bromide (Scheme 5.33).
If the coupling of 541 and 517 were successful (Scheme 5.34), the 8-bromide may be easier to convert to a carboxylic acid compared to that on 537 as there would not be a central sp^3 proton susceptible to treatment with n-butyllithium which caused degradation and polymerisation problems.

Scheme 5.34: Proposed synthesis of 8-bromo-N,N-di(pyridin-2-yl)quinolin-2-amine, 542
5.4 Synthesis of Amine-Capped Tetra-Coordinate Ligands

5.4.1 Introduction

All of the ligands synthesised in this section followed a commonly utilised series of reactions. An example is shown in Scheme 5.35. The secondary amine 545 was obtained from a Schiff base condensation of a component amine and aldehyde followed by reduction. Further substitution to provide the final donor arm, 546, by nucleophilic displacement of a chloride gave the tetra-coordinate ligand, 547. When coordinated to transition metals, ligands of this type typically form diphenoxo-bridged [M₂L₂] complexes.

By analogy to the above synthesis, a series of structurally related ligands may also be constructed (Figure 5.18). Exchanging 543 with an amine containing a suitable donor provides a different tetra-coordinate ligand. For ease of synthesis, in place of 546, the commercially available 2-(chloromethyl)-4-nitrophenol (548) was used. The drawback of this was that upon coordination to Be(II) all the complexes become chiral due to the two phenol arms being non-identical. The unbound ligands are not chiral as the central amine inverts. With the exception of the nitro group substitution on one of the phenols, ligands L15, L16 and L19 have been synthesised previously. The exact ligand L18 has been reported previously. The ligands L17, L20 and L21 have not been previously reported.
5.4.2 Results / Discussion

The initial Schiff base condensations for L15 to L17 were complete after 30 min. The Schiff base condensation for L19 was moderately slower taking 6 hr and those for L20 and L21 were extremely slow due to the delocalisation into the aromatic system and took 1 week each. After in situ reduction with sodium borohydride the yields for the secondary amines were 68 – 89 % (Scheme 5.36). The only new secondary amines were those for L17 and L21 so were further characterised (in addition to NMR) by elemental analysis or high resolution mass spectroscopy. The remaining secondary amines agreed with the previous characterisation data.

![Figure 5.18: Variety of amine-capped tetra-coordinate ligands](image)

Scheme 5.36: Generalised reductive aminations for ligands L15, L16, L17, L19, L20 and L21;

R is the appropriate ligand arm

The tertiary amines, L15, L16, L17, L19, L20 and L21 were synthesised according to a standard preparation via substitution of 548 in 46 – 69 % yields (Scheme 5.37). The final
products after purification by silica gel column chromatography were sticky oils due to residual solvent. To obtain solid powders, the oils were dissolved in a small volume of dichloromethane and an excess of hexane was added. After solvent removal under reduced pressure, the oils eventually became solid foams and could be collected in powder form. Due to the presence of the nitro substituent, all six ligands were technically new compounds so were further characterised (in addition to NMR) by elemental analysis or high resolution mass spectroscopy.

As a representative example to show the new ligands have been correctly synthesised, the particular COSY NMR characterisation of L20 will be described in detail (Figure 5.19). While some of the aromatic signals were overlapped in the \(^1\)H NMR, a 2D COSY NMR experiment in conjunction with comparison of some of the original shifts for the component secondary amine and 548 allowed identification of the four distinct regions of coupled aromatic protons. Aside from the aromatic protons, the four CH\(_2\) protons (4.49 ppm) which should ordinarily give sharp uncoupled singlets appeared unusually broadened. This could be rationalised by observing the two downfield phenol shifts at 10.43 and 12.61 ppm which imply intra-molecular hydrogen-bonding interactions with each of the nitrogens. The locking of the molecule’s geometry via hydrogen bonding causes the CH\(_2\) protons to become chemically inequivalent leading to the observed broadened \(^1\)H NMR signal.
Figure 5.19: COSY of 2-(((2-hydroxybenzyl)(quinolin-8-yl)amino)methyl)-4-nitrophenol, L20
Finally a 2D HMQC NMR experiment identified the 13 carbons coupled to protons and 8 uncoupled quaternary carbons (Figure 5.20).

Figure 5.20: HMQC of 2-((2-hydroxybenzyl)(quinolin-8-yl)amino)methyl)-4-nitrophenol, L20
The tertiary amine \textbf{L17} was synthesised according to the above scheme as the protected methyl ester, \textbf{549} (Scheme 5.38). Deprotection of the methyl ester was achieved by refluxing in 6M HCl for 4 h at 110 °C. The potential for zwitterion formation of \textbf{L17} meant careful pH control was needed for an organic extraction workup. The acidic aqueous phase was first washed with dichloromethane and this organic layer was discarded. The aqueous phase was then neutralised to pH 7 with NaOH which allowed \textbf{L17} to be extracted into an organic phase of 9:1 dichloromethane / methanol. After solvent removal \textbf{L17} was precipitated from a minimum of dichloromethane in excess hexane and filtered to give \textbf{L17} in 47 % yield for the ester hydrolysis step. Both \textbf{549} and \textbf{L17} were further characterised (in addition to NMR) by elemental analysis or high resolution mass spectroscopy.

\begin{center}
\includegraphics[width=0.8\textwidth]{scheme5.38}
\end{center}

\textit{Scheme 5.38: Acid hydrolysis of \textbf{549} to achieve \textbf{L17}}

The ligand \textbf{L18} was prepared as previously reported via a Mannich reaction of 2,4-dimethylphenol, formaldehyde and glycine (Scheme 5.39), the characterisation data agreed with the literature.165

\begin{center}
\includegraphics[width=0.8\textwidth]{scheme5.39}
\end{center}

\textit{Scheme 5.39: Mannich reaction to achieve \textbf{L18}}
5.5 Summary

The highlight of this chapter was the synthesis of the phenol-capped ligand L14 (Figure 5.21). This represents a fundamentally new type of ligand capable of offering an enclosed tetrahedral binding cavity. As this ligand was synthesised at a late stage in this project, coordination to Be(II) could not be tested and will have to be part of a future collaboration with a group still actively pursuing beryllium research.

Despite an extensive investigation, the synthesis of the analogous carboxylic acid-capped ligand 502 was not completed within the time-constraints of this project (Figure 5.22). The ligand L14 provides a representative example for these enclosed ligands. The ligand 502 was close to completion and should L14 prove to be a good Be(II) chelator, 502 may be synthesised in the future.

The amine-capped ligands were synthesised according to robust well-established procedures without difficulty (Figure 5.23). As they were synthesised in good time, their coordination to Be(II) was investigated in this thesis. This is the focus of Chapter 6.
Figure 5.23: Variety of amine-capped tetra-coordinate ligands
Chapter 6: Coordination Chemistry of Encapsulating Compounds

6.1 Complexation of Encapsulating Compounds to Beryllium

6.1.1 Introduction

The proton sponges investigated in Chapter 4 showed promise for Be(II) complexation based on the ideal size-fit for B(III). Unfortunately, the coordination was difficult to observe for Be(II), largely due to the restrictions on the available beryllium salt used for the investigation. It is very likely that a Be(II) proton sponge complex could be formed in aprotic media with a suitable reactive beryllium salt such as beryllium chloride. Nonetheless, it was clear that to achieve good coordination to Be(II) in an aqueous environment, a suitable ligand must contain stronger oxygen donors and having only neutral nitrogen donors was not ideal. The ligands in this chapter have four donors which should enable full encapsulation of Be(II).

The tertiary amine ligands synthesised in Chapter 5 will be investigated for their coordination to beryllium in this chapter. While some of these ligands have reported complexes with other metals, for beryllium sensing applications it is possible to provide a non-competitive environment for beryllium through the use of buffers to control pH and EDTA to remove interfering metal ions.\(^{61}\)

Structural analogues (i.e. those with the same structure but with minor differences in peripheral aromatic substitution) of \(L_{16}\) have hundreds of reported metal complexes covering much of the periodic table. The complexes are usually of the form \(M_2L_2\) with the phenolic oxygens bridging the cluster, representative example complexes include; Ti\(^{166}\), Co\(^{167}\), Zn\(^{168}\) and Sc\(^{169}\). For example the bridged copper complex with a structural analogue
of L16 (Figure 6.1).\(^{163}\) Alternatively the ligand can form MLX complexes where a suitable counter ligand (X) balances the charge and occupies the remainder of the coordination sphere for the metal cation. Representative examples include complexes with: Ti\(^{166}\), W\(^{170}\), Mo\(^{170}\), Al\(^{171}\), Cr\(^{172}\), Mn\(^{173}\), Fe\(^{174}\), Ni\(^{175}\), Y\(^{176}\), Hf\(^{177}\), Zr\(^{177}\), Sc\(^{169}\), Re\(^{178}\) and Zn\(^{179}\). A structural analogue of L16 formed \([\text{Cu}('L16')\text{H})(\text{OAc})]\), the ligand was mono-protonated to balance the charge in this instance (Figure 6.1).\(^{180}\)

![Figure 6.1: Molecular structures of \([\text{Cu}_2('L16')_2]\) and \([\text{Cu}('L16')\text{H})(\text{OAc})]\), peripheral aromatic substitution, double bonds and hydrogens removed for clarity](image)

The structural analogues of L15 (Figure 6.2), with an extra CH\(_2\) spacer on the pyridine arm, have received much less attention with only a relative handful of reported metal complexes. Similarly to the L16 analogues, these were shown to form either phenolic bridged M\(_2\)L\(_2\) clusters with Ni\(^{162}\), Zn\(^{162}\), Cu\(^{162}\), Co\(^{162}\) or MLX complexes with Cu\(^{162}\), Re\(^{181}\), Zr\(^{182}\), Zn\(^{183}\) and Mo\(^{184}\).
Figure 6.2: 2-(((2-Hydroxybenzyl)(2-(pyridin-2-yl)ethyl)amino)methyl)-4-nitrophenol, L15

Structural analogues of L18 only have a few reported metal complexes. M2L2 clusters for vanadium have been reported.185 MLX complexes have been reported for iron; 2,2'-bipyridine (bipy) type ligands occupied the remainder of the coordination sphere (Figure 6.3).186, 187

Figure 6.3: Molecular structure of [Fe(‘L18’)(bipy)], peripheral aromatic substitution, double bonds and hydrogens removed for clarity

Investigations on structural analogues of L19 (Figure 6.4) have shown M2L2 clusters with Zr,164 and MLX complexes with Ti164 and Fe.188
Ligands L17, L20 and L21 have not been previously synthesised (Figure 6.5).

The above compounds were first screened for beryllium coordination using 1H, 13C and 9Be NMR, and then the properties of the beryllium complexes further investigated using UV-Vis, fluorescence spectroscopy, and computational chemistry.

6.1.2 9Be NMR Analysis

With the exception of L21, all of the ligands L15 through L20 showed coordination to beryllium. The steric bulk of the phenyl substituent (green, Figure 6.6) possibly prevented coordination to beryllium. The bite angle between the neutral nitrogen donors (red, Figure 6.6) was not ideal for beryllium coordination where six-coordinate over five-coordinate chelate rings are preferred. The five-coordinate chelate ring would have kept potential metal coordination further from the sterically demanding phenyl group relative to a six coordinate chelate ring with adjacent phenyl substitution.
The following table summarises the ^9Be NMR shifts and line widths (width at ½ heights) carried out in a number of different solvents. In all cases the beryllium source was aqueous beryllium sulfate and 10 equivalents of triethylamine were required, the reactions were stirred for 16 h and warmed at 50 °C to enhance coordination. When possible the ^1H and ^{13}C NMR were recorded and are partially documented in Appendix A.7. As the ^1H and ^{13}C NMR were of reaction mixtures and often in non-deuterated solvents it was generally not possible to use either of these as definitive methods for confirming Be(II) coordination. If a suitable organic soluble beryllium starting material was available and a pure deuterated solvent such as chloroform was used, the shifts of the aromatic protons of the ligands and disappearance of phenolic protons would provide additional evidence for Be(II) coordination. In the current investigation there was shifting of the aromatic protons but the disappearance of the phenolic protons could be due to other factors such as the presence of triethylamine in the reaction mixture. The shifting of aromatic protons alone doesn’t necessarily confirm the proposed four-coordinate species but merely indicated the ligand was interacting with Be(II). The use of the ^9Be NMR shifts was more conclusive as this involved interpretation of a single uncoupled peak in the spectrum and could be readily compared to the computational results.
The line width is related to the symmetry of the complex.138 Symmetrical four-coordinate species typically have line widths of less than 50 Hz. The line width broadens with unsymmetrical four-coordinate species, such as those reported by Niemeyer and Power.63 As the compounds in this investigation provided four different donor arms, the resulting line widths could potentially broaden. In this instance, the most likely cause of the broadened line widths is the complexity of the reaction mixture. In addition to complex formation with the ligand, there is the possibility of minor beryllium species involving water, solvent, and triethylamine. When beryllium sulfate was subjected to the same conditions in the absence of the ligands a similar broadening of the line width was observed, however, the $^{9}\text{Be} \text{NMR}$ were distinctly shifted in the presence of the ligands so complexation was indeed occurring for the above reactions. In general, the use of DMF as the solvent prevented such extreme broadening of the line widths (Figure 6.7).

The complexes were modelled and optimised at the B3LYP level using the 6-311++g(2d,p) basis set as implemented in Gaussian 03 for windows. The nuclear magnetic shielding tensors were calculated using the same basis set. The results are summarised in Table 6.2.
For the ligands which had three ionisable oxygen donors, it was assumed that the anionic beryllium complex formed. It is possible protonation could occur on the ligand to give a neutral species. As shown in Table 6.1, the experimental shift showed some variation when measured in different solvents, for simplicity the closest 9Be NMR shift was chosen for each to compare to the calculated values.

| Complex | δ_{ref} | $\delta_{\text{model[a]}}$ | $\delta_{(\text{ref}-\text{model})}$ | δ_{exptl} | $|\Delta_{\text{exptl-calc}}|$ |
|-----------------|------------------------|------------------------------|-------------------------------------|--------------------------|-------------------------------|
| Be(H$_2$O)$_4^{2+}$ | 109.10 | 109.10 | 0.00 | 0.00 | 0.00 |
| [Be(L15)] | 105.66 | 3.44 | 3.18 (DMSO-d6) | 0.26 |
| [Be(L16)] | 103.12 | 5.98 | 4.51 (DMF) | 1.47 |
| [Be(L17)]' | 106.62 | 2.48 | 2.60 (D$_2$O) | 0.12 |
| [Be(L18)]' | 103.22 | 5.18 | 5.15 (D$_2$O) | 0.03 |
| [Be(L19)]' | 103.57 | 5.53 | 5.28 (MeOH) | 0.25 |
| [Be(L20)] | 102.65 | 6.45 | 5.15 (DMF) | 1.30 |

Table 6.2: Calculated 9Be NMR shifts for tetra-coordinate ligands. [a] Gas phase model utilised as solvent models had negligible influence on the 9Be shielding tensors

The calculated 9Be NMR shifts for the beryllium complexes of L15, L17, L18 and L19 correlated well with the experimental shifts proving good evidence that the four-coordinate species formed in solution. A Δ of 0.5 ppm or less is considered an acceptable deviation for these types of calculations. The ligands all offered one tertiary amine donor, two phenol groups and each differed by one point of substitution. Be(II) coordinated to the central amine and the two phenols via six-membered chelate rings. The remaining arm on L17, L18 and L19 offered strong oxygen donors. L18 and L19 had five-membered chelate rings and L17 had a six-membered chelate ring (red, Figure 6.8). L15 had a weaker nitrogen donor, which formed an unstrained six-membered chelate ring.
The calculated \(^9\)Be NMR shifts for the beryllium complexes of L16 and L20 did not correlate well with the experimental shifts. This suggested full encapsulation was not occurring. The fourth points of coordination in both cases were neutral nitrogen donors which needed to form strained five-membered chelate rings (red, Figure 6.9).

![Figure 6.9: Tetra-coordinate ligands with poorly correlated \(^9\)Be NMR shifts](image)

The beryllium complex of L16 was optimised with a water molecule in place of the pyridine arm (Figure 6.10) and the calculated \(^9\)Be NMR shift was 3.58 ppm (Δ 0.77 ppm) which was closer to the experimental \(^9\)Be NMR shift than the calculated shift for the tetra-coordinate species. This suggested full encapsulation of beryllium with L16 was not occurring. The two-coordinate beryllium complex of L16 bound through both phenols with two water molecules was unlikely to be the species present as the calculated \(^9\)Be NMR shift of 1.92 ppm (Δ 2.59 ppm). Other possibilities could include cluster complexes such as those observed for other metal complexes discussed earlier or a polymeric species (e.g. if the water molecule in Figure 6.10 was a donor arm from another partially coordinated species a 1D polymer would form).
The steric bulk of the quinoline substituent on L20 prevented the calculation of an analogous water-coordinated complex. A similar partially coordinated species was likely forming rather than the desired tetra-coordinate species.

6.1.3 UV-Vis Spectroscopy in Organic Solvents

UV-Vis spectra were measured by making appropriate dilutions to the reaction mixtures in 6.1.2. The UV-Vis spectra were measured for the reactions of beryllium with L16 and L20; however, as the calculated 9Be NMR did not match experimental they will not be discussed. The details for each experiment and any spectra not included here are given in Appendix A.7.

Coordination of L15, L17 and L19 to beryllium each gave blue-shifted $\pi - \pi^*$ transitions (for the transition associated with the nitro-substituted phenol group) relative to the unbound ligands (Figures 6.11, 6.12 and 6.13).
Figure 6.11: Change in UV-Vis spectrum at 10^{-5} M of neutral L15 (blue) and after BeSO_4 addition (red)

Figure 6.12: Change in UV-Vis spectrum at 10^{-5} M of neutral L17 (blue) and after BeSO_4 addition (red)
Coordination of L_18 to beryllium gave red-shifted $\pi - \pi^*$ transitions (for the absorbance associated with the methyl-substituted phenol groups) relative to unbound L_18 (Figure 6.14).

Figure 6.13: Change in UV-Vis spectrum at 10^{-5} M of neutral L_19 (blue) and after BeSO_4 addition (red)

Figure 6.14: Change in UV-Vis spectrum at 10^{-5} M of neutral L_18 (blue) and after BeSO_4 addition (red)
Time domain calculations were employed to calculate the electronic spectra for each of the complexes at the B3LYP level using the 6-311++g(2d,p) basis set (Table 6.3). A solvent model was not employed due to the difficulty in modelling a solvent mix.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Transition nature</th>
<th>Wavelength (nm)</th>
<th>Calculated</th>
<th>Experimental</th>
<th>Δ_{\text{exptl-calc}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Be(L15)]</td>
<td>π- π*</td>
<td>328</td>
<td>367</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>[Be(L17)]⁺</td>
<td>π- π*</td>
<td>352</td>
<td>349</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>[Be(L18)]⁻</td>
<td>π- π*</td>
<td>283</td>
<td>302</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>[Be(L19)]⁻</td>
<td>π- π*</td>
<td>349</td>
<td>385</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.3: Calculated and experimental maximum absorption wavelengths

Without a solvent model, the calculated and experimental absorbance varies by not more than 40 nm. As the measured spectra are of reaction mixtures as opposed to a purified complex in a single solvent it would not be practical to attempt to improve the accuracy. The use of solvent models or alternative functionals to improve the precision should only be utilised when the exact solute and solvent is characterised. Nonetheless, insight into the nature of the transitions can still be described in relative detail and will be the focus of the following sections.

6.1.4 Fluorescence Spectroscopy in Organic Solvents

Two of the above four complexes in Table 6.3; [Be(L18)]⁻ and [Be(L19)]⁻, were fluorescent. The fluorescence spectras were recorded and are shown in Figures 6.15 and 6.16. Excitation at 305 nm gave an emission at 335 nm for [Be(L18)]⁻ and excitation at 355 nm gave an emission at 425 nm for [Be(L19)]⁻.
The above fluorescence could be related to the rigidity and locking of certain conformations of the Be(II) complexes and these locked conformations will be discussed in the remainder of this section. By contrast, the flexibility of three six-membered chelate
rings formed upon coordination of beryllium to \textbf{L15} and \textbf{L17} allowed a single major conformer to be adopted (Figure 6.17).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure6.17}
\caption{Flexible tetra-coordinate ligands with a single conformer upon beryllium coordination}
\end{figure}

Optimisation of the gas-phase models of \([\text{Be(L15)}]\) and \([\text{Be(L17)}]\), lead to a single conformer (ignoring the possibility of optical isomers arising from the three different substituents surrounding the central nitrogen). The conformer can be described by the orientation of the hydrogens on the three \text{CH}_2 groups surrounding the central nitrogen donor. \([\text{Be(L15)}]\) and \([\text{Be(L17)}]\) adopted what will herein be classed as an “anti” geometry about the central nitrogen. The equatorial hydrogens on the \text{CH}_2 groups (green atoms, Figure 6.18) all orient away from one another.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure6.18}
\caption{Optimised model of \([\text{Be(L17)}]\) with anti geometry}
\end{figure}

One of the few four-coordinate ligands ever reported to coordinate beryllium was \textbf{601} (Figure 6.19).54
Upon coordination to Be(II), 601 formed three six-membered chelate rings (red outlines, Figure 6.19). The crystal structure revealed all the equatorial hydrogens on the CH$_2$ groups (green atoms, Figure 6.20) oriented away from one another in an anti conformation which was analogous to the optimised computer models for [Be(L15)] and [Be(L17)]$^-$.

Modelling of [Be(L18)]$^-$ and [Be(L19)]$^-$ allowed the possibility for two distinct conformers to be adopted. The rigid five-membered chelate rings (red outline, Figure 6.21), in contrast to the six-membered chelate rings of L15 and L17, were the cause for this.

Figure 6.19: 3,3',3"-nitrilotripropanoic acid, 601

Figure 6.20: Crystal structure of [Be(601)]$^-$ with anti geometry, Na$^+$ cation and solvent removed for clarity

Figure 6.21: Strained four-coordinate ligands with two conformers upon beryllium coordination
Changing the orientation of one donor arm then optimising the gas-phase models lead to two distinct minimised structures for both [Be(L18)]⁻ and [Be(L19)]⁻. One conformer of [Be(L18)]⁻ has a similar anti geometry to [Be(L17)]⁻ above, with the equatorial hydrogens (green atoms, Figure 6.22) facing away from each other. The other adopts a “syn” geometry with the equatorial hydrogens (green atoms, Figure 6.22) facing toward each other. The syn conformer was calculated to be 10 kJ mol⁻¹ higher in energy than the anti conformer. While this is a lower stability, the small energy difference (equivalent to the torsional energy barrier in simple bond rotations) suggests it is plausible that upon coordination to Be(II) a proportion of the resultant complexes are locked into the syn conformation.

![Figure 6.22: Syn conformer (left) and anti conformer (right) of [Be(L18)]⁻](image)

This syn orientation aligned the phenol groups, such that delocalisation of molecular orbitals across both rings was possible. The anti conformation prevented good alignment of the aromatic moieties (Figure 6.23).

![Figure 6.23: Top view of the Syn conformer (left) and anti conformer (right) of [Be(L18)]⁻](image)
The locking of the phenols into an aligned geometry in \([\text{Be}(\text{L18})]^-\) and \([\text{Be}(\text{L19})]^-\) may be attributed to the observed fluorescence. Analysis of the angle between the mean planes of the two aromatic phenol rings in the modelled beryllium complexes highlights the required alignment for fluorescence. Table 6.4 summarises these values.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Chelate Ring Sizes</th>
<th>Angle Between Mean Planes (°)</th>
<th>Fluorescent</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{Be}(\text{L15})]^-)</td>
<td>6,6,6</td>
<td>61.69</td>
<td>-</td>
</tr>
<tr>
<td>([\text{Be}(\text{L17})]^-)</td>
<td>6,6,6</td>
<td>61.89</td>
<td>-</td>
</tr>
<tr>
<td>([\text{Be}(\text{L18})]^-)</td>
<td>5,6,6</td>
<td>61.72</td>
<td>25.48</td>
</tr>
<tr>
<td>([\text{Be}(\text{L19})]^-)</td>
<td>5,6,6</td>
<td>-</td>
<td>22.34</td>
</tr>
</tbody>
</table>

Table 6.4: Comparison of the angle of intersection between the aromatic phenol rings. [a] the second possible conformation was not exactly an anti geometry as defined here and will be discussed later

The rigidity of the locked complexes of \([\text{Be}(\text{L18})]^-\) and \([\text{Be}(\text{L19})]^-\) allowed alignment of the aromatic rings on opposing donor arms, which appeared to cause the observed fluorescence. Analysis of the major molecular orbital contributions for the \(\pi - \pi^*\) transitions of all four complexes in Table 6.4 gave some evidence for this.

The major molecular orbitals attributed to the \(\pi - \pi^*\) transitions present in the non-fluorescent \([\text{Be}(\text{L15})]^-\) and \([\text{Be}(\text{L17})]^-\) were localised on the nitro-phenol group. The anti conformation prevented delocalisation onto the adjacent phenol group (Figures 6.24 and 6.25).
Figure 6.24: Molecular orbitals associated with the $\pi - \pi^*$ transition for [Be(L15)] (anti conformer)

Figure 6.25: Molecular orbitals associated with the $\pi - \pi^*$ transition for [Be(L17)] (anti conformer)

The major molecular orbitals attributed to the $\pi - \pi^*$ transitions of the syn conformer of the fluorescent [Be(L18)] showed delocalisation across both phenol rings (Figure 6.26).
The anti conformer of [Be(L18)]− did not have quite the same delocalisation observed with the syn conformer. Both phenol rings were still involved in the π – π* transition and a weaker fluorescence pathway might still exist for this conformation (Figure 6.27).
The complex of the fluorescent [Be(L19)]\(^+\) was a little more difficult to assign as the aminophenol moiety meant that there was more than one conformation which could give rise to delocalisation across two aromatic moieties. In this instance the calculated molecular orbitals for the syn conformer did not show the same delocalisation as [Be(L18)]\(^+\). The π – π* transition molecular orbitals were localised on the nitro-substituted phenol ring (Figure 6.28).
Optimisation of what would otherwise be described here as the anti conformer did not lead to an analogous geometry to the ligands \textbf{L15, L17} and \textbf{L18}. These had three sp^3 CH$_2$ groups surrounding the central nitrogen whereas the aminophenol group on \textbf{L19} was sp^2 hybridised. Due to the unfavourably close $\pi - \pi$ stacking overlap between the aminophenol group and an adjacent phenol, computational modelling gave the minimised structure in Figure 6.29. This conformer was calculated to be 6 kJ mol$^{-1}$ lower in energy than the syn conformer shown in Figure 6.28.
The major molecular orbitals attributed to the $\pi - \pi^*$ transitions of this conformer showed an apparently “bowl-like” delocalisation between the two phenols (not the aminophenol). The π^* antibonding orbitals lie on the electron-withdrawing nitro-substituted phenol. This suggests an intra-molecular charge transfer from the unsubstituted phenol group to the nitro-substituted phenol occurs (Figure 6.30). Such charge transfers are typical in fluorescent molecules and perfectly flat aromatic systems are not a strict requirement for fluorescence.

![Molecular orbitals associated with the $\pi - \pi^*$ transition for [Be(L19)]'](image)

$LUMO, +0.013 \text{ eV}$

$HOMO, -0.099 \text{ eV}$

Figure 6.30: Molecular orbitals associated with the $\pi - \pi^$ transition for [Be(L19)]'*

Overall, the locking of certain conformations due to the rigidity of five-membered chelate ring in [Be(L18)]$^-$ and [Be(L19)]$^- \text{ gave rise to fluorescence. [Be(L15)] and [Be(L17)]}^- \text{ had more flexibility due to the six-membered chelates allowing adoption of anti conformations where no extended overlap of } \pi \text{ orbitals was present.}
6.1.5 UV-Vis and Fluorescence Spectroscopy in Water

The only ligands which had water solubility were those with carboxylic acid moieties, **L17** and **L18** (Figure 6.31).

![Figure 6.31: Water-soluble encapsulating ligands](image)

Analogous experiments were performed to 6.1.3 above with water as the solvent in place of DMF and the following spectra were obtained (Figures 6.32 and 6.33).

![Figure 6.32: Change in UV-Vis spectrum at 10⁻⁵ M of neutral L18 (blue) and after BeSO₄ addition (red) in H₂O](image)
Similarly to 6.1.3, \([\text{Be(L18)}]^+\) was fluorescent and excitation at 290 nm gave an emission at 330 nm for (Figure 6.34).
The ligand L18 is the best candidate for a potential application for the detection of beryllium in an aqueous environment as measuring the fluorescence enables greatly enhanced sensitivity over straight measurement of the UV-Vis spectra. The UV-Vis spectra are unreliable as contaminants could easily give rise to increased absorbance at the wavelength where the beryllium species absorbs. The fluorescence is due to a specific excitation of the beryllium species that cannot be replicated by contaminants. Due to the time constraints of the short trip and the slow and careful pace which beryllium coordination chemistry must be conducted there was not time to perform any competition studies between other metal cations which would interfere the detection of beryllium.
6.2 Complexation of Encapsulating Compounds to Transition Metals

Variations on the tetra-coordinate ligands in this Chapter (e.g. variations in the peripheral substitution on the aromatic rings) have already been investigated for their coordination to transition metals. As an example, the current L16 was coordinated to both copper and zinc and the crystal structures were determined and most importantly the spectroscopy was investigated to deduce whether coordination to other metal cations than Be(II) would lead to fluorescent compounds and hinder detection of Be(II).

The copper complex of L16 was formed using copper acetate in MeOH and MeCN and crystallised via vapour diffusion of diethyl ether into the solution. The asymmetric unit consisted of one molecule L16 and one copper ion (Figure 6.35). One molecule of methanol was present in the asymmetric unit and was located in a special position.

![Figure 6.35: Asymmetric unit for the crystal of [Cu(L16)], ellipsoids drawn at the 50% probability level](image)

The unit cell shows the full [Cu$_2$(L16)$_2$] bridged dimer (Figure 6.36). The copper ions have square pyramidal geometry with the fifth donor atom coming from a bridging phenolate on the adjacent ligand. The ligand packs with “syn” geometry discussed previously with one phenol arm and the pyridine arm aligning in plane.
The syn arrangement of the donor arms and square pyramidal metal geometry is typical for all the copper complexes of the structural analogues of L16, regardless of whether the complex is of the M₂L₂ or MLX type. The bond lengths and angles around the copper ion did not show any notable deviations from the complexes already reported (Table 6.5).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Length (Å)</th>
<th>Parameter</th>
<th>Angle (°)</th>
<th>Parameter</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu1–O1</td>
<td>2.295(3)</td>
<td>O1–Cu1–O2</td>
<td>98.51(11)</td>
<td>N1–Cu1–N2</td>
<td>83.82(11)</td>
</tr>
<tr>
<td>Cu1–O2</td>
<td>1.905(2)</td>
<td>O1–Cu1–N1</td>
<td>93.21(11)</td>
<td>N2–Cu1–O1a</td>
<td>91.54(11)</td>
</tr>
<tr>
<td>Cu1–N1</td>
<td>2.044(3)</td>
<td>O1–Cu1–N2</td>
<td>93.17(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu1–N2</td>
<td>1.992(2)</td>
<td>O1–Cu1–O1a</td>
<td>93.03(11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu1–O1a</td>
<td>1.958(3)</td>
<td>N2–Cu1–N1</td>
<td>92.20(11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>O2–Cu1–O1a</td>
<td>93.03(11)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.5: Major structural parameters for the geometry of the Cu(II) ion in [Cu₂(L16)₂]

The UV-Vis of [Cu₂(L16)₂] showed the typical weak d-d transition at 685 nm and ε 129 L mol⁻¹ cm⁻¹ (Figure 6.37). The π – π^* transition for the ligand was at 374 nm and ε 16700 L mol⁻¹ cm⁻¹ (Figure 6.38). When checked for fluorescence activity using similar
concentrations and entry/exit slit widths (10^{-5} \text{ M}, 2.5\text{nm}) on the fluorometer to those used when analysing the Be(II) complexes there was no activity. This is despite the crystal structure of [Cu_2(L16)_2] showing an alignment of adjacent aromatic rings on the ligand. The square pyramidal geometry of the copper complex does not place the rings at a significantly greater distance than that of tetrahedral geometry of the beryllium complex.

![Figure 6.37: UV-Vis of [Cu_2(L16)_2] (red) at 10^{-4} \text{ M} showing metal d–d transition in MeOH](image)

![Figure 6.38: UV-Vis of [Cu_2(L16)_2] (red) at 10^{-5} \text{ M} showing ligand \pi–\pi^* transitions in MeOH](image)
The zinc complex of \textbf{L16} was formed using zinc acetate in MeOH and CH\textsubscript{2}Cl\textsubscript{2} and crystallised via vapour diffusion of diethyl ether into the solution. The crystal structure of the zinc complex had more disorder than the copper complex. The asymmetric unit consisted of the [Zn\textsubscript{2}(\textbf{L16})\textsubscript{2}] bridged dimer (Figure 6.39). The solvent could not be modelled so 156 electrons were squeezed from the unit cell which is approximately two molecules of dichloromethane and four molecules of methanol.

![Figure 6.39: Crystal structure of [Zn\textsubscript{2}(\textbf{L16})\textsubscript{2}], ellipsoids drawn at the 50% probability level](image)

The zinc ions adopt distorted trigonal bipyramidal geometries. The ligand packs with “anti” geometry discussed previously with no alignment of aromatic planes (Figure 6.40).
The anti arrangement of the donor arms and trigonal bipyramidal metal geometry is typical for the zinc complexes of the structural analogues of L16.

The bond lengths and angles around the zinc ion did not show any notable deviations from the complexes already reported (Table 6.6).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Length (Å)</th>
<th>Parameter</th>
<th>Angle (°)</th>
<th>Parameter</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn1–O1</td>
<td>1.987(6)</td>
<td>O1–Zn1–O1A</td>
<td>78.0(2)</td>
<td>O1–Zn1A–O1A</td>
<td>78.2(2)</td>
</tr>
<tr>
<td>Zn1–O1A</td>
<td>2.054(5)</td>
<td>O1–Zn1–O2</td>
<td>122.8(2)</td>
<td>O1–Zn1A–O2A</td>
<td>98.5(2)</td>
</tr>
<tr>
<td>Zn1–O12</td>
<td>1.943(5)</td>
<td>O1–Zn1–N1</td>
<td>90.5(2)</td>
<td>O1–Zn1A–N1A</td>
<td>169.0(2)</td>
</tr>
<tr>
<td>Zn1–N1</td>
<td>2.158(6)</td>
<td>O1–Zn1–N2</td>
<td>124.5(2)</td>
<td>O1–Zn1A–N2A</td>
<td>96.6(2)</td>
</tr>
<tr>
<td>Zn1–N2</td>
<td>2.065(6)</td>
<td>O1A–Zn1–O2</td>
<td>104.9(2)</td>
<td>O1A–Zn1A–O2A</td>
<td>118.2(2)</td>
</tr>
<tr>
<td>Zn1A–O1</td>
<td>2.021(5)</td>
<td>O1A–Zn1–N1</td>
<td>164.0(2)</td>
<td>O1A–Zn1A–N1A</td>
<td>93.7(2)</td>
</tr>
<tr>
<td>Zn1A–O1A</td>
<td>2.013(6)</td>
<td>O1A–Zn1–N2</td>
<td>97.4(2)</td>
<td>O1A–Zn1A–N2A</td>
<td>114.3(3)</td>
</tr>
<tr>
<td>Zn1A–O2A</td>
<td>1.926(5)</td>
<td>O2–Zn1–N1</td>
<td>90.6(2)</td>
<td>O2A–Zn1A–N1A</td>
<td>91.8(2)</td>
</tr>
<tr>
<td>Zn1A–N1A</td>
<td>2.155(6)</td>
<td>O2–Zn1–N2</td>
<td>111.9(2)</td>
<td>O2A–Zn1A–N2A</td>
<td>127.3(3)</td>
</tr>
<tr>
<td>Zn1A–N2A</td>
<td>2.068(6)</td>
<td>N1–Zn1–N2</td>
<td>79.9(2)</td>
<td>N1A–Zn1A–N2A</td>
<td>79.9(2)</td>
</tr>
</tbody>
</table>

Table 6.6: Major structural parameters for the geometry of the Zn(II) ion in $[\text{Zn}_2(\text{L16})_2]$
The UV-Vis of \([\text{Zn}_2(\text{L16})_2]\) showed a similar \(\pi - \pi^*\) transition for the ligand as the copper complex which was at 362 nm and \(\varepsilon\ 13400\ \text{L mol}^{-1}\ \text{cm}^{-1}\) (Figure 6.41). When checked for fluorescence activity using similar concentrations and entry/exit slit widths on the fluorometer to those used when analysing the beryllium complexes there was no activity.

![Figure 6.41: UV-Vis of \([\text{Zn}_2(\text{L16})_2]\) (red) at 10\(^{-5}\) M showing ligand \(\pi - \pi^*\) transitions in MeOH](image)

It is expected the ligands \(\text{L15} - \text{L19}\) would show similar modes of coordination to metal cations as \(\text{L16}\). Characterising all of the possible metal complexes of these ligands would represent a large detour from the aims of this thesis; however, it was most important to determine whether there was an influence on the fluorescence on the water soluble ligand \(\text{L18}\) (Figure 6.42).

![Figure 6.42: Water-soluble and fluorescent encapsulating ligand, \(\text{L18}\)](image)
L18 had the greatest potential for use as a water soluble fluorescent sensor for detection of Be(II). Coordination of L18 to other metals only becomes a problem if they give rise to a fluorescent species. An excess of L18 could be used in a sensor to ensure Be(II) coordination or a buffer and EDTA system could be used to coordinate Be(II) to L18 preferentially to other metals. Current commercial beryllium sensors use buffers to precisely control the pH and EDTA to coordinate other metals to effectively detect beryllium with good sensitivity.61 Both copper and zinc sulfate were coordinated to L18 in water and the solutions were diluted and checked for any fluorescence at 290 nm (the excitation wavelength of the Be(II) complex, Figure 6.34) and there was no activity.
6.3 Summary

The use of tetra-coordinate ligands offered a vast improvement in the complexation of Be(II) compared to the proton sponges investigated in Chapter 4. The use of 9Be NMR calculations allowed prediction of the correct species with good certainty and time domain calculations gave insight into the electronic transitions occurring for the fluorescent beryllium complexes.

The trade-off in use of these ligands is the potential loss in selectivity for beryllium over other metal cations. Future investigation will need to involve competition studies between beryllium and other metals for these ligands to evaluate the extent of this problem.

It should be noted that there is currently no known ligand which will bind only to beryllium and show no complexation with other metals. It is possible; however, to elicit selectivity through the use of buffers to control pH and EDTA to coordinate other interfering metal cations. Hence, a ligand such as \textbf{L18} has strong potential for development into a beryllium sensor.

![Figure 6.43: Water-soluble and fluorescent encapsulating ligand, L18](image)

Modification of the phenolic substituents on \textbf{L18} with suitable chromophores could further enhance the observed fluorescence increasing the sensitivity for detection of minute traces of beryllium.
Chapter 7: Conclusions

This investigation began by exploring the idea of size fit selectivity in an attempt to find a potentially beryllium selective ligand. The current “gold standard” for detection of beryllium in an aqueous environment is a sulfonated analogue of 701 (Figure 7.1), which is currently used commercially in a beryllium detection kit.

![Figure 7.1: Benzo[h]quinolin-10-ol, 701](image1)

701 was not entirely selective for beryllium, and the test kit used a complex buffer system to maintain a precise pH to elicit coordination to beryllium and an excess amount of EDTA to bind all other metal ions. 701 would therefore be unsuitable for any large scale environmental remediation application.

It was thought that by retaining the rigid aromatic backbone of 701 and switching the strong phenolic oxygen donor to nitrogen, selectively for beryllium might be possible. We then began an extensive investigation into the ligand L2 and its substituted derivatives (Figure 7.2).

![Figure 7.2: Quinolino[7,8-h]quinoline, L2](image2)

L2 turned out to be a poor ligand for Be(II) coordination in aqueous environments. The unique spacing of the nitrogen donors resulted in a high affinity for protonation which was not matched by Be(II) in an aqueous environment. Once protonated, L2 was essentially inactivated against any metal coordination with the high pK$_{BH^+}$, leaving no chance for
deprotonation and Be(II) coordination. It is still a firm belief that the use of a suitable beryllium salt (such as beryllium chloride) in an aprotic environment would achieve Be(II) coordination to \(\text{L2} \). Coordination of \(\text{L2} \) to the similarly sized B(III) cation was achieved using aprotic conditions and the solid state structure revealed an excellent fit. Unfortunately, beryllium is not available in a wide variety of different salts, and preparation of a suitable reactive beryllium salt increases the danger due to the handling of beryllium solids. Hence, aqueous beryllium coordination chemistry was the only safe viable option, even then requiring the use of a special overseas facility.

In closing, to achieve coordination to beryllium in an aqueous system, it is essential to use hard electron-rich oxygen donors to coordinate with the hard beryllium dication. When considering simple rigid bidentate ligands, 701 is still the most suitable choice for Be(II) coordination.

The use of encapsulation to achieve selectivity for beryllium was then explored. A three-coordinate ligand which was recently investigated for the use of physiological detection of beryllium was 702 (Figure 7.3).\(^{28}\)

![Figure 7.3: 2,2'-{(pyridine-2,6-diyl)diphenol, 702](image)

The Be(II) complex of 702 was presented to common interferants found in physiological media and was stable under these conditions. It is not known whether initial complexation to Be(II) would occur selectively with 702 in a complex media containing other metal cations.

The current investigation focused on ligands capable of full encapsulation, forming tetra-coordinate species with Be(II). The best ligands were those containing two or three oxygen donors which effectively coordinated to the beryllium aqua species, for example L18 (Figure 7.4).
Depending on the solubility of the ligand, they could be used for aqueous or organic solvent based applications. Due to the limited amount of time available to conduct the beryllium research at the overseas facility, competition studies for beryllium were not instigated.

The current state of affairs in the search for beryllium selective ligands still remains largely uncharted. The toxicity of beryllium means there are very few groups willing to work in the field of beryllium coordination chemistry. Figure 7.5 offers a rough schematic of how simple bidentate ligands coordinate to Be(II) relative to other metal cations. The requirement of hard oxygen donors to coordinate Be(II) means it is not possible to design a simple bidentate ligand which will coordinate Be(II) and not other metal ions. An enclosed tetra-coordinate ligand on the other hand may be better suited to excluding larger metal cations.
Due to the time constraints of this project, the ligand L14 could not be tested for Be(II) coordination (Figure 7.6). In light of the results of Chapter 6, it is anticipated this would show weak coordination to beryllium due to the lack of oxygen donors. Crucially however, the presence of the phenolic oxygen should promote initial coordination to Be(II) and full encapsulation via the weaker pyridine donors could potentially occur via chelation.

An enclosed ligand such as L14 has not been previously synthesised and future studies may show the beginnings of selectivity toward smaller Be(II) cations over larger metal cations (Figure 7.7).
The only way future research can effectively be achieved would be to start a beryllium research laboratory at Massey University. Travelling overseas to conduct the research is not a viable long term option, and the overseas laboratory used in this investigation is no longer available due to absence of beryllium trained staff and repurposing of the facilities. The major components of such a setup is a dedicated fumehood separate from all other activities and a separate reverse phase glove box for the handling of initial beryllium solids. Aside from these, the long term cost is the relatively small amount of beryllium contaminated waste generated which must be strictly contained. All liquid and solid waste (pipette tips, gloves, paper towels etc) must be separately contained and not allowed to mix with any other waste generated by the University. With the correct precautions put in place, excellent progress on this important research area could be made making New Zealand a world leader in this area.
Appendix A: Experimental

A.1 General Experimental

A.1.1 Reagents and Solvents

All starting materials were obtained from commercial sources and used without purification unless otherwise noted. All other reagents and solvents were obtained from commercial sources and used as supplied.

Solvents used in reactions were analytical grade and used directly. If stated as dry, they were subject to further purification as follows: Tetrahydrofuran, dichloromethane and toluene were passed through an alumina column on an in-house solvent purification system. Dimethylformamide was distilled from barium oxide and stored over 4 Å molecular sieves, under an atmosphere of nitrogen. Methanol was distilled from Mg turnings and I$_2$ and stored over 4 Å molecular sieves, under an atmosphere of nitrogen. Acetonitrile was distilled and stored over 4 Å molecular sieves, under an atmosphere of nitrogen.

A.1.2 Synthetic Methods

All reactions were carried out in oven-dried glassware, unless stated as being flame-dried, under an atmosphere of nitrogen or argon, with magnetic stirring. The reaction temperature refers to external sand bath temperature. All organic extracts were simultaneously filtered and dried over filter paper filled with magnesium sulfate. The solvents were removed under reduced pressure on a Büchi rotary evaporator. For characterisation purposes, or when strict drying of the compound was required for the next step, the last traces of solvent were removed using a high vacuum pump attached to a Schlenk line.
A.1.3 Chromatography

Reactions were followed by TLC on aluminium-backed silica gel 60 F$_{254}$ sheets from E-Merck, visualised by UV light.

Flash column chromatography was performed using Scharlau silica gel 60, 0.04 – 0.06 mm, 230 – 400 mesh. The length of silica was typically 20 cm and the diameter was varied according to reaction scale. The silica gel slurry was compacted with the specified solvent system of hexanes / EtOAc or CH$_2$Cl$_2$ / MeOH. The compound was then loaded onto the column an eluted with the specified solvent under positive pressure.

A.1.4 Characterisation

All compounds were characterised by nuclear magnetic resonance and mass spectrometry on in-house instruments. New compounds were sent for further characterisation by elemental analysis. One problem which was prevalent with most of the quinoxalino[7,8-h]quinolines was the fact they could not be purified by conventional silica gel column chromatography techniques unless extremely polar solvent MeOH gradients were used leading to dissolution of the silica. The quinoxalino[7,8-h]quinolines also did not recrystallise on a bulk scale. As such, elemental analysis results on these compounds were generally slightly outside publication standards, in these instances high resolution mass spectrometry and 13C NMR spectra were recorded. X-ray crystal structures were recorded when suitable single crystals were available.

NMR spectra were collected on Bruker Avance 300, 400 and 500 MHz spectrometers; the particular instrument is specified for each compound. In CDCl$_3$, all chemical shifts are reported relative to TMS (1H) and residual solvent (13C). In all other deuterated solvents, the chemical shifts are reported relative to residual solvent (1H, 13C). Full NMR assignments were made using 1H, 13C, and when appropriate 9Be, 11B and 19F spectra were recorded.
Electrospray mass spectra were recorded on a Mircomass ZMD spectrometer run in positive ion mode.

High resolution mass spectra were recorded on a micrOTOF-Q mass spectrometer, operating at a nominal voltage of 3500 V. This service was provided by The University of Auckland.

Elemental analyses were provided by the Campbell Microanalytical Laboratory, University of Otago.

UV-Vis spectra were recorded on a Shimadzu UV-3101PC spectrophotometer using UV Probe v1.1. Fluorescence measurements were made on a Perkin Elmer LS50B luminescence spectrometer using FL Winlab v4.00.02.

The X-ray data was collected at reduced temperature on a Rigaku Spider diffractometer equipped with a copper rotating anode X-ray source and a curved image plate detector. The crystals were mounted in an inert oil, transferred into the cold gas stream of the detector and irradiated with graphite monochromated Cu Kα (k = 1.54178 Å) X-rays. The data was collected by the Crystal Clear program (v.1.4.0) and processed with FS-PROCESS to apply the Lorentz and polarisation corrections to the diffraction spots (integrated 3 dimensionally). The structures were solved by direct methods SHELXS-97 and refined using the SHELXL-97 program. Absorption correction was carried out empirically. Hydrogens were calculated at their ideal positions unless otherwise stated.

A.1.5 Computational

Theoretical calculations were performed using the program GAUSSIAN03 for Linux running on the BESTGRID supercomputer operated at Massey University Albany. Becke’s three-parameter hybrid exchange correlation functional containing the nonlocal gradient
correction of Lee, Yang, and Parr (B3LYP) in conjunction with the 6-311g++(2d,p) basis set in most instances unless noted otherwise.
A.2 Beryllium Coordination Chemistry Safety Considerations

A.2.1 Safe Handling

In order to conduct beryllium research safely, special precautions must be taken. The research should be conducted in an area separate from all other activities in order to prevent contamination, preferably a separate room. All handling of beryllium solids should be prepared in a negative phase; HEPA (high efficiency particulate air) filtered glove box. An example of such a setup is shown in Figure A.1.

![Reverse Phase, HEPA filtered glove box for the handling of Be solids](image)

The gloves are sucked down due to the negative pressure. The negative pressure is necessary so that in the event of a glove rupture, or when simply taking items in and out of the box via the antechamber, no particulate beryllium is blown out. The reason for such strict measures is because the permissible exposure limit (The 8-hour time-weighted
average airborne concentration not to be exceeded) for beryllium is 2 µg/m³. This is equivalent to grinding the tip off a pencil lead and scattering it in the area the size of a football field.

Once in a stock solution, Be may be handled out of the glove box in a normal fume hood that is separated for beryllium use. All liquid beryllium waste should be collected in a separate waste container and all disposables (gloves, pipette tips, scintillation vials etc) must be placed in a separate sealable bag for disposal, which is later double-bagged and collected separately. Teflon lined tubes must be used for NMR spectroscopy.

A.2.2 Testing for Contamination

The workspace should be regularly tested for contamination. A colorimetric test could be used that utilised the sulfonated hydroxybenzoquinoline to bind Be²⁺, EDTA was used to bind interference elements. The elements validated for interference are Al, Fe, Pb, U, Cd, Cr, Hg, Ca, W, Ni, Co and Cu all at concentrations of up to 0.4 mM per 0.1µM Be.

\[
\text{10-Hydroxybenzo[h]quinoline-4,7-disulfonic acid}
\]

The test is a convenient method for testing whether a surface contains beryllium contamination. Positively tested areas should be immediately be cleaned, with the waste being separated. A positive test would require review of handling procedures as there must be no chance for beryllium dust to occupy workspaces. When undertaking beryllium solution chemistry, this problem should not be encountered unless the worker drastically deviates from standard operating procedures.
A.3 Chapter 2 Experimental

A.3.1 Tetramethyl 2,2’-(naphthalene-1,8-diylbis(azanediyl))difumarate (205)

Tetramethyl 2,2’-(naphthalene-1,8-diylbis(azanediyl))difumarate (205) was synthesised according to the known literature procedure.103 1,8-Diaminonaphthalene (204) (10.0 g, 63.2 mmol) in EtOH (750 mL) was slowly added dropwise to dimethyl acetylenedicarboxylate (DMAD) (15.5 mL, 126.0 mmol) over 1 h, and the reaction was stirred for a further 1 h. The crude product precipitates as a yellow-brown material from the solution and was collected by filtration. Instead of recrystallisation, the crude 205 was partially purified by chromatography (1:1 EtOAc / hexanes), and washed and filtered with ether to give 205 as a yellow-orange crystalline powder (11.7 g, 41 %). $R_f = 0.32$ (2:1 hexanes / EtOAc). 1H NMR (500 MHz, CDCl\textsubscript{3}) δ 3.55 (s, 6H; COCH\textsubscript{3}), 3.68 (s, 6H; COCH\textsubscript{3}), 5.48 (s, 2H; C=CH), 6.93 (d, $J = 7.4$, 2H; 4,5-H), 7.34 (t, $J = 7.8$, 2H; 3,6-H), 7.65 (d, $J = 8.2$, 2H; 2,7-H), 10.11 (s, 2H, NH). 13C NMR (125 MHz, CDCl\textsubscript{3}) δ 51.0 (t), 52.6 (t), 93.8 (s), 121.6 (s), 123.3 (q), 125.8 (s), 126.4 (s), 136.1 (q), 137.0 (q), 147.9 (q), 164.9 (q), 169.5 (q). M.P. = 145 – 147 °C, Lit. M.P. = 146 °C;103 142 – 143 °C.85

A.3.2 Dimethyl 4,9-dioxo-1,4,9,12-tetrahydroquinolino[7,8-h]quinoline-2,11-dicarboxylate (206)
Dimethyl 4,9-dioxo-1,4,9,12-tetrahydroquinolino[7,8-h]quinoline-2,11-dicarboxylate (206) was synthesised according to the known literature procedure. Tetramethyl 2,2’-(naphthalene-1,8-diylbis(azanediyl))difumarate (205) (2.5 g) was added to phenyl ether (60 mL) which was preheated to 240°C and stirred for 20 min. An insoluble pale yellow solid was formed which was filtered and washed with acetone (200 mL). Rinsing, sonication and filtration of the insoluble precipitate with acetone (3x 200 mL) removed the impurities locked into the clay-like product (1.21 g, 57%). Analysis by NMR or MS experiments was not possible. C_{20}H_{14}N_{2}O_{6} (378.33): calcd. C 63.49, H 3.73, N 7.40; found C 63.72, H 3.88, N 7.40. M.P. = 342 – 344°C, Lit. M.P. = “>300°C”; \^{103} 276 - 278°C.\^{85}

A.3.3 Quinolino[7,8-h]quinoline-4-9-(1H,12H)-dione (208)

Dimethyl 4,9-dioxo-1,4,9,12-tetrahydroquinolino[7,8-h]quinoline-2,11-dicarboxylate (206) (0.800 g, 2.116 mmol) and sodium acetate (0.172 g, 2.116 mmol) were added to water (80 mL) in a stainless steel bomb with a Teflon inner container (100 mL capacity). The insoluble 206 was dispersed by vigorous agitation then left stationary and heated at 250 °C overnight (16 hr). An insoluble brown semi-crystalline solid was separated using centrifugation and decantation with water (3x 50 mL) resulting in the isolation of impure 208. Purification of 208 was possible in the next step. C_{16}H_{10}N_{2}O_{2} (262.26): calcd. C 73.27, H 3.84, N 10.68; found C 69.92, H 4.49, N 10.10. IR (KBr disc): 3433 br, 2556 br,
1786 br, 1617 s, 1584 w, 1550 m, 1472 m, 1432 m, 1411 m, 1375 s, 1302 m, 1284 m, 1193 m, 1167 w, 1103 m, 1072 w, 978 w, 865 w, 832 m, 805 w, 793 w, 742 w, 714 w, 652 w, 574 s, 509 s, 493 m, 476 w.

A.3.4 4,9-Dichloroquinolino[7,8-h]quinoline (L1)

4,9-Dichloroquinolino[7,8-h]quinoline (L1) was synthesised according to the known literature procedure. Phosphorus oxychloride (4.02 g, 2.44 mL, 26.4 mmol) was added to quinolino[7,8-h]quinoline-4-9-(1H,12H)-dione (208) (0.520 g, 2.08 mmol) and the reaction was stirred at 130 °C for 8 minutes under Ar. The reaction mixture was diluted with CH₂Cl₂ (200 mL) and basified with 6M KOH (20 mL) followed by addition of water (200 mL), a small portion of decolourising carbon was added and the organic layer was filtered and dried over MgSO₄, and concentrated to give L1 (0.427 g). The overall yield for the two steps (206 – L1) is 68 %. ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, J = 4.5, 2H; 3,10-H), 8.03 (d, J = 8.9, 2H; 6,7-H), 8.48 (d, J = 8.9, 2H; 5,8-H), 9.28 (d, J = 4.5, 2H; 2,11-H); ¹³C NMR (125 MHz, CDCl₃) δ 121.6 (s), 124.9 (s), 126.4 (q), 128.8 (s), 136.4 (q), 142.9 (q), 148.2 (q), 149.9 (s). MS for C₁₆H₈N₂Cl₂ (M⁺) 299.25. The product was recrystallised by slow cooling of a saturated solution in CHCl₃ at 0 °C. C₁₆H₈Cl₂N₂ (299.15): calcd. C 64.24, H 2.70, N 9.36; found C 64.05, H 2.88, N 9.27. M.P. = 236 – 238 °C, Lit. M.P. = 234 – 235 °C.

Crystal data for L1.2CHCl₃. C₁₈H₁₀Cl₈N₂, colourless needle, dimensions 1.25 x 0.25 x 0.20 mm, monoclinic, space group P2₁/c, a = 8.5924(17), b = 11.776(2), c = 21.225(4) Å, α = 90.00°, β = 92.47(3)°, γ = 90.00°, U = 2145.7(7) Å³, μ = 1.058 mm⁻¹, Z = 4, Dc = 1.665 g cm⁻³, F(000) = 1072, T = 173(2) K. 17488 Reflections were collected using a Bruker SMART four circle diffractometer in the range 2.94 < 2θ < 56.56°. A semi-empirical
absorption correction (SADABS-2004/1) was applied. The 5306 independent reflections were used to solve the structure by direct methods (SHELXS97) which resulted in the location of all non-hydrogen atoms. All non-hydrogen atoms were made anisotropic and the refinement (SHELXL97) of 253 parameters converged to $R_I = 0.0232$ [for 4830 reflections having $I > 4\sigma (I)$], $wR_2 = 0.0621$ and goodness of fit 1.035 (for all 5306 F^2 data). Peak / hole 0.398 / -0.368 e Å$^{-3}$.

A.3.5 Quino[7,8-h]quinoline (L2)

Quinolino[7,8-h]quinoline (L2) was synthesised according to the known literature procedure.85 Water free sodium acetate (0.071 g, 0.862 mmol), 5 % Pd / C (0.037 g, 37 weight % of L1) and glacial acetic acid (10 mL) was added to 4,9-dichloroquino[7,8-h]quinoline (L1) (0.100 g, 0.334 mmol) and the reaction was shaken under H$_2$ at 60 psi for 2 hr. The acetic acid was removed in vacuo and product was basified with 6M KOH (20 mL) and extracted with CH$_2$Cl$_2$ (200 mL). A small portion of decolourising carbon was added and the organic layer was filtered and dried over MgSO$_4$ to give L2 (0.055 g, 68 %). 1H NMR (500 MHz, CDCl$_3$) δ 7.57 (dd, $J = 4.3$, 8.0, 2H; 3,10-H), 7.93 (‘s’, 4H; 5,8-H and 6,7-H), 8.28 (dd, $J = 1.9$, 8.0, 2H; 4,9-H), 9.43 (dd, $J = 1.9$, 4.3, 2H; 2,11-H); 13C NMR (125 MHz, CDCl$_3$) δ 120.8 (s), 127.8 (s), 128.1 (q), 128.1 (q), 128.4 (s), 136.0 (q), 136.3 (s), 147.3 (q), 150.4 (s). MS for C$_{16}$H$_{10}$N$_2$ (MH$^+$) 231.31. M.P. = 191 – 192 °C, Lit. M.P. = 196 – 197 °C.85

A.3.6 [H(L1)]BF$_4$
[H(L1)][BF4] was a side-product of the reaction of L1 with boron trifluoride diethyl etherate described in Chapter 4 and has been previously characterised as the perchlorate salt.\(^8\)\(^5\) \(^1\)H NMR (500 MHz, DMSO-d6) \(\delta\) 8.42 (d, \(J = 5.5, 2H; 3,10-H\)), 8.53 (d, \(J = 9.1, 2H; 6,7-H\)), 8.62 (d, \(J = 9.1, 2H; 5,8-H\)), 9.34 (d, \(J = 5.5, 2H; 2,11-H\)) 19.29 (s, 1H; NH); \(^13\)C NMR (125 MHz, DMSO-d6) \(\delta\) 116.3 (q), 124.7 (s), 126.3 (q), 126.4 (q), 131.2 (s), 137.6 (q), 142.7 (q), 147.9 (s), 148.3 (s). MS for C\(_{16}\)H\(_8\)N\(_2\)Cl\(_2\)H\(^+\) (M\(^+\)) 299.60. The product was recrystallised by vapour diffusion of diethyl ether a MeCN solution of [H(L1)][BF4]. C\(_{16}\)H\(_8\)N\(_2\)Cl\(_2\)H\(^+\)BF\(_4^-\) (386.02): calcd. C 49.66, H 2.34, N 7.24; found C 49.97, H 2.69, N 7.14. M.P. = 342 – 343 °C.

Crystal data for [H(L1)][BF4]. C\(_{16}\)H\(_9\)N\(_2\)Cl\(_2\)BF\(_4^-\), colourless rod, dimensions 0.5 x 0.1 x 0.05 mm, monoclinic, space group \(P2_1/c\), \(a = 6.6569(13)\) Å, \(b = 20.741(4)\) Å, \(c = 11.169(2)\) Å, \(\alpha = 90.00^\circ\), \(\beta = 105.06(3)^\circ\), \(\gamma = 90.00^\circ\), \(U = 1489.1(5)\) Å\(^3\), \(\mu = 4.379\) mm\(^{-1}\), \(Z = 4\), \(D_c = 1.726\) g cm\(^{-3}\), \(F(000) = 776\), \(T = 173(2)\) K. 17488 Reflections were collected using a Rigaku MM007 rotating anode in the range \(6.89 < 2\theta < 144.74^\circ\). A semi-empirical absorption correction (ABSCOR; Higashi, 1995) was applied. The 2846 independent reflections were used to solve the structure by direct methods (SHELXS97) which resulted in the location of all non-hydrogen atoms. All non-hydrogen atoms were made anisotropic and the refinement (SHELXL97) of 253 parameters converged to \(R_f = 0.0429\) [for 2303 reflections having \(I > 4\sigma (I)\)], \(wR_2 = 0.1075\) and goodness of fit 1.041 (for all 2846 \(F^2\) data). Peak / hole 0.305 / -0.339 e Å\(^{-3}\).
A.3.7 \([H(L2)]BF_4\)

\([H(L2)]BF_4\) was a side-product of the reaction of \(L2\) with boron trifluoride diethyl etherate described in Chapter 4 and has been previously characterised as the perchlorate salt.\(^{85}\) \(^1\)H NMR (500 MHz, CD\(_3\)CN) \(\delta\) 8.05 (dd, \(J = 5.0, 8.4, 2H; 4,6-H\)), 8.20 (d, \(J = 8.8, 2H; 6,7-H\)), 8.27 (d, \(J = 8.8, 2H; 5,8-H\)), 8.91 (dd, \(J = 1.6, 8.4, 2H; 3,10-H\)), 9.24 (m, 2H; 2,11-H), 19.61 (s, 1H; NH); \(^{13}\)C NMR (125 MHz, CD\(_3\)CN) \(\delta\) 117.0 (s), 127.3 (q), 129.3 (s), 130.5 (s), 130.8 (q), 138.2 (q), 143.1 (q), 143.7 (s), 147.7 (s). MS for \(C_{16}H_{11}N_2\) (M\(^+\)) 231.31. M.P. = 235 – 237 °C.
A.3.8 3,3-bis(Methylthio)acrylaldehyde (217)

3,3-bis(Methylthio)acrylaldehyde (217) was synthesised according to the known literature procedure. Vinyl acetate (216) (1.86 g, 2.00 mL, 21.6 mmol) in dry tetrahydrofuran (22 mL) was added slowly to a solution of potassium tert-butoxide (2.90 g, 25.9 mmol) in dry tetrahydrofuran (29 mL) under N₂ at -78 °C over 30 min. The reaction was stirred at this temperature for a further 1 hr. Then carbon disulfide (1.69 g, 1.30 mL, 21.6 mmol) was added dropwise over 15 min and the reaction was warmed to 0 °C and stirred at this temperature for a further 45 min. Methyl iodide (6.14 g, 2.70 mL, 43.2 mmol) was finally added and the reaction was stirred at 0 °C for 4 h. The reaction was poured onto ice-water (100 mL) and extracted with CH₂Cl₂ (3x 50 mL), dried over MgSO₄, filtered and concentrated. The product was purified by chromatography eluting with (1:6 EtOAc / hexanes) to give 217 as an orange oil (29 %). The product was used immediately in the next step and was not able to be stored long-term. \(R_f = 0.36 \) (2:1 hexanes / EtOAc). \(^1\)H NMR (500 MHz, CDCl₃) \(\delta \) 2.44 (s, 3H; SCH₃), 2.55 (s, 3H; SCH₃), 5.99 (d, \(J = 6.7 \), 1H; C=CH), 9.92 (d, \(J = 6.7 \), 1H; CHO); \(^{13}\)C NMR (125 MHz, CDCl₃) \(\delta \) 16.3 (t), 16.6 (t), 120.6 (s), 166.5 (q), 186.0 (q).

A.3.9 N-(2-(Methylthio)benzo[h]quinolin-10-yl)acetamide (214)
3,3-bis(Methylthio)acrylaldehyde (217) (0.300 g, 2.00 mmol) and 1,8-diaminonaphthalene (204) (0.174 g, 1.10 mmol) in glacial acetic acid (30 mL) was heated under reflux for 8 hr. The excess acetic acid was removed *in vacuo* and the residue quenched with a saturated NaHCO₃ solution. The residue was extracted with CH₂Cl₂ (200 mL) and the organic layer was washed with water (2 x 200 mL) and filtered and dried over MgSO₄. Purification by silica gel column chromatography eluting with 9:1 hexanes / EtOAc gave 214 as a pale brown solid which darkened upon storing (0.006 g, 2 %). \(R_f = 0.21 \) (2:1 hexanes / EtOAc).

\(^1\)H NMR (500 MHz, CDCl₃) \(\delta \) 2.43 (s, 3H; CH₃), 2.69 (s, 3H; CH₃), 7.33 (d, \(J = 8.5, 1\)H), 7.51-7.68 (m, 4H), 8.05 (d, \(J = 8.5, 1\)H), 9.02 (d, \(J = 7.9, 1\)H), 14.3 (s, 1H; NH); \(^{13}\)C NMR (125 MHz, CDCl₃) \(\delta \) 14.7 (t), 25.9 (t), 116.6 (q), 117.0 (s), 118.0 (s), 122.8 (s), 124.3 (q), 124.8 (s), 128.1 (s), 129.0 (s), 135.4 (q), 136.9 (s), 139.2 (q), 147.3 (q), 158.0 (q), 169.4 (q).

Crystal data for 214. C_{16}H_{14}N₂OS, colourless block, dimensions 0.55 x 0.34 x 0.33 mm, triclinic, space group \(P-1 \), \(a = 7.2715(2), b = 9.8011(2), c = 10.4908(2) \) Å, \(\alpha = 106.4320(10)^\circ, \beta = 99.5190(10)^\circ, \gamma = 106.4390(10)^\circ, U = 662.88(3) \) Å³, \(\mu = 0.240 \) mm⁻¹, \(Z = 2, D_c = 1.415 \) g cm⁻³, \(F(000) = 296, T = 173(2) \) K. 7336 Reflections were collected using a Bruker SMART four circle diffractometer in the range 2.31 < 2\(\theta \) < 66.50°. A semi-empirical absorption correction (SADABS-2004/1) was applied. The 2603 independent reflections were used to solve the structure by direct methods (SHELXS97) which resulted in the location of all non-hydrogen atoms. All non-hydrogen atoms were made anisotropic and the refinement (SHELXL97) of 181 parameters converged to \(R_I = 0.0310 \) [for 2603 reflections having \(I > 4\sigma(I) \)], \(wR_2 = 0.0854 \) and goodness of fit 1.090 (for all 2603 \(F^2 \) data). Peak / hole 0.335 / -0.244 e Å⁻³.
A.4 Chapter 3 Experimental

A.4.1 9-(4-tert-Butylphenoxy)quinolino[7,8-h]quinolin-4(1H)-one (L4)

\[\text{L1} \quad 4^-\text{BuC₆H₄OH} \quad 150 \degree \text{C} \quad \text{L4} \]

\(p \text{-tert-Butylphenol (7.72 g, 51.2 mmol), potassium hydroxide (0.460 g, 9.35 mmol), and 4,9-dichloroquinolino[7,8-h]quinoline (L1) (0.200 g, 0.668 mmol) was stirred at 150 \degree \text{C} \) for 4 hr. The reaction was diluted with \(\text{CH}_2\text{Cl}_2 \) (200 mL) and washed with 2M HCl (10 mL) in water (200 mL) then basified with 6M KOH (10 mL). The organic layer was filtered and dried over MgSO₄. The product was purified by silica gel column chromatography using 95:5 CH₂Cl₂ / MeOH to give L4 (0.258 g, 98 \%). \(^1\text{H NMR (500 MHz, CDCl}_3) \delta \) 1.42 (s, 9H; \(\text{C}_7\text{H}_3 \)), 6.84 (d, \(J = 6.2 \), 1H; 7-H), 6.87 (d, \(J = 5.4 \), 1H; 3-H), 7.21 (d, \(J = 8.6 \), 2H; ArH), 7.56 (d, \(J = 8.6 \), 2H; ArH), 7.78 (d, \(J = 8.7 \), 1H; 10-H), 7.93 (d, \(J = 8.7 \), 1H; 6-H), 8.09 (d, \(J = 6.2 \), 1H; 2-H); 16.30 (s, 1H; NH), \(^{13}\text{C NMR (125 MHz, CDCl}_3) \delta \) 31.5 (t), 34.6 (q), 105.4 (s), 111.1 (s), 115.0 (q), 116.7 (q), 119.5 (q), 120.6 (s), 122 (s), 124.1 (s), 125.6 (s), 126.1 (q), 127.4 (s), 127.7 (s), 137.0 (q), 138.4 (s), 140.4 (q), 148.5 (q), 148.7 (s), 149.3 (q), 151.4 (q), 162.8 (q). \(\text{C}_{26}\text{H}_{22}\text{N}_2\text{O}_2 \) (M⁺) 395.55. \(\text{C}_{26}\text{H}_{22}\text{N}_2\text{O}_2 \cdot \text{HClO}_4 \) (544.94): calcd. C 79.16, H 5.62, N 7.10; found C 79.68, H 5.99, N 6.36. M.P. = 322 – 324 °C. The product was recrystallised by vapour diffusion of diethyl ether into a MeCN solution containing L4 with an equimolar quantity of copper perchlorate. \(\text{C}_{26}\text{H}_{22}\text{N}_2\text{O}_2 \cdot \text{HClO}_4 \) (544.94): calcd. C 63.10, H 4.68, N 5.66; found C 63.00, H 4.60, N 5.70.

Crystal data for \([\text{H(L4)}_2][\text{ClO}_4]\). \(\text{C}_{52}\text{H}_{45}\text{N}_4\text{Cl}_4 \), colourless needle, dimensions 0.5 x 0.1 x 0.05 mm, monoclinic, space group \(P2_1/\text{c} \), \(a = 16.964(3) \), \(b = 10.938(2) \), \(c = 24.162(5) \) Å, \(\alpha = 90.00^\circ \), \(\beta = 101.65(3)^\circ \), \(\gamma = 90.00^\circ \), \(U = 4391.2(15) \) Å³, \(\mu = 1.282 \) mm⁻¹, \(Z = 4 \), \(D_c = 1.345 \) g cm⁻³, \(F(000) = 1864 \), \(T = 100(2) \) K. 17488 Reflections were collected using a Rigaku
MM007 rotating anode in the range $6.65 < 2\theta < 144.18^\circ$. A semi-empirical absorption correction (ABSCOR; Higashi, 1995) was applied. The 10421 independent reflections were used to solve the structure by direct methods (SHELXS97) which resulted in the location of all non-hydrogen atoms. All non-hydrogen atoms were made anisotropic and the refinement (SHELXL97) of 587 parameters converged to $R_I = 0.0643$ [for 8316 reflections having $I > 4\sigma (I)$], $wR_2 = 0.1569$ and goodness of fit 1.050 (for all 8316 F^2 data). Peak / hole 0.403 / -0.426 e Å$^{-3}$.
General

DATE = 2009/04/05
TIME = 13:40
INSTRUM = spect
PULPROG = zgpg30

F1 (13C)

SI = 32768
SF = 175.758
SW_p = 30050.03

232
A.4.2 4-(4-tert-Butylphenoxy)-9-chloroquino[7,8-h]quinoline (L5)

![Chemical structure](image)

Phosphorus oxychloride (1.00 mL, 10.7 mmol) was added to 9-(4-tert-butylphenoxy)quinino[7,8-h]quinolin-4(1H)-one (L4) (0.258 g, 0.655 mmol) and the reaction was stirred at 120 °C for 9 minutes under Ar. The reaction mixture was poured onto water (200 mL) and basified with 6M KOH (20 mL) and extracted with CH₂Cl₂ (200 mL). A small portion of decolourising carbon was added and the organic layer was filtered and dried over MgSO₄ to give L5 (0.264 g, 98 %). ¹H NMR (500 MHz, CDCl₃) δ 1.42 (s, 9H; CH₃), 7.25 (d, J = 8.7, 2H; ArH), 7.30 (d, J = 6.5, 1H; 10-H), 7.64 (d, J = 8.7, 2H; ArH), 8.00 (d, J = 4.9, 1H; 3-H), 8.32 (d, J = 9.0, 1H; 7-H), 8.40 (d, J = 8.9, 1H; 6-H), 8.70 (d, J = 8.9, 1H; 5-H), 8.83 (d, J = 9.0, 1H; 8-H), 9.44 (d, J = 4.9, 1H; 2-H), 9.61 (d, J = 6.5, 1H; 11-H), ¹³C NMR (125 MHz, CDCl₃) δ 31.1 (t), 34.6 (q), 105.7 (s), 116.6 (q), 120.0 (s), 120.1 (q), 122.6 (s), 123.6 (s), 126.0 (q), 126.7 (q), 127.1 (s), 127.9 (s), 128.8 (s), 129.8 (s), 137.6 (q), 140.0 (q), 145.0 (q), 146.5 (s), 146.6 (q), 149.8 (q), 150.0 (s), 151.1 (q). HRMS calculated for C₂₆H₂₁N₂OCl (MH⁺) 413.1415, found 413.1415 (ESI+). M.P. = 233 – 235 °C.
\[\text{A.4.3 (E)-N-(9-Chloroquinolo[7,8-h]quinolin-4(1H)-ylidene)-4-methylaniline (L6)}\]

\[\begin{array}{c}
\text{L1} \\
\text{Cl} \\
\text{N} \\
\text{N} \\
\text{Cl} \\
\text{120 °C} \\
\text{L6} \\
\text{Cl} \\
\text{N} \\
\text{H} \\
\text{N} \\
\text{N} \\
\text{N} \\
\text{Ar} \\
\end{array}\]

\(p\)-Toludine (0.143 g, 1.338 mmol) and 4,9-dichloroquino[7,8-h]quinoline (L1) (0.100 g, 0.334 mmol) was refluxed for 4 hr in toluene (20 mL). The precipitate of crude L6 was filtered and dissolved in CH\(_2\)Cl\(_2\) (200 mL) and MeOH (20 mL) and washed with water (200 mL) and 6M KOH (20 mL). The organic layer was filtered and dried over MgSO\(_4\). L6 was precipitated from hot DMSO by addition of EtOAc and filtered (0.099 g, 80%). \(^1\)H NMR (500 MHz, CDCl\(_3\), MeOD) \(\delta\) 2.37 (s, 3H; \(\text{CH}_3\)), 6.97 (d, \(J = 7.0, 1\text{H}; 3\text{-H}\)), 7.28 (m, 4H; ArH), 7.84 (d, \(J = 5.0, 1\text{H}; 10\text{-H}\)), 8.09 (d, \(J = 9.0, 1\text{H}; 6\text{-H}\)), 8.12 (d, \(J = 9.0, 1\text{H}; 7\text{-H}\)), 8.40 (d, \(J = 9.0, 1\text{H}; 8\text{-H}\)), 8.57 (d, \(J = 7.0, 1\text{H}; 2\text{-H}\)), 8.68 (d, \(J = 9.0, 1\text{H}; 5\text{-H}\)), 9.03 (d, \(J = 5.0, 1\text{H}; 11\text{-H}\)), (in DMSO-d\(_6\)) 14.62 (s, 1H; NH); \(^{13}\)C NMR (125 MHz, CDCl\(_3\), MeOD) \(\delta\) 20.0 (t), 101.3 (s), 115.7 (q), 115.9 (q), 122.3 (s), 122.6 (s), 124.7 (s), 125.3 (s), 125.4 (s), 127.3 (q), 128.6 (s), 130.1 (s), 133.6 (q), 136.7 (q), 137.7 (q), 138.3 (q), 140.6 (s), 144.1 (q), 146.5 (q), 148.1 (s), 155.2 (q). The C\(_{23}\)H\(_{16}\)N\(_3\)Cl (MH\(^+\)) 370.72. Elemental analysis was measured for the tetrafluoroborate salt. C\(_{23}\)H\(_{17}\)ClN\(_3\)•BF\(_4\)•0.75H\(_2\)O (471.17): calcd. C 58.63, H 3.96, N 8.92; found C 58.59, H 3.68, N 8.82.
p-Toludine (2.75 g, 25.6 mmol) and 4,9-dichloro[7,8-h]quinoline (L1) (0.100 g, 0.334 mmol) was stirred at 150 °C for 4 hr. The reaction was diluted with CH₂Cl₂ (200 mL) and washed with water (200 mL) and 6M KOH (20 mL). The organic layer was filtered and dried over MgSO₄. The product was purified by silica gel column chromatography using 90:10 CH₂Cl₂ / MeOH then 50:50 CH₂Cl₂ / MeOH and finally 47:47:6 CH₂Cl₂ / MeOH and finally 47:47:6 CH₂Cl₂ / MeOH / NEt₃ to give L7 (0.136 g, 92 %). The product was recrystallised by cooling to 4 °C in CH₂Cl₂ / MeOH overnight.

\[\text{H} \text{ NMR (500 MHz, CDCl}_3, \text{ DMSO-}d_6) \delta 2.33 \text{ (s, 6H; C}_H_3), 6.66 \text{ (d, } J = 6.4, 2H; 6,7-H), 7.12 \text{ (d, } J = 7.9, 4H; ArH), 7.23 \text{ (d, } J = 7.9, 4H; ArH), 7.95 \text{ (d, } J = 8.8, 2H; 3,10-H), 8.25 \text{ (d, } J = 6.4, 2H; 5,8-H), 8.61 \text{ (d, } J = 8.8, 2H; 2,11-H), 16.41 \text{ (s, } 1H; NH); \]

\[\text{C}_3\text{O}_4 \text{N}_4 \text{O} \text{ (MH}^+) \text{ 441.2074, found 441.2068 (ESI+).} \]

M.P. = 302 – 304 °C.

Crystal data for L7.MeOH. C₃₁H₂₈N₄O, yellow chip, dimensions 0.4 x 0.15 x 0.15 mm, orthorhombic, space group P2₁2₁2₁, \(a = 7.8131(16) \text{ Å, } b = 14.208(3) \text{ Å, } c = 22.211(4) \text{ Å, } \alpha = 90.00^\circ, \beta = 90.00^\circ, \gamma = 90.00^\circ, U = 2465.6(9) \text{ Å}^3, \mu = 0.617 \text{ mm}^{-1}, Z = 4, D_c = 1.273 \text{ g cm}^{-3}, F(000) = 1000, T = 100(2) \text{ K.} \) 9733 Reflections were collected using a Rigaku MM007 rotating anode in the range 6.54 < 2θ < 143.80°. A semi-empirical absorption correction (ABSCOR; Higashi, 1995) was applied. The 4104 independent reflections were used to solve the structure by direct methods (SHELXS97) which resulted in the location of all non-hydrogen atoms. All non-hydrogen atoms were made anisotropic and the refinement (SHELXL97) of 329 parameters converged to \(R_f = 0.0392 \) [for 3788 reflections having \(I > 4\sigma(I) \)], \(wR_2 = 0.1030 \) and goodness of fit 1.066 (for all 3788 \(F^2 \) data). Peak / hole 0.178 / -0.271 e Å⁻³.
Boron trifluoride diethyl etherate (0.484 mL, 3.856 mmol) was added to \((E)\)-N-p-tolyl-9-(p-tolylimino)-9,12-dihydroquinolino[7,8-h]quinolin-4-amine (\(L_7\)) (0.100 g, 0.227 mmol) in dry CH\(_2\)Cl\(_2\) (5 mL) under Ar and stirred at RT for 10 min. The reaction was diluted with diethyl ether and the solvent was separated from deposited \([H(L_7)][BF_4]\) and dried under vacuum. The product was then set up for crystallisation by vapour diffusion of diethyl ether into a MeOH solution containing \([H(L_7)][BF_4]\). Yellow crystals suitable for X-ray crystallography were obtained after one day. \(^1\)H NMR (500 MHz, DMSO-d\(_6\)) \(\delta\) 2.40 (s, 6H; CH\(_3\)), 7.06 (d, \(J = 6.3, 2\)H; 6,7-H), 7.38 (m, 8H; ArH), 8.26 (d, \(J = 9.1, 2\)H; 3,10-H), 8.72 (d, \(J = 6.3, 2\)H; 5,8-H), 8.78 (d, \(J = 9.1, 2\)H; 2,11-H), 10.11 (s, 2H; NH), 18.79 (s, 1H; NH); \(^{13}\)C NMR (125 MHz, DMSO-d\(_6\)) \(\delta\) 21.1 (t), 102.8 (s), 116.5 (q), 116.7 (q), 123.6 (s), 125.3 (s), 126.6 (s), 130.8 (s), 136.1 (q), 136.3 (q), 136.8 (q), 143.6 (q), 145.7 (s), 153.0 (q). HRMS calculated for C\(_{30}\)H\(_{24}\)N\(_4\) (MH\(^+\)) 441.2074, found 441.2068 (ESI+).

Crystal data for \([H(L_7)][BF_4]\). C\(_{30}\)H\(_{25}\)N\(_4\)BF\(_4\), yellow rod, dimensions 0.8 x 0.3 x 0.05 mm, monoclinic, space group \(P2_1/c\), \(a = 16.076(3)\) Å, \(b = 17.296(4)\) Å, \(c = 9.1906(18)\) Å, \(\alpha = 90.00^\circ\), \(\beta = 97.00(3)^\circ\), \(\gamma = 90.00^\circ\), \(U = 2536.3(9)\) Å\(^3\), \(\mu = 0.858\) mm\(^{-1}\), \(Z = 4\), \(D_c = 1.384\) g cm\(^{-3}\), \(F(000) = 1096, T = 123(2)\) K. 8257 Reflections were collected using a Rigaku MM007 rotating anode in the range 6.52 < \(2\theta\) < 143.40\(^\circ\). A semi-empirical absorption correction (ABSCOR; Higashi, 1995) was applied. The 4242 independent reflections were used to solve the structure by direct methods (SHELXS97) which resulted in the location of all non-hydrogen atoms. All non-hydrogen atoms were made anisotropic and the refinement (SHELXL97) of 355 parameters converged to \(R_I = 0.0660\) [for 2736 reflections having \(I > 4\sigma (I)\)], \(wR_2 = 0.1710\) and goodness of fit 1.085 (for all 2736 \(F^2\) data). Peak / hole 0.425 / -0.371 e Å\(^{-3}\).
Methyl anthranilate (6.65 mL, 51.4 mmol) and 4,9-dichloroquino[7,8-h]quinoline (L1) (0.200 g, 0.668 mmol) was stirred at 120 °C for 2 hr. The reaction was diluted with CH₂Cl₂ (200 mL) and washed with water (200 mL) and 6M KOH (20 mL). The organic layer was filtered and dried over MgSO₄. The product was purified by silica gel column chromatography using 90:10 CH₂Cl₂ / MeOH then 50:50 CH₂Cl₂ / MeOH and finally 47:47:6 CH₂Cl₂ / MeOH / NEt₃ to give L8 (0.093 g, 26 %). ¹H NMR (500 MHz, CDCl₃, MeOD) δ 3.97 (s, 6H; C₃H₃), 7.17 (m, 2H; ArH), 7.57 (m, 4H; ArH), 7.68 (d, J = 8.0, 2H; 3,10-H), 7.99 (d, J = 8.8, 2H; 6,7-H), 8.04 (d, J = 7.9, 2H; ArH), 8.28 (d, J = 8.8, 2H; 5,8-H) 8.89 (m, 2H; 2,11-H), (in DMSO-d₆) 15.69 (s, 1H; NH); ¹³C NMR (125 MHz, CDCl₃, MeOD) δ 52.5 (t), 104.4 (s), 116.2 (q), 118.1 (q), 118.2 (q), 119.5 (s), 121.8 (s), 123.5 (s), 127.3 (s), 131.9 (s), 134.3 (s), 136.1 (q), 141.4 (q), 143.1 (q), 145.5 (s), 149.3 (q), 168.5 (q). HRMS calculated for C₃₂H₂₄N₄O₈ (MH⁺) 529.1870, found 529.1866 (ESI+). M.P. = 230 – 232 °C.
A.4.7 4,9-Dichloro-6,7-dinitroquinolo[7,8-h]quinoline (L9)

Fuming nitric acid (1 mL) and concentrated sulfuric acid (1 mL) were heated briefly to initiate NO₂ generation. 4,9-dichloroquinolo[7,8-h]quinoline (L1) (0.050 g) was added and the reaction was stirred for 2 min at 120 °C. The reaction was poured onto ice, 6M KOH (20 mL) diluted with CH₂Cl₂ (100 mL) and MeOH (10 mL). The organic layer was filtered and dried over MgSO₄ and the solvent was removed to give L9 (0.023 g, 35 %). ¹H NMR (500 MHz, 70 °C, DMSO-d6) δ 6.52 (d, J = 7.4, 1H; 3-H), 8.34 (d, J = 5.0, 1H; 10-H), 8.37 (dd, J = 5.9, 7.4, 1H; 2-H), 9.09 (s, 1H; 8-H), 9.15 (s, 1H; 5-H), 9.31 (d, J = 5.0, 1H; 11-H), 15.59 (d, J = 5.2, 1H; NH); ¹³C NMR (125 MHz, 70 °C, DMSO-d6) δ 111.1 (q), 113.4 (s), 120.1 (q), 121.3 (q), 123.7 (q), 123.8 (q), 124.9 (s), 125.1 (s), 126.3 (s), 140.5 (q), 141.8 (s), 142.8 (q), 145.3 (q), 145.6 (q), 148.3 (q), 152.8 (s). HRMS calculated for C₁₆H₁₀N₄O₄Cl₂ (MH⁺) 388.9839, found 388.9832 (ESI+).
General

DATE = 2019/01/06
TIME = 17:11
INSTRUM = spect
PULPROG = zg30

Fl (1H)

SI = 32768
SF = 500.13
SU_p = 10330.579

[Chemical structure image]
Sodium sulfite (0.084 g, 6.667 mmol) and 4,9-dichloroquino[7,8-h]quinoline (L1) (0.050 g, 0.167 mmol) in water (10 mL) was refluxed for 4 hr. The solvent was removed and the crude reaction mixture was dissolved in DMSO and filtered then precipitated with EtOAc (0.093 g, 26 %). 1H NMR (500 MHz, DMSO-d$_6$) δ 6.34 (d, $J = 7.1$, 1H; 7-H), 7.94 (d, $J = 8.6$, 1H; 6-H), 8.13 (d, $J = 4.6$, 1H; 10-H), 8.16 (d, $J = 9.2$, 1H; 3-H), 8.30 (t, $J = 6.7$, 1H; 8-H), 8.45 (d, $J = 8.5$, 1H; 5-H), 9.03 (d, $J = 9.2$, 1H; 2-H), 9.20 (d, $J = 4.6$, 1H; 11-H), 15.47 (d, $J = 4.2$, 1H; NH); 13C NMR (125 MHz, DMSO-d$_6$) δ 110.6 (s), 116.7 (q), 118.9 (s), 123.1 (q), 123.2 (s), 124.4 (q), 125.2 (s), 127.4 (s), 127.9 (s), 135.8 (q), 139.6 (q), 139.6 (q), 147.2 (q), 148.2 (s), 152.9 (s), 176.5 (q). HRMS calculated for C$_{16}$H$_{10}$N$_4$O$_2$S (M-H) 325.0283, found 325.0289 (ESI-).
A.4.9 4,9-Dimethoxyquino[7,8-h]quinoline (L11)

Sodium methoxide (0.072 g, 1.338 mmol) was added to 4,9-dichloroquino[7,8-h]quinoline (L1) (0.050 g, 0.167 mmol) in MeOH (10 mL) and refluxed for 2 hr under Ar. The reaction was diluted with CH$_2$Cl$_2$ (100 mL) and MeOH (10 mL) then washed with 2M KOH (10 mL) in water (100 mL). The organic layer was filtered and dried over MgSO$_4$ and the solvent was removed to give L11 (0.048 g, 100 %). The product was recrystallised by heating to dissolution in hot DMSO then slowly cooling.

1H NMR (500 MHz, MeOD) δ 3.35 (s, 6H; CH_3), 7.20 (d, $J = 5.0$, 2H; 3,10-H), 7.90 (d, $J = 8.7$, 2H; 6,7-H), 8.35 (d, $J = 8.7$, 2H; 5,8-H), 8.99 (d, $J = 5.0$, 2H; 2,11-H); 13C NMR (125 MHz, MeOD) δ 50.0 (t), 102.9 (s), 121.7 (q), 123.1 (s), 125.7 (q), 128.2 (s), 137.9 (q), 148.4 (q), 151.6 (s), 164.4 (q).

HRMS calculated for C$_{18}$H$_{14}$N$_2$O$_2$ (MH$^+$) 291.1128, found 291.1128 (ESI+).

Crystal data for L11. C$_{18}$H$_{14}$N$_2$O$_2$, colourless chip, dimensions 0.6 x 0.05 x 0.05 mm, monoclinic, space group P2$_1$/c, $a = 6.9964(14)$, $b = 12.597(3)$, $c = 46.260(9)$ Å, $\alpha = 90.00^0$, $\beta = 94.19(3)^0$, $\gamma = 90.00^0$, $U = 4066.3(14)$ Å3, $\mu = 0.762$ mm$^{-1}$, $Z = 12$, $D_c = 1.423$ g cm$^{-3}$, $F(000) = 1824$, $T = 123(2)$ K. 7370 Reflections were collected using a Rigaku MM007 rotating anode in the range 6.70 $< 2\theta < 143.20^0$. A semi-empirical absorption correction (ABSCOR; Higashi, 1995) was applied. The 6224 independent reflections were used to solve the structure by direct methods (SHELXS97) which resulted in the location of all non-hydrogen atoms. All non-hydrogen atoms were made anisotropic and the refinement (SHELXL97) of 601 parameters converged to $R_f = 0.0940$ [for 1963 reflections having $I > 4\sigma (I)$], $wR_2 = 0.1984$ and goodness of fit 0.828 (for all 1963 F^2 data). Peak / hole 0.299 / -0.487 e Å$^{-3}$.

255
A.4.10 4,9-Dibromoquinolino[7,8-h]quinoline (L12)

L12 was synthesised by analogy to the known literature procedure for L1. Phosphorus oxybromide (2.97 g, 10.4 mmol) was added to quinolino[7,8-h]quinoline-4-9-(1H,12H)-dione (308) (0.520 g, 2.08 mmol) and the reaction was stirred at 200 °C for 30 min under Ar. The reaction mixture was diluted with CH2Cl2 (200 mL) and MeOH (20 mL) and basified with 6M KOH (20 mL) in water (200 mL). A small portion of decolourising carbon was added and the organic layer was filtered and dried over MgSO4 to give L12 (0.533 g, 66 %). 1H NMR (500 MHz, CDCl3) δ 7.94 (d, J = 4.7, 2H; 3,10-H), 8.09 (d, J = 9.1, 2H; 6,7-H), 8.51 (d, J = 8.9, 2H; 5,8-H), 9.18 (brd, J = 4.5, 2H; 2,11-H); 13C NMR (125 MHz, CDCl3) δ 125.5 (s), 126.1 (q), 127.8 (s), 128.8 (q), 129.0 (s), 134.4 (q), 136.4 (q), 148.2 (q), 149.8 (s). HRMS calculated for C16H8N2Br2 (MH+) 388.9107, found 388.9102 (ESI+).
A.4.11 Dimethyl 4,9-Dichloroquinolino[7,8-h]quinoline-2,11-dicarboxylate (L13)

Phosphorus oxychloride (1.25 mL, 13.5 mmol) was added to dimethyl 4,9-dioxo-1,4,9,12-tetrahydroquinolino[7,8-h]quinoline-2,11-dicarboxylate (311) (0.394 g, 1.06 mmol) and the reaction was stirred at 130 °C for 9 minutes. The reaction mixture was poured onto ice-water (200 mL) and basified with 6M KOH (20 mL) and extracted with CH₂Cl₂ (200 mL). The organic layer was filtered and dried over MgSO₄ to give L13 (0.315 g, 72 %). ¹H NMR (500 MHz, CDCl₃) δ 4.19 (s, 6H; CH₃), 8.20 (d, J = 8.9, 2H; 6,7-H), 8.55 (s, 2H; 3,10-H), 8.60 (d, J = 8.8, 2H; 5,8-H); ¹³C NMR (125 MHz, CDCl₃) δ 53.3 (t), 122.5 (s), 125.0 (s), 127.1 (q), 127.9 (q), 130.9 (s), 136.9 (q), 144.0 (q), 147.8 (q), 148.1 (q), 165.2 (q). MS for C₂₀H₁₂N₂O₄Cl₂ (M⁺) 415.02. C₂₀H₁₂N₂O₄Cl₂•0.5H₂O (423.02): calcd. C 56.62, H 3.09, N 6.60; found C 56.73, H 3.08, N 6.60. M.P. = 171 – 172 °C.
A.4.12 [H(L13)]BF₄

Boron trifluoride diethyl etherate (0.121 mL, 0.964 mmol) was added to 4,9-dichloroquinolino[7,8-h]quinoline-2,11-dicarboxylate (L13) (0.100 g, 0.241 mmol) in dry CH₂Cl₂ (5 mL) under Ar and stirred at RT for 8 hr. The reaction was diluted with CH₂Cl₂ and the solvent was separated from deposited [H(L13)][BF₄] and dried under vacuum. The product was then set up for crystallisation by vapour diffusion of diethyl ether into a MeCN solution containing [H(L13)][BF₄]. Brown crystals suitable for X-ray crystallography were obtained after one day. ¹H NMR (500 MHz, CD₃CN) δ 4.23 (s, 6H; CH₃), 8.43 (d, J = 9.1, 2H; 6,7-H), 8.64 (d, J = 9.1, 2H; 5,8-H), 8.68 (s, 2H; 3,10-H), 19.14 (s, 1H; NH); ¹³C NMR (125 MHz, CD₃CN) δ 55.5 (t), 117.3 (q), 125.2 (s), 128.1 (s), 129.7 (q), 133.7 (s), 140.2 (q), 143.4 (q), 145.4 (q), 152.3 (q), 162.1 (q). MS for C₂₀H₁₃N₂O₄Cl₂ (M⁺) 415.53. C₂₀H₁₃N₂O₄Cl₂H⁺•BF₄⁻ (503.04): calcd. C 47.75, H 2.60, N 5.57; found C 47.78, H 2.33, N 5.64. M.P. = 218 – 220 °C.

Crystal data for [H(L13)][BF₄]. C₂₀H₁₃N₂O₄Cl₂BF₄, yellow prism, dimensions 0.2 x 0.15 x 0.1 mm, triclinic, space group P2₁/c, a = 11.0327(2), b = 13.5997(2), c = 15.1206(3) Å, α = 113.4460(10)°, β = 99.4340(10)°, γ = 97.8210(10)°, U = 2001.82(7) Å³, μ = 3.573 mm⁻¹, Z = 4, Dc = 1.669 g cm⁻³, F(000) = 1016, T = 100(2) K. 10378 Reflections were collected using a Rigaku MM007 rotating anode in the range 6.58 < 2θ < 144.00°. A semi-empirical absorption correction (ABSCOR; Higashi, 1995) was applied. The 5797 independent reflections were used to solve the structure by direct methods (SHELXS97) which resulted in the location of all non-hydrogen atoms. All non-hydrogen atoms were made anisotropic and the refinement (SHELXL97) of 596 parameters converged to R₁ = 0.0406 [for 5280 reflections having I > 4σ (I)], wR₂ = 0.1095 and goodness of fit 1.080 (for all 5280 F² data). Peak / hole 0.336 / -0.391 e Å⁻³.
A.5 Chapter 4 Experimental

A.5.1 [BF$_2$(L1)]BF$_4$

Boron trifluoride diethyl etherate (0.168 mL, 1.336 mmol) was added to 4,9-dichloroquino[7,8-h]quinoline (L1) (0.100 g, 0.334 mmol) in dry CH$_2$Cl$_2$ (5 mL) under Ar and stirred at RT for 2 hr. The reaction was diluted with CH$_2$Cl$_2$ and the solvent was separated from deposited [BF$_2$(L1)]BF$_4$ and dried under vacuum. The product was then set up for crystallisation by vapour diffusion of diethyl ether into a MeCN solution containing [BF$_2$(L1)]BF$_4$. Pale brown crystals suitable for X-ray crystallography were obtained after one day, the crystals became darker over time, but, were stable when removed from solution and did not degrade. 1H NMR (500 MHz, CD$_3$CN) δ 8.55 (d, J = 6.4, 2H; 3,10-H), 8.70 (d, J = 9.2, 2H; 6,7-H), 8.93 (d, J = 9.2, 2H; 5,8-H), 9.48 (m, 2H; 2,11-H); 13C NMR (125 MHz, CD$_3$CN) δ 126.8 (s), 128.2 (s), 128.9 (q), 132.7 (s), 138.1 (q), 140.0 (q), 147.4 (s), 155.4 (q); 11B NMR (160 MHz, CD$_3$CN) 1.79 (t, J = 27 Hz, 1B; BF$_2$), -1.17 (s, 1B; BF$_4$); 19F NMR (376 MHz, CD$_3$CN) -134.8 (q, J = 27 Hz, 2F; BF$_2$), -151.71 (s, 4F; BF$_4$); MS for C$_{16}$H$_8$N$_2$Cl$_2$BF$_2^+$ (M$^+$) 347.52. C$_{16}$H$_8$N$_2$Cl$_2$BF$_2^+$•BF$_4^-$ (434.02): calcd. C 44.20, H 1.85, N 6.44; found C 44.39, H 2.12, N 6.58. M.P. = 318 – 320 °C.

Crystal data for [BF$_2$(L1)]BF$_4$. C$_{16}$H$_8$N$_2$Cl$_2$B$_2$F$_6$, yellow prism, dimensions 2.0 x 1.0 x 0.5 mm, monoclinic, space group $P2_1/n$, a = 9.1484(18), b = 17.528(4), c = 11.230(2) Å, α = 90.00°, β = 111.42(3)°, γ = 90.00°, U = 1676.4(6) Å3, μ = 4.138 mm$^{-1}$, Z = 4, D_χ = 1.723 g cm$^{-3}$, F(000) = 864, T = 173(2) K. 4047 Reflections were collected using a Rigaku MM007 rotating anode in the range 6.59 < 2θ < 144.09°. A semi-empirical absorption correction (ABSCOR; Higashi, 1995) was applied. The 2735 independent reflections were used to
solve the structure by direct methods (SHELXS97) which resulted in the location of all non-hydrogen atoms. All non-hydrogen atoms were made anisotropic and the refinement (SHELXL97) of 281 parameters converged to $R_I = 0.0617$ [for 2405 reflections having $I > 4\sigma(I)$], $wR_2 = 0.1738$ and goodness of fit 1.146 (for all 2405 F^2 data). Peak / hole 0.549 / -0.567 e Å$^{-3}$.
A.5.2 $[\text{BF}_2(L2)]\text{BF}_4$

Boron trifluoride diethyl etherate (0.168 mL, 1.336 mmol) was added to 4,9-quino[7,8-h]quinoline (L_2) (0.077 g, 0.334 mmol) in dry CH$_2$Cl$_2$ (5 mL) under Ar and stirred at RT for 2 hr. The reaction was diluted with CH$_2$Cl$_2$ and the solvent was separated from deposited $[\text{BF}_2(L2)]\text{BF}_4$ and dried under vacuum. The product was then set up for crystallisation by vapour diffusion of diethyl ether into a MeCN solution containing $[\text{BF}_2(L2)]\text{BF}_4$. Colourless crystal needles formed after one day, however these did not diffract. A couple of the crystals formed as prisms and were suitable for X-ray crystallography. These crystals were shown to contain 10% of the chloride containing ligand, $[\text{BF}_2(L1)]\text{BF}_4$, which appeared to act as a template for the formation of X-ray suitable crystals of $[\text{BF}_2(L2)]\text{BF}_4$.

1H NMR (500 MHz, CD$_3$CN) δ 8.43 (dd, $J = 5.7, 8.2$, 2H; 3,10-H), 8.59 (d, $J = 8.1, 2H; 6,7$-H), 8.66 (d, $J = 8.1, 2H; 5,8$-H), 9.37 (dd, $J = 1.3, 8.2, 2H; 4,9$-H), 9.58 (m, 2H; 2,11-H); 13C NMR (125 MHz, CD$_3$CN) δ 124.7 (s), 128.5 (q), 130.5 (s), 131.3 (s), 136.1 (q), 138.5 (q), 146.3 (s), 147.3 (s); 11B NMR (160 MHz, CD$_3$CN) 1.97 (t, $J = 27$ Hz, 1B; BF$_2$), -1.17 (s, 1B; BF$_4$); 19F NMR (376 MHz, CD$_3$CN) -134.1 (q, $J = 27$ Hz, 2F; BF$_2$), -151.71 (s, 4F; BF$_4$); MS for C$_{16}$H$_{10}$N$_2$BF$_2^+$ (M$^+$) 279.27. C$_{16}$H$_{10}$N$_2$BF$_2^+$•BF$_4^-$•0.75H$_2$O (384.10): calcd. C 50.65, H 3.06, N 7.38; found C 50.76, H 3.09, N 7.45.

Crystal data for $[\text{BF}_2(L2)]\text{BF}_4$. C$_{18}H_{13}N_3B_2F_6$, green block, dimensions 0.4 x 0.3 x 0.1 mm, monoclinic, space group $P2_1/c$, $a = 7.9589(16), b = 14.153(3), c = 15.609(3)$ Å, $\alpha = 90.00^\circ, \beta = 95.54(3)^\circ, \gamma = 90.00^\circ$, $U = 1750.0(6)$ Å3, $\mu = 3.573$ mm$^{-1}$, $Z = 4$, $D_c = 1.544$ g cm$^{-3}$, $F(000) = 824$, $T = 100(2)$ K. 10958 Reflections were collected using a Rigaku MM007 rotating anode in the range $6.52 < 2\theta < 143.98^\circ$. A semi-empirical absorption correction (ABSCOR; Higashi, 1995) was applied. The 3289 independent reflections were used to solve the structure by direct methods (SHELXS97) which resulted in the location of
all non-hydrogen atoms. All non-hydrogen atoms were made anisotropic and the refinement (SHELXL97) of 264 parameters converged to $R_I = 0.0684$ [for 2949 reflections having $I > 4\sigma (I)$], $wR_2 = 0.1838$ and goodness of fit 1.066 (for all 2949 F^2 data). Peak / hole $1.697 / -0.290 \text{ e } \AA^{-3}$.
A.5.3 Attempted beryllium complex with L1

4,9-Dichloroquino[7,8-h]quinoline (L1) (0.010 g, 33.4 µmol), beryllium sulfate 0.99 M in H2O (24.0 µL, 33.4 µmol) and triethylamine (46.2 µL, 334 µmol) in DMF (1 mL) were stirred together for 16 h at 50 °C. The ¹H and ¹³C NMR of the reaction mixture could not be measured due to use of non-deuterated solvents and incomplete complexation. ⁹Be NMR (42.17 MHz, DMF) δ 2.25 (line width 220 Hz). The Mass Spectrum, Elemental Analysis and Melting Point were not measured as handling of beryllium solids would be involved.

A.5.4 Attempted beryllium complex with L5

4-Chloro-9-p-tert-butylphenylquino[7,8-h]quinoline (L5) (0.010 g, 24.2 µmol), beryllium sulfate 0.99 M in H2O (26.0 µL, 24.2 µmol) and triethylamine (33.5 µL, 242 µmol) in DMF (1 mL) were stirred together for 16 h at 50 °C. The ¹H and ¹³C NMR of the reaction mixture could not be measured due to use of non-deuterated solvents and incomplete complexation. ⁹Be NMR (42.17 MHz, DMF) δ 1.69 (line width 210 Hz). The Mass Spectrum, Elemental Analysis and Melting Point were not measured as handling of beryllium solids would be involved.

A.5.5 [Cu(L1)(CH₃CN)₃](ClO₄)₂

Copper perchlorate (0.068 g, 0.184 mmol) in dry MeCN (1 mL) was added to a suspension 4,9-dichloroquino[7,8-h]quinoline (L1) (0.050 g, 0.167 mmol) in dry MeCN (5 mL) under
Ar and stirred at RT for 30 min. The mother liquor was separated from deposited [Cu(L1)(CH3CN)3][ClO4]2 and dried under vacuum. The product was then set up for crystallisation by vapour diffusion of diethyl ether into a MeCN solution containing [Cu(L1)(CH3CN)3][ClO4]2. Green crystals suitable for X-ray crystallography were obtained after two days, and remained stable for one day whilst in solution. Elemental analysis did not match the crystal structure; however it was consistent with the most of the acetonitrile molecules being replaced by water molecules. C16H8Cl2CuN2•2ClO4•2H2O•0.25CH3CN: calcd. C 32.41, H 2.17, N 5.15; found C 32.41, H 2.42, N 5.15.

Crystal data for [Cu(L1)(CH3CN)3][ClO4]2. C22H17N5O8CuCl4, green block, dimensions 0.2 x 0.1 x 0.05 mm, monoclinic, space group P21/c, a = 12.696(3), b = 13.902(3), c = 15.476(3) Å, α = 90.00°, β = 98.60(3)°, γ = 90.00°, U = 2700.8(10) Å³, μ = 5.290 mm⁻¹, Z = 4, Dc = 1.684 g cm⁻³, F(000) = 1380, T = 100(2) K. 904 Reflections were collected using a Rigaku MM007 rotating anode in the range 9.03 < 2θ < 143.44°. A semi-empirical absorption correction (ABSCOR; Higashi, 1995) was applied. The 3289 independent reflections were used to solve the structure by direct methods (SHELXS97) which resulted in the location of all non-hydrogen atoms. All non-hydrogen atoms were made anisotropic and the refinement (SHELXL97) of 364 parameters converged to R₁ = 0.0525 [for 2949 reflections having I > 4σ (I)], wR₂ = 0.1381 and goodness of fit 1.075 (for all 2949 F² data). Peak / hole 1.205 / -0.782 e Å⁻³.

A.5.6 [Cu(L2)(CH3CN)3][ClO4]2

Copper perchlorate (0.080 g, 0.215 mmol) in dry MeCN (1 mL) was added to a suspension 4,9-dichloroquinol[7,8-h]quinoline, L2, (0.045 g, 0.196 mmol) in dry MeCN (5 mL) under
Ar and stirred at RT for 30 min. The mother liquor was separated from deposited
\([\text{Cu(L2)}(\text{CH}_3\text{CN})_3][\text{ClO}_4]_2\) and dried under vacuum. The product was then set up for
crystallisation by vapour diffusion of diethyl ether into a MeCN solution containing
\([\text{Cu(L2)}(\text{CH}_3\text{CN})_3][\text{ClO}_4]_2\). Green crystals suitable for X-ray crystallography were obtained
after two days, and remained stable for one day whilst in solution. Elemental analysis did
not match the crystal structure, however, was consistent with the three acetonitrile
molecules being replaced by water molecules. C\text{16}H\text{10}CuN\text{2}\cdot2\text{ClO}_4\cdot2.5\text{H}_2\text{O}: calcd. C 35.74,
H 2.81, N 5.21; found C 35.81, H 2.68, N 5.21.

Crystal data for \([\text{Cu(L2)}(\text{CH}_3\text{CN})_3(\text{ClO}_4)]\)[\text{ClO}_4]. C\text{22}H\text{19}N\text{5}O\text{8}CuCl\text{2}, green block,
dimensions 0.2 x 0.1 x 0.1 mm, triclinic, space group P-1, \(a = 8.6209(17), b = 10.128(2), c = 14.243(3) \text{ Å}, \alpha = 92.82(2)\text{"}, \beta = 96.62(3)\text{"}, \gamma = 90.68(4)\text{"}, U = 1233.7(4) \text{ Å}^3, \mu = 3.767
m\text{m}^{-1}, Z = 2, D_{c} = 1.658 \text{ g cm}^{-3}, F(000) = 626, T = 100(2) \text{ K}. 10378 Reflections were
collected using a Rigaku MM007 rotating anode in the range 6.72 < 2\theta < 143.53\text{"}. A semi-
empirical absorption correction (ABSCOR; Higashi, 1995) was applied. The 3534

independent reflections were used to solve the structure by direct methods (SHELXS97)
which resulted in the location of all non-hydrogen atoms. All non-hydrogen atoms were
made anisotropic and the refinement (SHELXL97) of 347 parameters converged to \(R_I = 0.0704 \) [for 2978 reflections having \(I > 4\sigma (I)\)], \(wR_2 = 0.1699 \) and goodness of fit 1.112 (for
all 2978 \(F^2\) data). Peak / hole 0.702 / -1.557 \text{ e Å}^{-3}.

\textbf{A.5.7 Fluorescence Experimental}\n
Coumarin 153 (0.00743 g) was dissolved in acetonitrile and made up to the mark in a 100
\text{mL} volumetric flask. 0.100 \text{mL} of the stock solution was made up to 10 \text{mL} which gave an
absorbance of 0.0501 at the \(\lambda_{\text{max}} 421.5 \text{ nm}. \) The excitation wavelength used in this study
was 420 nm. The absorbance at the excitation wavelength (\(A_S\)) was 0.0499. On the
fluorometer, both the emission and excitation slit widths were set to 2.5 nm to fit the
spectras within the measurement scale. These parameters were arbitrary; however, they
must be kept constant for each sample measurement. The integrated area under the
fluorescence emission curve (\(F_S\)) was 44570. The literature value for the quantum yield in
Acetonitrile was 0.56. The refractive index of acetonitrile is 1.3441. The normalised absorption and emission spectras are shown below.

![Absorption and Emission Spectra](image)

Normalised absorption and emission spectra of coumarin 153

Acridine orange (as hemi(zinc chloride) salt) (0.00735 g) was dissolved in basic ethanol (5 % triethylamine) and made up to the mark in a 100 mL volumetric flask. 0.150 mL of the stock solution was diluted to 10 mL which gave an absorbance of 0.0517 at the λ_{max}, 431.5 nm. The excitation wavelength used in this study was 420 nm. The absorbance at the excitation wavelength (A_S) was 0.0438. On the fluorometer, both the emission and excitation slit widths were set to 2.5 nm. The integrated area under the fluorescence emission curve (F_S) was 16053. The literature value for the quantum yield in basic ethanol was 0.20. The refractive index of basic ethanol was measured as 1.3652. The normalised absorption and emission spectras are shown below.
Crystals of [BF$_2$(L1)][BF$_4$] (0.00567 g) were dissolved in acetonitrile and made up to the mark in a 100 mL volumetric flask. 0.500 mL of the stock solution was diluted to 10 mL which gave an absorbance of 0.0465 at the λ_{max}, 416.5 nm. The excitation wavelength used in this study was 420 nm. The absorbance at the excitation wavelength (A_S) was 0.0461. On the fluorometer, both the emission and excitation slit widths were set to 2.5 nm to fit the spectras within the measurement scale. The integrated area under the fluorescence emission curve (F_S) was 697.

[BF$_2$(L2)][BF$_4$] was not fluorescent on the magnitude used for the other samples in the study.

A.5.8 Surface Enhanced Raman Spectroscopy Experimental

Silver colloids were prepared following Lee and Meisel’s Method C.194 Wavenumber calibration was performed using Raman bands from cyclohexane. [BF$_2$(L1)][BF$_4$] was added to the solution in order to obtain a final concentration of about 5 mM. Excitation was provided by 514.5 nm radiation from a continuous wave mult-line Stellar-PRO 150
mW Argon laser and the samples were contained in capillary cells. The laser output was adjusted to give between 15 – 20 mW at the sample. The incident beam and the collection lens were arranged in a 135° or 180° back-scattering geometry to reduce Raman intensity reduction by self-absorption. An aperture-matched lens was used to focus scattered light a narrow band line-rejection (notch) filter (Kaiser Optical Systems) or long-pass edge filter (Irdian) and a quartz wedge (Spex) and onto the 100 um entrance slit of a spectrograph (Action Research SpectraPro 500i). The collected light was dispersed in the horizontal plane by a liquid nitrogen cooled back-illuminated Spec-10:100B CCD controlled by a ST-133 controller and WinSpec/32 (version 2.5.8.1) software (Roper Scientific, Princeton Instruments). The data was processed using Origin Pro 7.5.
A.6 Chapter 5 Experimental

A.6.1 2-(2-Pyridylmethyl)pyridine (504)

![Pyridylmethylpyridine Diagram]

Dipyridin-2-ylmethane (504) was synthesised according to the known literature procedure.147 2-Picoline (510) (0.816 mL, 8.24 mmol) in dry THF (5 mL) was cooled to -78 °C under Ar. N-Butyllithium (0.515 mL, 8.24 mmol, as a 1.6 M solution in hexane) was added and the reaction stirred at -78 °C under Ar for 1 hr, slowly warming to -20 °C. 2-Fluoropyridine (511) (0.344 mL, 4.12 mmol) was added and the reaction was heated to reflux for 30 min. The reaction was diluted with CH$_2$Cl$_2$ (200 mL) and washed with water (200 mL). The organic layer was filtered and dried over MgSO$_4$. Concentration in vacuo gave 504 as a brown oil which was used without further purification (0.678 g, 97 %). 1H NMR (500 MHz, CDCl$_3$) δ 4.36 (s, 2H; CH$_2$), 7.14 (dd, $J = 4.8, 7.4, 2$H; ArH), 7.28 (d, $J = 7.8, 2$H; ArH), 7.61 (td, $J = 1.8, 7.8, 2$H; ArH), 8.55 (dd, $J = 1.8, 4.8, 2$H; ArH); 13C NMR (125 MHz, CDCl$_3$) δ 47.0 (d), 121.5 (s), 123.6 (s), 136.7 (s), 149.3 (s), 159.2 (q). MS for C$_{11}$H$_{10}$N$_2$ (MH$^+$) 171.23.

A.6.2 2-(2-Methoxyphenyl)pyridine (508)

![2-Methoxyphenylpyridine Diagram]

2-(2-Methoxyphenyl)pyridine (508) was synthesised according to the known literature procedure.146 Magnesium (0.390 g, 16.2 mmol) was heated under vacuum for a short
period, a few crystals of iodine was added and 2-bromoanisole (505) (2.00 mL, 16.2 mmol) in dry THF (50 mL) was added. The mixture was stirred at RT under Ar for 2 hr. 2-Chloropyridine (507) (1.36 mL, 14.5 mmol), nickel acetylacetonate (0.190 g, 0.739 mmol) and 1,2-bis(diphenylphosphino)ethane (0.290 g, 0.739 mmol) in dry THF (20 mL) was added to the reaction mixture and then stirred at RT for 18 hr. The reaction was diluted with CH₂Cl₂ (200 mL) and washed with water (200 mL). The organic layer was filtered and dried over MgSO₄. The colourless liquid 508 was purified by silica gel column chromatography using 1:4 EtOAc / hexanes (1.87 g, 62 %). Rf = 0.14 (5:1 hexanes / EtOAc).

\[^1H \text{NMR (500 MHz, CDCl}_3 \delta 3.81 (s, 3H; } \text{CCH}_3, 6.97 (d, J = 8.4, 1H; ArH), 7.07 \text{ (td, } J = 0.9, 7.6, 1H; ArH), 7.17 \text{ (ddd, } J = 0.9, 4.8, 7.6, 1H; ArH), 7.35 \text{ (td, } J = 1.8, 8.4, 1H; ArH), 7.67 \text{ (td, } J = 1.8, 8.0, 1H; ArH), 7.77 \text{ (dd, } J = 1.8, 7.6, 1H; ArH), 7.80 \text{ (dt, } J = 0.8, 8.0, 1H; ArH), 8.69 \text{ (m, 1H; ArH); } ^{13}C \text{NMR (125 MHz, CDCl}_3 \delta 55.4 \text{ (t), 111.2 \text{ (s), 120.9 \text{ (s), 121.5 \text{ (s), 125.0 \text{ (s), 128.9 \text{ (q), 129.8 \text{ (s), 131.0 \text{ (s), 135.6 \text{ (s), 149.1 \text{ (s), 155.9 \text{ (q), 156.8 \text{ (q. Not ionised in MS.}}}$}

A.6.3 2-Chloro-6-(2-methoxyphenyl)pyridine (509)

![Diagram of the reaction](image)

2-Chloro-6-(2-methoxyphenyl)pyridine (509) was synthesised according to the known literature procedure.\(^{146}\) N-Butyllithium (0.266 mL, 4.26 mmol, as a 1.6 M solution in hexane) was added to 2-(dimethylamino)ethanol (0.212 g, 2.12 mmol) in dry toluene (20 mL) and the reaction stirred at -20 °C under Ar for 30 min. 2-(2-Methoxyphenyl)pyridine (508) (0.131 g, 0.704 mmol) was added and the reaction was stirred at -20 °C for 1 hr. The reaction was cooled to -78 °C and hexachloroethane (0.537 g, 2.26 mmol) in dry toluene (5 mL) was added and the reaction was allowed to warm to 0 °C over 1 hr. The reaction was diluted with diethyl ether (200 mL) and washed with water (200 mL). The organic layer was filtered and dried over MgSO₄. The yellow oil 509 was purified by silica gel column chromatography using 1:9 EtOAc / hexanes (0.101 g, 65 %). Rf = 0.30 (5:1 hexanes /
EtOAc). 1H NMR (500 MHz, CDCl$_3$) δ 3.89 (s, 3H; CH$_3$), 7.01 (d, $J = 8.3$, 1H; ArH), 7.10 (t, $J = 7.6$, 1H; ArH), 7.25 (d, $J = 8.0$, 1H; ArH), 7.40 (t, $J = 7.4$, 1H; ArH), 7.67 (t, $J = 7.6$, 1H; ArH), 7.84 (d, $J = 8.0$, 1H; ArH), 7.89 (d, $J = 7.6$, 1H; ArH); 13C NMR (125 MHz, CDCl$_3$) δ 55.5 (t), 111.3 (s), 121.0 (s), 122.0 (s), 123.5 (s), 127.3 (q), 130.5 (s), 131.3 (s), 138.2 (s), 150.7 (q), 156.4 (q), 157.0 (q). MS for C$_{12}$H$_{10}$NO$_3^{35}$Cl (MH$^+$) 220.19.

A.6.4 2-Bromo-6-(2-methoxyphenyl)pyridine (513)

![Diagram](image)

2-Bromo-6-(2-methoxyphenyl)pyridine (513) was synthesised by analogy to the known literature procedure.146 N-Butyllithium (0.186 mL, 2.98 mmol, as a 1.6 M solution in hexane) was added to 2-(dimethylamino)ethanol (0.149 mL, 1.49 mmol) in dry toluene (10 mL) and the reaction stirred at -20 °C under Ar for 30 min. 2-(2-Methoxyphenyl)pyridine (508) (0.092 g, 0.497 mmol) was added and the reaction was stirred at -20 °C for 1 hr. The reaction was cooled to -78 °C and carbon tetrabromide (0.529 g, 1.59 mmol) in dry toluene (2.5 mL) was added and the reaction was allowed to warm to 0 °C over 1 hr. The reaction was diluted with diethyl ether (200 mL) and washed with water (200 mL). The organic layer was filtered and dried over MgSO$_4$. 513 was purified by silica gel column chromatography using 1:9 ethyl acetate / hexanes (0.080 g, 61%). $R_f = 0.34$ (5:1 hexanes / EtOAc). 1H NMR (500 MHz, CDCl$_3$) δ 3.89 (s, 3H; CH$_3$), 7.00 (d, $J = 8.5$, 1H; ArH), 7.09 (t, $J = 7.6$, 1H; ArH), 7.39 (m, 2H; ArH), 7.56 (t, $J = 7.8$, 1H; ArH), 7.88 (d, $J = 7.8$, 2H; ArH); 13C NMR (125 MHz, CDCl$_3$) δ 55.5 (t), 111.3 (s), 121.1 (s), 123.8 (s), 125.8 (s), 127.2 (q), 130.5 (s), 131.3 (s), 138.0 (s), 141.4 (q), 156.9 (q), 157.0 (q). HRMS calculated for C$_{12}$H$_{10}$NO$_{37}$Br (MH$^+$) 264.0064, found 264.0057 (ESI+).
A.6.5 2,2’-(Bromomethylene)dipyridine (514)

2,2’-(Bromomethylene)dipyridine (514) was synthesised according to the known literature procedure.\(^{195}\) 2-(2-Pyridylmethyl)pyridine (504) (0.151 mL, 0.888 mmol) and \(N\)-bromosuccinimide (0.213 g, 0.903 mmol) in \(\text{CCl}_4\) (2 mL) were refluxed for 30 min. The reaction was diluted with \(\text{CH}_2\text{Cl}_2\) (200 mL) and washed with water (200 mL). The organic layer was filtered and dried over \(\text{MgSO}_4\). The brown oil 514 was purified by silica gel column chromatography using 98:2 \(\text{CH}_2\text{Cl}_2/\text{MeOH}\) (0.092 g, 42 %). \(R_f = 0.68\) (9:1 \(\text{CH}_2\text{Cl}_2/\text{MeOH}\)). \(^1\text{H}\) NMR (500 MHz, CDCl\(_3\)) \(\delta 4.36\) (s, 1H; \(\text{CH}\)), 7.18 (ddd, \(J = 1.6, 4.8, 7.6, 2\text{H}; \text{ArH}\)), 7.69 (td, \(J = 1.8, 7.6, 2\text{H}; \text{ArH}\)), 7.72 (dt, \(J = 1.8, 7.6, 2\text{H}; \text{ArH}\)), 8.57 (dd, \(J = 1.8, 4.8, 2\text{H}; \text{ArH}\)); \(^{13}\text{C}\) NMR (125 MHz, CDCl\(_3\)) \(\delta 54.5\) (s), 122.9 (s), 123.5 (s), 136.9 (s), 149.1 (s), 158.3 (q).

A.6.6 6-(2-Methoxyphenyl)-\(N,N\)-di(pyridin-2-yl)pyridin-2-amine (518)

2-Bromo-6-(2-methoxyphenyl)pyridine (513) (0.313 g, 1.186 mmol), dipyridin-2-ylamine (517) (0.101 g, 0.591 mmol) and copper sulfate pentahydrate (0.030 g, 0.120 mmol) in 6M KOH (1 mL) were heated under microwave irradiation for 15 min at 160 °C. The reaction was diluted with \(\text{CH}_2\text{Cl}_2\) (200 mL) and washed with water (200 mL). The organic layer was filtered and dried over \(\text{MgSO}_4\). The colourless oil 518 was purified by silica gel column chromatography using 99:1 \(\text{CH}_2\text{Cl}_2/\text{MeOH}\) (0.197 g, 98 %). The oil could be collected as a colourless powder by adding a few drops of diethyl ether and removing the solvent on a high vacuum pump. \(R_f = 0.46\) (9:1 \(\text{CH}_2\text{Cl}_2/\text{MeOH}\)). \(^1\text{H}\) NMR (500 MHz,
CDCl₃ δ 3.87 (s, 3H; CH₃), 6.96 (m, 3H; ArH), 7.03 (dd, J = 4.8, 7.2, 2H; ArH), 7.21 (d, J = 8.4, 2H; ArH), 7.31 (dt, J = 1.5, 6.0, 1H; ArH), 7.60 – 7.69 (m, 5H; ArH), 8.31 (dd, J = 1.8, 4.8, 2H; ArH); ¹³C NMR (125 MHz, CDCl₃) δ 55.6 (t), 111.4 (s), 116.3 (s), 118.8 (s), 119.1 (s), 120.8 (s), 120.9 (s), 128.6 (q), 129.8 (s), 131.3 (s), 137.4 (s), 137.6 (q), 148.7 (s), 154.8 (q), 156.7 (q), 157.3 (q), 157.5 (s). HRMS calculated for C₂₂H₁₈N₄O (MH⁺) 355.1540, found 355.1547 (ESI+).
6-(2-Methoxyphenyl)-N,N-di(pyridin-2-yl)pyridin-2-amine (518) (0.050 g, 0.141 mmol) in CH$_2$Cl$_2$ (5 mL) was cooled to -78 °C and boron tribromide as a 1M solution in CH$_2$Cl$_2$ (0.706 mL, 0.706 mmol) was added and the reaction was left to stir at RT overnight. The reaction was diluted with CH$_2$Cl$_2$ (200 mL) and basified with 2M NaOH (20 mL) then washed with water (200 mL). The organic layer was filtered and dried over MgSO$_4$. The colourless oil L14 was purified by silica gel column chromatography using 99:1 to 98:2 CH$_2$Cl$_2$ / MeOH (0.038 g, 79 %). The oil could be collected as a colourless powder by adding a few drops of diethyl ether and removing the solvent on a high vacuum pump. $R_f = 0.62$ (9:1 DCM / MeOH). 1H NMR (500 MHz, CDCl$_3$) δ 6.87 (t, $J = 8.2$, 2H; ArH), 7.08 (d, $J = 4.8$, 8.2, 1H; ArH), 7.13 – 7.17 (m, 4H; ArH), 7.23 (t, $J = 6.7$, 1H; ArH), 7.58 (d, $J = 7.9$, 1H; ArH), 7.71 – 7.79 (m, 4H; ArH), 8.49 (dd, $J = 0.9$, 4.7, 2H; ArH), 12.54 (s, 1H; OH); 13C NMR (125 MHz, CDCl$_3$) δ 114.0 (s), 114.7 (s), 118.3 (s), 118.8 (s), 119.2 (s), 119.3 (q), 120.4 (s), 126.5 (s), 131.2 (s), 138.4 (q), 139.1 (s), 149.3 (s), 154.5 (q), 156.5 (q), 156.8 (s), 159.1 (q). HRMS calculated for C$_{21}$H$_{16}$N$_4$O (MH$^+$) 341.1384, found 341.1387 (ESI+).
A.6.8 *N*-((2-Bromophenyl)cinnamamide (533)

N-((2-Bromophenyl)cinnamamide (533) was synthesised according to the known literature procedure. To potassium carbonate (1.98 g, 14.5 mmol) dissolved in a mixture of water (20 mL) and acetone (16 mL) was added 2-bromoaniline (521) (1.66 g, 9.64 mmol) and cinnamoyl chloride (522) (1.60 g, 9.64 mmol). The mixture was sonicated (to ensure dissolution of reactants) then stirred for 2 hr at RT. Water (40 mL) was added to the reaction and the resulting precipitate was filtered and dried to give 533 as a white powder (2.66 g, 91 %) which was used directly without further purification. $R_f = 0.70$ (1:2 hexanes / EtOAc). 1H NMR (500 MHz, CDCl$_3$) δ 6.58 (d, $J = 15.5$, 1H; CH), 6.98 (dt, $J = 1.6$, 7.6, 1H; ArH), 7.31 (dt, $J = 1.6$, 7.6, 1H; ArH), 7.36-7.39 (m, 3H; ArH), 7.52-7.55 (m, 3H; ArH), 7.75 (d, $J = 15.5$, 1H; CH), 7.83 (s, 1H; NH), 8.47 (d, $J = 7.9$, 1H; ArH); 13C NMR (125 MHz, CDCl$_3$) δ 113.5 (s), 120.6 (s), 122.1 (q), 125.2 (s), 128.0 (s), 128.4 (s), 128.8 (s), 130.1 (s), 132.2 (s), 134.4 (q), 135.8 (q), 141.8 (s), 142.9 (s), 142.2 (s), 163.8 (q). MS for C$_{15}$H$_{12}$BrNO (MH$^+$) 304.37. M.P. = 148 – 149 °C.

A.6.9 8-Bromo-2(1H)-quinolinone (523)

8-Bromoquinolin-2(1H)-one (523) was synthesised according to the known literature procedure. To *N*-(2-bromophenyl)cinnamamide (533) (2.00 g, 6.62 mmol) dissolved in a dry toluene (60 mL) was added aluminium trichloride (5.28 g, 39.7 mmol) and the resultant solution was heated at 125 °C for 2 hr under Ar. The reaction was diluted with EtOAc (200 mL) then washed with water (200 mL). The organic layer was filtered and dried over.
MgSO₄ then concentrated under reduced pressure. The white solid 523 was purified by silica gel column chromatography using 1:2 EtOAc / hexanes (0.814 g, 55 %). \(R_f = 0.34 \) (1:2 hexanes / EtOAc). \(^1\)H NMR (500 MHz, CDCl₃) \(\delta \) 6.68 (d, \(J = 9.6 \), 1H; ArH), 7.11 (t, \(J = 7.9 \), 1H; ArH), 7.53 (dd, \(J = 1.1, 7.8, 1H; ArH \), 7.72 (dd, \(J = 1.1, 7.8, 1H; ArH \), 7.73 (d, \(J = 9.6, 1H; ArH \)), 9.11 (brs, 1H; NH); \(^13\)C NMR (125 MHz, CDCl₃) \(\delta \) 109.1 (s), 121.1 (q), 122.9 (q), 123.4 (s), 127.5 (s), 133.6 (s), 135.6 (q), 140.5 (s), 162.1 (q). MS for \(C_9H_6NO_7^\text{Br} \) (MH⁺) 224.19. M.P. = 174 – 175 °C.

A.6.10 8-Bromo-2-chloroquinoline (524)

8-Bromo-2-chloroquinoline (524) was synthesised according to the known literature procedure.\(^{156}\) 8-Bromo-2(1H)-quinolinone (523) (0.800 g, 3.57 mmol) and phosphorus oxychloride (1.60 mL, 17.3 mmol) were added and the reaction heated at 125 °C for 2 hr under Ar. The reaction was diluted with EtOAc (200 mL) and washed with water (200 mL). The organic layer was filtered and dried over MgSO₄ then concentrated under reduced pressure. The white solid 524 was purified by silica gel column chromatography using 1:2 EtOAc / hexanes (0.725 g, 84 %). \(R_f = 0.67 \) (1:2 hexanes / EtOAc). \(^1\)H NMR (500 MHz, CDCl₃) \(\delta \) 7.39 – 7.44 (m, 2H; ArH), 7.78 (d, \(J = 8.1 \), 1H; ArH), 8.05 (d, \(J = 7.4 \), 1H; ArH), 8.10 (d, \(J = 8.5 \), 1H; ArH); \(^13\)C NMR (125 MHz, CDCl₃) \(\delta \) 123.5 (s), 123.6 (q), 127.4 (s), 128.1 (q), 134.2 (s), 139.3 (s), 145.1 (q), 151.9 (q). Not ionised by MS. M.P. = 102 - 103 °C.

A.6.11 2-Chloroquinoline-8-carboxylic acid (519)
8-Bromo-2-chloroquinoline (524) (0.100 g, 0.413 mmol) in THF (10 mL) was cooled to -78 °C under Ar. N-butyllithium (0.258 mL, 0.413 mmol, as a 1.6 M solution in hexane) was added and the reaction stirred at -78 °C for 15 min. CO₂(g) was bubbled through the solution for 5 min. The reaction was warmed to RT, acidified with 2M HCl (5 mL), diluted with CH₃Cl₂ (200 mL) and washed with water (200 mL). The organic layer was filtered and dried over MgSO₄. The white solid 519 was purified by silica gel column chromatography using 1:1 hexanes / EtOAc (0.036 g, 42 %). Rf = 0.45 (1:2 hexanes / EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, J = 8.8, 1H; ArH), 7.79 (t, J = 7.8, 1H; ArH), 8.14 (dd, J = 1.5, 8.2, 1H; ArH), 8.37 (d, J = 8.5, 1H; ArH), 8.85 (dd, J = 1.5, 7.3, 1H; ArH) 14.82 (s, 1H; OΗ); ¹³C NMR (125 MHz, CDCl₃) δ 123.2 (s), 124.2 (q), 126.8 (q), 127.6 (s), 133.0 (s), 136.5 (s), 140.9 (s), 145.2 (q), 150.9 (q), 166.0 (q). MS for C₁₀H₅ClNO₂ (MH⁺) 208.36. C₁₀H₅ClNO₂ (207.61): calcd. C 57.85, H 2.91, N 6.75; found C 58.26, H 3.15, N 6.59.
2-Chloroquinoline-8-carboxylic acid (519) (0.050 g, 0.240 mmol) and caesium carbonate (0.039 g, 0.120 mmol) in methanol (10 mL) were stirred at RT for 1 h. The solvent was removed and DMF (5 mL) and methyl iodide (0.018 mL, 0.288 mmol) were added and the reaction was stirred at RT overnight. The reaction was diluted with CH₂Cl₂ and washed with water. The organic layer was filtered and dried over MgSO₄ then concentrated under reduced pressure. The greasy white solid 535 was purified by silica gel column chromatography using 1:2 ethyl acetate / hexanes (0.049 g, 93 %). Rᵢ = 0.66 (1:2 hexanes / EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 4.07 (s, 3H; CH₃), 7.45 (d, J = 8.7, 1H; ArH), 7.60 (dd, J = 7.2, 8.1, 1H; ArH), 7.96 (dd, J = 1.3, 8.3, 1H; ArH), 8.10 (dd, J = 1.5, 7.2, 1H; ArH), 8.13 (d, J = 8.7, 1H; ArH); ¹³C NMR (125 MHz, CDCl₃) δ 52.7 (t), 123.2 (s), 126.1 (s), 127.0 (q), 130.8 (q), 131.1 (s), 131.6 (s), 138.9 (s), 145.0 (q), 151.9 (q), 167.4 (q). HRMS calculated for C₁₁H₈³⁵ClNO₂ (MH⁺) 222.0316, found 222.0316 (ESI+).
General

DATE = 2019/05/06
TIME = 11:59
INSTRUM = spect
PULPROG = zgpg30

Fl (13C)

SI = 32758
SF = 125.756
SW_p = 30030.03
A.6.13 Methyl 2-cinnamamidobenzoate (536)

Methyl 2-cinnamamidobenzoate (536) was synthesised by analogy to the preparation of 533.156 Potassium carbonate (0.248 g, 1.808 mmol), methyl 2-aminobenzoate (526) (0.156 mL, 1.204 mmol) and cinnamoyl chloride (522) (0.200 g, 1.204 mmol) were dissolved in acetone (10 mL) and the reaction was stirred overnight at RT. The reaction was diluted with EtOAc (200 mL) and washed with water (200 mL). The organic layer was filtered and dried over MgSO₄ then concentrated under reduced pressure. The white solid 536 was purified by silica gel column chromatography using 1:2 EtOAc / hexanes (0.320 g, 95 %).

\[R_f = 0.58 \text{ (2:1 hexanes / EtOAc)} \]

\[^1H \text{ NMR (500 MHz, CDCl}_3) \delta 3.95 \text{ (s, 3H, CH}_3), 6.63 \text{ (d, J = 15.6, 1H, CH), 7.10 \text{ (dt, J = 1.1, 8.2, 1H; ArH), 7.37-7.41 \text{ (m, 3H; ArH), 7.56-7.59 \text{ (m, 3H; ArH), 7.75 \text{ (d, J = 15.6, 1H, CH), 8.06 (dd, J = 1.6, 8.1, 1H; ArH), 8.87 (dd, J = 1.0, 8.6, 1H; ArH), 11.37 (s, 1H; NH);}^{13}C \text{ NMR (125 MHz, CDCl}_3) \delta 52.4 \text{ (t), 114.8 (q), 120.5 \text{ (s), 121.9 (s), 122.5 (s), 128.0 (s), 128.8 (s), 130.0 s), 130.8 (s), 134.6 (q), 134.7 (s), 141.8 \text{ (q), 142.2 (s), 142.2 (s), 164.5 (q), 168.9 (q).} \text{ HRMS calculated for C}_{17}\text{H}_{6}\text{NO}_3 \text{ (MH}^+) \text{ 282.1130, found 282.1124 (ESI+).} \]
8-Bromo-2-chloroquinoline (524) (0.200 g, 0.828 mmol) and copper cyanide (1.92 g, 21.4 mmol) in dry DMF (5 mL) was heated at 120 °C for 18 h. The reaction was diluted with CH$_2$Cl$_2$ (200 mL) and washed with mixture of water (200 mL), 2,2',2'',2'''-(ethane-1,2-diylbis(azanetriyl))tetraacetic acid (5 g), and a few drops of 6M KOH. The organic layer was filtered and dried over MgSO$_4$. The white solid 538 was purified by silica gel column chromatography using 1:4 EtOAc / hexanes (0.098 g, 63 %). R_f = 0.25 (1:2 EtOAc / hexanes). 1H NMR (500 MHz, CDCl$_3$) δ 7.54 (d, $J = 8.5$, 1H; ArH), 7.64 (t, $J = 8.2$, 1H; ArH), 8.08 (d, $J = 8.2$, 1H; ArH), 8.14 (d, $J = 8.2$, 1H; ArH), 8.19 (d, $J = 8.5$, 1H; ArH); 13C NMR (125 MHz, CDCl$_3$) δ 112.4 (q), 116.4 (q), 124.5 (s), 126.3 (s), 126.7 (q), 132.5 (s), 136.4 (s), 138.9 (s), 147.1 (q), 153.5 (q). HRMS calculated for C$_{10}$H$_5^{35}$ClN$_2$ (MH$^+$) 189.0214, found 189.0209 (ESI+).
2-(2-Pyridylmethyl)pyridine (504) (0.307 mL, 1.806 mmol) in dry THF (5 mL) was cooled to -78 °C under Ar. N-Butyllithium (1.13 mL, 1.806 mmol, as a 1.6 M solution in hexane) was added and the reaction stirred at -78 °C for 1 hr, then slowly warmed to -20 °C. 8-Bromo-2-chloroquinoline (524) (0.218 g, 0.903 mmol) was added and the reaction was heated to reflux for 30 min. The reaction was diluted with CH₂Cl₂ (200 mL) and washed with water (200 mL). The organic layer was filtered and dried over MgSO₄. The orange oil 537 was purified by silica gel column chromatography using 98:2 CH₂Cl₂ / MeOH (0.298 g, 88 %). \(R_f = 0.50 \) (9:1 CH₂Cl₂ / MeOH). \(^1\)H NMR (500 MHz, CDCl₃) \(\delta \) 6.25 (s, 1H; CH), 7.14 (m, 2H; ArH), 7.30 (t, \(J = 7.8 \), 1H; ArH), 7.59-7.71 (m, 6H; ArH), 7.97 (dd, \(J = 1.2 \), 7.5, 1H; ArH), 8.05 (d, \(J = 8.5 \), 1H; ArH), 8.56 (m, 2H; ArH); \(^{13}\)C NMR (125 MHz, CDCl₃) \(\delta \) 64.5 (s), 121.8 (s), 123.4 (s), 124.5 (s), 125.2 (q), 126.6 (s), 127.2 (s), 128.2 (q), 132.8 (s), 136.5 (s), 144.6 (q), 149.1 (s), 160.7 (q), 161.7 (q). HRMS calculated for C₂₀H₁₄⁷₉BrN₃ (MH⁺) 376.0444, found 376.0440 (ESI+).
A.6.16 2-(Dipyridin-2-ylmethyl)quinoline-8-carbonitrile (539)

2-(2-Pyridylmethyl)pyridine (504) (0.156 mL, 0.917 mmol) in dry THF (5 mL) was cooled to -78 °C under Ar. N-butyllithium (0.577 mL, 0.923 mmol, as a 1.6 M solution in hexane) was added and the reaction stirred at -78 °C for 1 hr, then slowly warmed to -20 °C. 2-Chloroquinoline-8-carbonitrile (538) (0.087 g, 0.462 mmol) was added and the reaction was heated to reflux for 30 min. The reaction was diluted with CH₂Cl₂ (200 mL) and washed with water (200 mL). The organic layer was filtered and dried over MgSO₄. The red oil 539 was purified by silica gel column chromatography using 98:2 CH₂Cl₂ / MeOH (0.103 g, 69 %). Rᵢ = 0.57 (9:1 CH₂Cl₂ / MeOH). ¹H NMR (500 MHz, CDCl₃) δ 6.29 (s, 1H; CH), 7.16 (m, 2H; ArH), 7.51 (m, 3H; ArH), 7.66 (td, J = 1.8, 7.7, 2H; ArH), 7.73 (d, J = 8.6, 1H; ArH), 7.98 (dd, J = 1.2, 8.2, 1H; ArH), 8.03 (dd, J = 1.2, 7.3, 1H; ArH), 8.13 (d, J = 8.6, 1H; ArH), 8.56 (m, 2H; ArH); ¹³C NMR (125 MHz, CDCl₃) δ 64.6 (s), 113.1 (q), 117.3 (q), 122.0 (s), 124.5 (s), 124.5 (s), 125.5 (s), 127.0 (q), 132.5 (s), 135.2 (s), 136.2 (s), 136.6 (s), 147.0 (q), 149.4 (s), 160.5 (q), 163.6 (q). MS for C₂₁H₁₄N₄ (MH⁺) 323.76. HRMS calculated for C₂₁H₁₄N₄ (MH⁺) 323.1291, found 323.1285 (ESI+).
A.6.17 2-((2-(Pyridin-2-yl)ethy lamino)methyl)phenol (545)

2-((Pyridin-2-ylethylamino)methyl)phenol (545) was a known compound and prepared according to the literature procedure. \(^{196}\) Pyridin-2-ylethanamine (543) (0.490 mL, 4.10 mmol) and 2-hydroxybenzaldehyde (544) (0.500 g, 4.10 mmol) in MeOH (10 mL) were stirred for 30 min at RT. NaBH\(_4\) (0.246 g, 6.48 mmol) and NaOH (0.033 g, 0.82 mmol) in H\(_2\)O (2 mL) were added to the reaction mixture and the resulting solution was stirred for 1 h. The reaction was diluted with CH\(_2\)Cl\(_2\) (200 mL) and washed with water (200 mL). The organic layer was filtered and dried over MgSO\(_4\) and the solvent removed. The colourless oil 545 was purified by silica gel column chromatography using 95:5 CH\(_2\)Cl\(_2\) / MeOH (0.669 g, 72 %). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 2.96 (t, \(J = 6.7, 2H; CH_2\)), 3.12 (t, \(J = 6.7, 2H; CH_2\)), 4.01 (s, 2H; CH\(_2\)), 6.76 (td, \(J = 1.7, 7.8, 1H; ArH\)), 6.81 (dd, \(J = 1.7, 5.0, 1H; ArH\)), 6.98 (d, 1H; ArH), 7.12-7.18 (m, 3H; ArH), 7.61 (dt, \(J = 1.7, 7.8, 1H; ArH\)), 8.52 (d, \(J = 5.0, 1H; ArH\)). MS for C\(_{14}\)H\(_{16}\)N\(_2\)O (MH\(^+\)) 229.13.

A.6.18 2-(((2-Hydroxybenzyl)(pyridin-2-ylethyl)amino)methyl)-4-nitrophenol (L15)

2-((Pyridin-2-ylethylamino)methyl)phenol (545) (0.669 g, 2.95 mmol), 2-(chloromethyl)-4-nitrophenol (548) (0.553 g, 2.95 mmol) and triethylamine (3.26 mL, 23.6 mmol) were refluxed together in CHCl\(_3\) (20 mL) for 2 h. The reaction was diluted with CH\(_2\)Cl\(_2\) (200 mL) and washed with water (200 mL). The organic layer was filtered and dried over
MgSO₄. The pale yellow oil **L15** was purified by silica gel column chromatography using 98:2 CH₂Cl₂ / MeOH. Residual MeOH caused **L15** to remain as an oil, this was removed by dissolving the residue in a minimum volume of CH₂Cl₂ and precipitating with hexane addition, decanting and drying under vacuum to give a pale yellow powder (0.590 g, 53 %). R_f = 0.29 (95:5 CH₂Cl₂ / MeOH).

^1^H NMR (500 MHz, CDCl₃) δ 2.94 (t, J = 6.7, 2H; CH₂), 3.14 (t, J = 6.7, 2H; CH₂), 3.49 (brs, 2H; OH), 3.85 (s, 4H; CH₂), 6.69 – 6.82 (m, 3H; ArH), 7.05 – 7.24 (m, 4H; ArH), 7.64 (dt, J = 1.7, 7.8, 1H; ArH), 7.94 (d, J = 2.2, 1H; ArH), 8.00 (dd, J = 2.8, 8.9, 1H; ArH), 8.54 (d, J = 5.0, 1H; ArH);

^1^3^C NMR (125 MHz, CDCl₃) δ 33.9 (d), 53.7 (d), 55.2 (d), 55.7 (d), 116.5 (s), 116.6 (s), 119.7 (s), 121.6 (q), 122.1 (s), 122.4 (s), 123.7 (s), 125.5 (s), 126.2 (q), 129.6 (s), 130.9 (s), 137.6 (s), 139.7 (q), 148.8 (s), 156.1 (q), 158.6 (q), 163.9 (q). MS for C₂₁H₂₁N₃O₄ (MH⁺) 380.84. C₂₁H₂₁N₃O₄·0.25H₂O (383.91): calcd. C 65.70, H 5.64, N 10.95; found C 65.40, H 5.48, N 10.84. M.P. = 108 – 110 °C.
A.6.19 2-((2-(Pyridin-2-yl)methylamino)methyl)phenol (560)

2-((Pyridin-2-ylmethylamino)methyl)phenol (560) was a known compound and prepared according to the literature procedure.\(^{197}\) Pyridin-2-ylmethanamine (559) (0.443 mL, 4.10 mmol) and 2-hydroxybenzaldehyde (544) (0.500 g, 4.10 mmol) in MeOH (10 mL) were stirred for 30 min at RT. NaBH\(_4\) (0.246 g, 6.48 mmol) and NaOH (0.033 g, 0.82 mmol) in H\(_2\)O (2 mL) were added to the reaction mixture and the resulting solution was stirred for 1 h. The reaction was diluted with CH\(_2\)Cl\(_2\) (200 mL) and washed with water (200 mL). The organic layer was filtered and dried over MgSO\(_4\) and the solvent was removed. The colourless oil 560 was purified by silica gel column chromatography using 95:5 CH\(_2\)Cl\(_2\)/MeOH (0.599 g, 68 %). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 3.87 (s, 2H; CH\(_2\)), 3.95 (s, 2H; CH\(_2\)), 6.73 - 6.75 (m, 2H; ArH), 7.00 (dd, \(J = 1.6, 6.5, 1\)H; ArH), 7.13 (dt, \(J = 6.5, 7.7, 1\)H; ArH), 7.25 (dd, \(J = 1.6, 4.9, 1\)H; ArH), 7.29 (t, \(J = 6.5, 1\)H; ArH), 7.73 (dt, \(J = 1.6, 7.7, 1\)H; ArH), 8.55 (d, \(J = 4.9, 1\)H; ArH). MS for C\(_{13}\)H\(_{14}\)N\(_2\)O (MH\(^+\)) 215.11.

A.6.20 2-(((2-Hydroxybenzyl)(pyridin-2-ylmethyl)amino)methyl)-4-nitrophenol (L16)

2-(((Pyridin-2-ylmethylamino)methyl)phenol (560) (0.599 g, 2.80 mmol), 2-(chloromethyl)-4-nitrophenol (548) (0.525 g, 2.80 mmol) and triethylamine (3.10 mL, 22.4 mmol) were refluxed together in CHCl\(_3\) (20 mL) for 2 h. The reaction was diluted with CH\(_2\)Cl\(_2\) (200
mL) and washed with water (200 mL). The organic layer was filtered and dried over MgSO$_4$. The pale yellow oil **L16** was purified by silica gel column chromatography eluting with CH$_2$Cl$_2$. Residual polar solvents caused **L16** to remain as an oil, this was removed by dissolving the residue in a minimum volume of CH$_2$Cl$_2$ and precipitating with hexane addition, decanting and drying under vacuum to give a pale yellow powder (0.710 g, 69 %).

$R_f = 0.29$ (95:5 CH$_2$Cl$_2$ / MeOH). 1H NMR (500 MHz, CDCl$_3$) δ 3.89 (s, 2H; CH$_2$), 3.91 (s, 2H; CH$_2$), 3.99 (s, 2H; CH$_2$), 6.80 – 6.97 (m, 3H; ArH), 7.07 – 7.22 (m, 3H; ArH), 7.35 (t, J = 6.5, 1H; ArH), 7.79 (dt, J = 1.6, 7.7, 1H; ArH), 8.06 (d, J = 2.8, 1H; ArH), 8.12 (dd, J = 2.8, 8.9, 1H; ArH), 8.68 (d, J = 4.9, 1H; ArH) 9.97 (brs, 2H; OH); 13C NMR (125 MHz, CDCl$_3$) δ 56.0 (d), 56.3 (d), 56.8 (d), 117.0 (s), 117.6 (s), 119.5 (s), 120.8 (q), 122.0 (q), 123.0 (s), 123.4 (s), 126.0 (s), 126.6 (s), 129.8 (s), 130.3 (s), 138.2 (s), 140.0 (q), 148.0 (s), 155.5 (q), 157.0 (q), 163.9 (q). MS for C$_{20}$H$_{19}$N$_3$O$_4$ (MH$^+$) 366.72. C$_{20}$H$_{19}$N$_3$O$_4$ (379.41): calcd. C 65.74, H 5.24, N 11.50; found C 65.79, H 5.20, N 11.49. M.P. = 102 – 104 °C.
General

DATE = 2009/11/17
TIME = 15:39
INSTRUM = spect
FULLPROG = zg30

F1 (1H)

SI = 32768
SF = 500.13
SU_p = 10330.579

[Chemical structure image]
Methyl 3-aminopropanoate hydrochloride (561) (0.572 mL, 4.10 mmol) and triethylamine (0.572 mL, 4.10 mmol) in MeOH (10 mL) were stirred together for 1 min to neutralise the hydrochloride salt of 561. 2-Hydroxybenzaldehyde (544) (0.500 g, 4.10 mmol) was added and the resulting solution was stirred for 30 min at RT. Next NaBH₄ (0.246 g, 6.48 mmol) and NaOH (0.033 g, 0.82 mmol) in H₂O (2 mL) were added and the reaction mixture was stirred for 1 h. The reaction was diluted with CH₂Cl₂ (200 mL) and washed with water (200 mL). The organic layer was filtered and dried over MgSO₄ and the solvent was removed. The colourless oil 562 was purified by silica gel column chromatography using 95:5 CH₂Cl₂ / MeOH (0.722 g, 84 %). ¹H NMR (500 MHz, CDCl₃) δ 2.59 (t, J = 6.1, 2H; CH₂), 2.96 (t, J = 6.1, 2H; CH₂), 3.72 (s, 3H; CH₃), 4.02 (s, 2H; CH₂), 6.80 (td, J = 1.0, 7.3, 1H; ArH), 6.85 (dd, J = 1.0, 8.1, 1H; ArH), 7.01 (d, J = 6.7, 1H; ArH), 7.18 (td, J = 1.0, 7.4, 1H; ArH); ¹³C NMR (125 MHz, CDCl₃) δ 33.6 (d), 43.6 (d), 51.8 (t), 52.4 (d), 116.3 (s), 119.0 (s), 122.2 (q), 128.4 (s), 128.8 (s), 158.1 (q), 172.8 (q). MS for C₁₁H₁₅NO₃ (MH⁺) 210.61. C₁₁H₁₅NO₃·0.5H₂O (218.25): calcd. C 60.54, H 7.39, N 6.42; found C 60.96, H 7.10, N 6.69.
Methyl 3-(2-hydroxybenzylamino)propanoate (562) (0.722 g, 3.45 mmol), 2-(chloromethyl)-4-nitrophenol (548) (0.647 g, 3.45 mmol) and triethylamine (3.82 mL, 27.6 mmol) were refluxed together in CHCl₃ (20 mL) for 2 h. The reaction was diluted with CH₂Cl₂ (200 mL) and washed with water (200 mL). The organic layer was filtered and dried over MgSO₄. The yellow oil 549 was purified by silica gel column chromatography using 98:2 CH₂Cl₂ / MeOH. Residual MeOH caused 549 to remain as an oil, this was removed by dissolving the residue in a minimum volume of CH₂Cl₂ and precipitating with hexane addition, decanting and drying under vacuum to give a yellow powder (0.611 g, 46%). \(R_f = 0.50 \) (95:5 CH₂Cl₂ / MeOH). \(^1\)H NMR (500 MHz, CDCl₃) \(\delta \) 2.73 (t, \(J = 7.4 \), 2H; CH₂), 3.02 (t, \(J = 7.4 \), 2H; CH₂), 3.69 (s, 3H; CH₃), 3.85 (s, 2H; CH₂), 3.89 (s, 2H; CH₂), 6.77 – 6.81 (m, 2H; ArH), 6.88 (t, \(J = 7.4 \), 1H; ArH), 7.13 – 7.20 (m, 2H; ArH). 8.00 (d, \(J = 2.3 \), 1H; ArH), 8.05 (dd, \(J = 2.7 \), 8.9, 1H; ArH). 8.20 (brs, 2H; OH); \(^{13}\)C NMR (125 MHz, CDCl₃) \(\delta \) 31.2 (d), 49.2 (d), 52.1 (t), 55.0 (d), 56.2 (d), 116.0 (s), 116.5 (s), 120.5 (s), 121.0 (q), 121.7 (q), 125.9 (s), 130.0 (s), 131.1 (s), 139.7 (q), 155.4 (s), 157.0 (q), 164.4 (q), 172.3 (q). MS for C₁₈H₂₀N₂O₆ (MH⁺) 361.73. C₁₈H₂₀N₂O₆ (360.36): calcd. C 59.99, H 5.59, N 7.77; found C 59.84, H 5.53, N 7.70.
Methyl 3-((2-hydroxy-5-nitrobenzyl)(2-hydroxybenzyl)amino)propanoate (549) (0.100 g, 0.417 mmol) in 6M HCl (2 mL) was refluxed for 4 h at 110 °C. The reaction mixture was diluted with water (200 mL) and washed with CH₂Cl₂ (200 mL). The aqueous layer was separated and neutralised with 1M NaOH to pH 7 and L17 was transferred into an organic layer of 9:1 CH₂Cl₂ / MeOH (200 mL). The organic layer was separated then filtered and dried over MgSO₄ and the solvent removed. The pale yellow solid L17 was dissolved in CH₂Cl₂ and precipitated upon addition of hexane then filtered (0.047 g, 49 %). Rᵢ = 0.36 (90:10 DCM / MeOH). ¹H NMR (500 MHz, DMSO-d6) δ 2.53 (t, J = 7.4 Hz, 2H; CH₂), 2.74 (t, J = 7.4 Hz, 2H, CH₂), 3.50 (brs, 1H; COOH), 3.70 (s, 2H; CH₂), 3.78 (s, 2H; CH₂), 6.77 (m, 2H; ArH), 6.89 (t, J = 9.0, 1H; ArH), 7.10 (td, J = 1.5, 7.4, 1H; ArH), 7.17 (dd, J = 1.5, 7.4, 1H; ArH), 8.03 (dd, J = 2.8, 9.0, 1H; ArH), 8.14 (d, J = 2.8, 1H; ArH); ¹³C NMR (125 MHz, DMSO-d6) δ 31.0 (d), 48.6 (d), 53.2 (d), 53.6 (d), 115.7 (s), 116.2 (q), 119.3 (s), 123.1 (s), 124.7 (q), 125.3 (q), 126.3 (s), 129.0 (s), 130.7 (s), 139.5 (q), 156.8 (s), 164.2 (q), 173.6 (q). HRMS calculated for C₁₇H₁₈N₄O₆ (MH⁺) 347.1238, found 347.1228 (ESI+).
A.6.24 2-(bis(2-Hydroxy-3,5-dimethylbenzyl)amino)acetic acid (L18)

2-(bis(2-Hydroxy-3,5-dimethylbenzyl)amino)acetic acid (L18) was a known compound synthesised according to the literature procedure.165 2,4-Dimethylphenol (563) (1.00 g, 8.20 mmol), 2-aminoacetic acid (565) (0.614 g, 8.20 mmol) and formaldehyde (564) (0.327 g, 10.91 mmol) in EtOH (100 mL) were refluxed together overnight. The precipitate of L18 was filtered and recrystallised from MeOH / pyridine (0.817 g, 29 %). 1H NMR (500 MHz, DMSO-d6) δ 2.05 (s, 6H; CH\textsubscript{3}), 2.12 (s, 6H; CH\textsubscript{3}), 2.82 (s, 2H; CH\textsubscript{2}), 3.52 (s, 4H; CH\textsubscript{2}), 5.75 (brs, 1H; OH), 6.66 (s, 2H; ArH), 6.77 (s, 2H; ArH), 10.76 (brs, 1H; OH); 13C NMR (125 MHz, DMSO-d6) δ 16.4 (t), 20.4 (t), 56.4 (d), 56.9 (d), 121.8 (x), 124.2 (x), 126.4 (x), 128.5 (x), 130.8 (x), 153.3 (x), 174.6 (q). MS for C\textsubscript{20}H\textsubscript{25}NO\textsubscript{4} (MH+) 344.87.

A.6.25 2-(2-Hydroxybenzylamino)phenol (567)

2-(2-Hydroxybenzylamino)phenol (567) was a known compound and prepared according to the literature procedure.198 2-Aminophenol (566) (0.449 mL, 4.10 mmol) and 2-hydroxybenzaldehyde (544) (0.500 g, 4.10 mmol) in MeOH (10 mL) were stirred for 6 hr at RT. NaBH\textsubscript{4} (0.246 g, 6.48 mmol) and NaOH (0.033 g, 0.82 mmol) in H\textsubscript{2}O (2 mL) were added and the resulting mixture was stirred for 1 h. The reaction was diluted with CH\textsubscript{2}Cl\textsubscript{2} (200 mL) and washed with water (200 mL). The organic layer was filtered and dried over
MgSO₄ and the solvent was removed. The brown powder **567** (0.766 g, 87 %) was used directly in the next step. **¹H NMR** (500 MHz, CDCl₃) δ 4.44 (s, 2H; CH₂), 6.26 (brs, 1H; NH) 6.74 – 6.80 (m, 2H; ArH), 6.86 – 6.94 (m, 4H; ArH), 7.20 (m, 1H; ArH), 7.25 (m, 1H; ArH); **¹³C NMR** (125 MHz, CDCl₃) δ 48.9 (d), 114.8 (s), 115.5 (s), 116.7 (s), 120.3 (s), 120.9 (s), 121.6 (s), 123.3 (q), 128.7 (s), 129.1 (s), 135.8 (q), 145.0 (q), 156.6 (q). MS for C₁₃H₁₃NO₂ (MH⁺) 216.19.

A.6.26 2-(((2-Hydroxybenzyl)(2-hydroxyphenyl)amino)methyl)-4-nitrophenol (L19)

2-(2-Hydroxybenzylamino)phenol (**567**) (0.766 g, 3.37 mmol), 2-(chloromethyl)-4-nitrophenol (**548**) (0.632 g, 3.37 mmol) and triethylamine (3.80 mL, 27.5 mmol) were refluxed together in CHCl₃ (20 mL) for 2 h. The reaction was diluted with CH₂Cl₂ (200 mL) and washed with water (200 mL). The organic layer was filtered and dried over MgSO₄. The light brown oil **L19** was purified by silica gel column chromatography using 2:1 Hexanes / EtOAc. Residual EtOAc caused **L19** to remain as an oil, this was removed by dissolving the residue in a minimum volume of CH₂Cl₂ and precipitating with hexane addition, decanting and drying under vacuum to give a light brown powder (0.839 g, 68 %). *Rf* = 0.54 (95:5 CH₂Cl₂ / MeOH). **¹H NMR** (500 MHz, CDCl₃) δ 4.22 (s, 2H; CH₂), 4.36 (s, 2H; CH₂), 6.77 (d, *J* = 9.0, 1H; ArH), 6.87 – 6.95 (m, 4H; ArH), 7.03 – 7.08 (m, 1H; ArH), 7.11 (brs, 3H; OH) 7.20 – 7.26 (m, 3H; ArH), 8.00 (dd, *J* = 2.8, 9.0, 1H; ArH), 8.05 (d, *J* = 2.8, 1H; ArH); **¹³C NMR** (125 MHz, CDCl₃) δ 54.0 (d), 57.9 (d), 116.1 (s), 116.5 (s), 116.9 (s), 120.9 (s), 121.2 (s), 121.6 (q), 121.6 (s), 122.4 (q), 125.7 (s), 126.2 (s), 127.1 (s), 130.3 (s), 131.6 (s), 133.8 (q), 140.5 (q), 151.0 (q), 154.5 (q), 163.4 (q). MS for C₂₀H₁₈N₂O₅ (MH⁺) 367.72. C₂₀H₁₈N₂O₅ (366.37): calcd. C 65.57, H 4.95, N 7.65; found C 65.61, H 4.97, N 7.50. M.P. = 158 – 159 °C.
A.6.27 2-((Quinolin-8-ylamino)methyl)phenol (569)

2-((Quinolin-8-ylamino)methyl)phenol (569) was prepared according to the known literature procedure. Quinolin-8-amine (568) (0.590 g, 4.10 mmol) and 2-hydroxybenzaldehyde (544) (0.500 g, 4.10 mmol) in MeOH (10 mL) were stirred for 1 week at RT. NaBH$_4$ (0.246 g, 6.48 mmol) and NaOH (0.033 g, 0.82 mmol) in H$_2$O (2 mL) were added and the resulting mixture was stirred for 1 h. The reaction was diluted with CH$_2$Cl$_2$ (200 mL) and washed with water (200 mL). The organic layer was filtered and dried over MgSO$_4$ and the solvent removed to give the yellow powder 569 (0.850 g, 83 %) was used directly in the next step. 1H NMR (500 MHz, CDCl$_3$) δ 4.64 (d, J = 4.9, 2H; CH$_2$), 6.48 (brs, 1H; NH), 6.95 (m, 2H; ArH), 6.99 (dd, J = 0.9, 7.6, 1H; ArH), 7.24 – 7.28 (m, 3H; ArH), 7.40 – 7.44 (m, 2H; ArH), 8.13 (dd, J = 1.6, 8.3, 1H; ArH), 8.24 (brs, 1H; OH), 8.78 (dd, J = 1.6, 4.2, 1H; ArH); 13C NMR (125 MHz, CDCl$_3$) δ 47.8 (d), 109.3 (s), 116.6 (s), 117.5 (s), 120.2 (s), 121.6 (s), 123.5 (q), 127.4 (s), 128.5 (q), 128.8 (s), 129.0 (s), 136.2 (s), 139.1 (q), 144.5 (q), 147.7 (s), 156.5 (q). MS for C$_{16}$H$_{13}$N$_2$O (MH$^+$) 251.11.

A.6.28 2-(((2-Hydroxybenzyl)(quinolin-8-yl)amino)methyl)-4-nitrophenol (L20)

2-((Quinolin-8-ylamino)methyl)phenol (569) (0.850 g, 3.40 mmol), 2-(chloromethyl)-4-nitrophenol (548) (0.638 g, 3.40 mmol) and triethylamine (3.84 mL, 27.7 mmol) were
refluxed together in CHCl₃ (20 mL) for 2 h. The reaction was diluted with CH₂Cl₂ (200 mL) and washed with water (200 mL). The organic layer was filtered and dried over MgSO₄. The orange oil L₂₀ was purified by silica gel column chromatography using 2:1 Hexanes / EtOAc. Residual EtOAc caused L₂₀ to remain as an oil, this was removed by dissolving the residue in a minimum volume of CH₂Cl₂ and precipitating with hexane addition, decanting and drying under vacuum to give a light orange powder (0.695 g, 51 %). \(R_f = 0.82 \) (95:5 CH₂Cl₂ / MeOH). \(^1\)H NMR (500 MHz, CDCl₃) \(\delta \) 4.48 (s, 4H; CH₂), 6.80 – 6.85 (m, 2H; ArH), 6.90 (d, \(J = 9.1 \), 1H; ArH), 7.12 – 7.22 (m, 2H; ArH), 7.47 (d, \(J = 5.0 \), 2H; ArH), 7.59 (q, \(J = 4.1 \), 2H; ArH), 8.05 (dd, \(J = 3.2 \), 8.6, 1H; ArH), 8.17 (d, \(J = 2.7 \), 1H; ArH), 8.31 (dd, \(J = 1.4 \), 8.6, 1H; ArH), 9.01 (dd, \(J = 1.4 \), 4.6, 1H; ArH), 10.46 (brs, 1H; OH), 12.59 (brs, 1H; OH); \(^{13}\)C NMR (125 MHz, CDCl₃) \(\delta \) 56.6 (d), 56.7 (d), 117.1 (s), 117.7 (s), 119.5 (s), 120.9 (q), 121.4 (s), 121.8 (s), 122.2 (q), 124.4 (s), 125.9 (s), 126.8 (s), 127.0 (s), 129.7 (s), 130.1 (q), 130.6 (s), 138.9 (s), 140.0 (q), 141.8 (q), 143.6 (q), 148.3 (s), 156.9 (q), 163.7 (q). MS for C₂₃H₁₉N₃O₄ (MH⁺) 402.82. C₂₃H₁₉N₃O₄ (401.41): calcd. C 68.82, H 4.77, N 10.47; found C 69.03, H 4.69, N 10.50. M.P. = 184 – 185 °C.
2-Phenylquinolin-8-amine (570) (0.902 g, 4.10 mmol) and 2-hydroxybenzaldehyde (544) (0.500 g, 4.10 mmol) in MeOH (10 mL) were stirred for 1 week at RT. NaBH₄ (0.246 g, 6.48 mmol) and NaOH (0.033 g, 0.82 mmol) in H₂O (2 mL) were added and the resultant solution was stirred for 1 h. The reaction was diluted with CH₂Cl₂ (200 mL) and washed with water (200 mL). The organic layer was filtered and dried over MgSO₄ the solvent removed. The light yellow powder 571 (1.189 g, 89 %) was used directly in the next step.

R_f = 0.80 (95:5 CH₂Cl₂ / MeOH). ¹H NMR (500 MHz, CDCl₃) δ 4.66 (d, J = 3.8, 2H; CH₂), 6.67 (brs, 1H; NH), 6.90 – 6.98 (m, 3H; ArH), 7.21 – 7.26 (m, 2H; ArH), 7.34 (t, J = 7.8, 1H; ArH), 7.42 – 7.52 (m, 3H; ArH), 7.88 (d, J = 8.5, 1H; ArH), 7.11 – 7.16 (m, 3H; ArH), 8.31 (brs, 1H; OH); ¹³C NMR (125 MHz, CDCl₃) δ 48.2 (d), 109.7 (s), 116.6 (s), 117.4 (s), 119.3 (s), 120.1 (s), 123.4 (q), 127.1 (s), 127.2 (q), 127.4 (s), 128.5 (s), 128.8 (s), 128.9 (s), 129.3 (s), 137.0 (s), 138.8 (q), 139.3 (q), 144.6 (q), 154.7 (q), 156.7 (q). HRMS calculated for C₂₉H₂₃N₅O₄ (MH⁺) 478.1761, found 478.1756 (ESI+). M.P. = 136 – 137 °C.
A.6.30 2-(((2-Hydroxybenzyl)(2-phenylquinolin-8-yl)amino)methyl)-4-nitrophenol (L21)

2-((2-Phenylquinolin-8-ylamino)methyl)phenol (571) (1.189 g, 3.64 mmol), 2-(chloromethyl)-4-nitrophenol (548) (0.683 g, 3.64 mmol) and triethylamine (4.12 mL, 29.7 mmol) were refluxed together in CHCl₃ (20 mL) for 2 h. The reaction was diluted with CH₂Cl₂ (200 mL) and washed with water (200 mL). The organic layer was filtered and dried over MgSO₄. The light yellow oil L21 was purified by silica gel column chromatography using 2:1 Hexanes / EtOAc. Residual EtOAc caused L21 to remain as an oil, this was removed by dissolving the residue in a minimum volume of CH₂Cl₂ and precipitating with hexane addition, decanting and drying under vacuum to give a light yellow powder (0.677 g, 39%). Rf = 0.82 (95:5 CH₂Cl₂ / MeOH). ¹H NMR (500 MHz, CDCl₃) δ 4.48 (s, 2H; CH₂), 4.51 (s, 2H; CH₂), 6.77 – 6.85 (m, 3H; ArH), 7.12 – 7.22 (m, 2H; ArH), 7.46 – 7.64 (m, 6H; ArH), 7.80 (d, J = 8.7, 1H; ArH), 7.86 (m, 2H; ArH), 8.03 (dd, J = 2.4, 9.0, 1H; ArH), 8.17 (dd, J = 2.4, 1H; ArH), 8.32 (d, J = 8.7, 1H; ArH), 10.59 (brs, 2H, OH); ¹³C NMR (125 MHz, CDCl₃) δ 56.6 (d), 57.4 (d), 117.2 (s), 117.7 (s), 119.6 (s), 121.2 (s), 121.7 (s), 122.4 (s), 124.5 (s), 125.7 (s), 126.4 (s), 126.5 (s), 128.5 (s), 128.8 (q), 129.2 (s), 129.6 (s), 129.7 (s), 130.5 (s), 138.8 (q), 138.9 (q), 140.2 (q), 142.6 (q), 144.1 (q), 156.5 (q), 156.8 (q), 159.8 (q), 163.1 (q). MS for C₂₉H₂₃N₃O₄ (MH⁺) 478.88. C₂₉H₂₃N₃O₄ (477.51): calcd. C 72.94, H 4.85, N 8.80; found C 71.76, H 4.55, N 8.67. M.P. = 175 – 176 °C.
A.7 Chapter 6 Experimental

A.7.1 Be complex with L15

\[
2-(((2\text{-Hydroxybenzyl})(\text{pyridin-2-ylethyl})\text{amino})\text{methyl})-4\text{-nitrophenol (L15)} (0.010 \text{ g, 26.4 } \mu\text{mol}), \text{ beryllium sulphate (26.5 } \mu\text{L, 26.4 } \mu\text{mol, 0.99 M in } \text{H}_2\text{O}) \text{ and triethylamine (36.6 } \mu\text{L, 265 } \mu\text{mol) in DMF (1 mL) were stirred together for 16 h at 50 °C. The complex was characterised using DMSO-d}_6. \text{ } ^1\text{H NMR (400 MHz, DMSO-d}_6 \delta \text{ CH}_2 \text{ peaks not seen under solvent peaks and triethylamine, 6.51 (m, 2H; ArH), 6.59 (d, } J = 9.0, 1\text{H; ArH}), 7.02 \text{ (m, 3H; ArH)}, 7.53 \text{ (d, } J = 7.9, 1\text{H; ArH}), 7.64 \text{ (t, } J = 6.7, 1\text{H; ArH}), 7.96 \text{ (dd, } J = 3.0, 9.0, 1\text{H; ArH}), 8.04 \text{ (dd, } J = 2.0, 6.7, 1\text{H; ArH}), 8.72 \text{ (d, } J = 5.2, 1\text{H; ArH); } ^{13}\text{C NMR (100 MHz, DMSO-d}_6 \delta [29.2, 51.0, 55.5, 55.6] (\text{CH}_2), [115.8, 118.5, 118.8, 122.2, 123.2, 124.0, 126.0, 126.3, 126.8, 129.6, 130.0, 136.2, 141.2, 147.0, 157.5, 161.6, 170.0] (\text{ArC}).
\]

NMR Analysis:
The $^9\text{Be NMR of the mixture in DMF and showed a single peak 2.77 ppm (line width 62 Hz) for the complex. Analogous experiments in DMSO-d}_6 \text{ and MeOH gave a peak at 3.18 ppm (line width 123 Hz) and 2.94 ppm (line width 150 Hz) respectively. This ligand was not water soluble.}$

$^9\text{Be NMR shift of L15 coordinated to beryllium in DMF (green), MeOH (blue) and DMSO (red)}$
UV-Vis and Fluorescence Spectroscopy:
A 20 µL aliquot of the reaction mixture was taken and diluted with DMF (10 mL) to give a concentration of 52.8 µmol L\(^{-1}\) and the UV-Vis spectra was measured against an identical sample containing only the free ligand, L\(_{15}\). The complex was not fluorescent.

A.7.2 Be complex with L\(_{16}\)

![Chemical Structure of L\(_{16}\)](image)

2-(((2-Hydroxybenzyl)(pyridin-2-ylmethyl)amino)methyl)-4-nitrophenol (L\(_{16}\)) (0.010 g, 27.4 µmol), beryllium sulphate (27.5 µL, 27.4 µmol, 0.99 M in H\(_2\)O) and triethylamine (37.9 µL, 274 µmol) in DMF (1 mL) were stirred together for 16 h at 50 °C. Full NMR characterisation using DMSO-d6 was not possible as complete conversion did not occur.

NMR Analysis:
The \(^{9}\)Be NMR of the mixture in DMF showed weak coordination as the free beryllium signal at 0.99 ppm was present as well as a peak at 4.51 ppm (line width 67 Hz) for the complex. An analogous experiment in MeOH gave a peak at 4.18 ppm (line width 188 Hz) for the complex. This ligand was not water soluble.

\(^{9}\)Be NMR shift of [Be(L\(_{16}\))] in DMF (red) and MeOH (blue)
UV-Vis and Fluorescence Spectroscopy:
A 20 µL aliquot of the reaction mixture was taken and diluted with DMF (10 mL) to give a concentration of 54.8 µmol L\(^{-1}\) which was measured against an identical sample containing only the free ligand, \textbf{L16}. The complex was not fluorescent.

\begin{center}
\includegraphics[width=\textwidth]{spectrum.png}
\end{center}

\textit{Change in UV-Vis spectrum at 10\(^{-5}\) M of neutral \textbf{L16} (blue) and after \textbf{BeSO\(_4\)} addition (red)}

\textbf{A.7.3 Be complex with L17}

3-((2-Hydroxy-5-nitrobenzyl)(2-hydroxybenzyl)amino)propanoic acid (\textbf{L17}) (0.010 g, 28.9 µmol), beryllium sulphate (29.0 µL, 28.9 µmol, 0.99 M in H\(_2\)O) and triethylamine (40.0 µL, 289 µmol) in DMSO (1 mL) were stirred together for 16 h at 50 °C.

NMR Analysis:
The 9Be NMR of the mixture in DMSO-d$_6$ and showed a single peak at 2.11 ppm (line width 174 Hz) for the complex. Analogous experiments in D$_2$O and MeOH gave a peak at 2.60 ppm (line width 175 Hz) and 2.33 ppm (line width 151 Hz).

UV-Vis and Fluorescence Spectroscopy:
A 20 µL aliquot of the reaction mixture was taken and diluted with DMSO (10 mL) to give a concentration of 57.8 µmol L$^{-1}$ which was measured against an identical sample containing only the free ligand, L$_{17}$.

The carboxylic acid moiety enabled good water solubility and an analogous experiment to the one performed in DMSO was performed in H$_2$O. A 20 µL aliquot of the reaction mixture was taken and diluted with H$_2$O (10 mL) to give a concentration of 57.8 µmol L$^{-1}$ which was measured against an identical sample containing only the free ligand, L$_{17}$.

A.7.4 Be complex with L$_{18}$

2-(bis(2-Hydroxy-3,5-dimethylbenzyl)amino)acetic acid (L$_{18}$) (0.010 g, 29.2 µmol), beryllium sulphate (29.5 µL, 29.2 µmol, 0.99 M in H$_2$O) and triethylamine (40.4 µL, 292 µmol) in DMF (1 mL) were stirred together for 16 h at 50 °C. The complex was
characterised using DMSO-d6. \(^1\)H NMR (400 MHz, DMSO\(_{d6}\)) \(\delta 2.00\) (s, 6H; \(CH_3\)), \(2.07\) (s, 6H; \(CH_3\)), \(2.97\) (s, 2H; \(CH_2\)), \(CH_2\) hidden under triethylamine peak, \(6.54\) (s, 2H; \(ArH\)), \(6.70\) (s, 2H; \(ArH\)); \(^{13}\)C NMR (100 MHz, DMSO-d6) \(\delta [17.2, 20.5]\) (\(CH_3\)), \([57.5, 57.8]\) (\(CH_2\)), \([121.7, 121.8, 126.1, 127.5, 131.1, 159.9, 174.4]\) (\(ArC\)).

NMR Analysis:
The \(^{9}\)Be NMR of the mixture in DMF and showed a single major peak at 4.06 ppm (line width 66 Hz) for the complex. Analogous experiments in DMSO-d6 and D\(_2\)O gave peaks at 4.64 (line width 130 Hz) and 5.15 ppm (line width 104 Hz) respectively.

UV-Vis and Fluorescence Spectroscopy:
A 20 µL aliquot of the reaction mixture was taken and diluted with DMF (10 mL) to give a concentration of 58.3 µmol L\(^{-1}\) which was measured against an identical sample containing only the free ligand, \(L18\).

The carboxylic acid moiety enabled good water solubility and an analogous experiment to the one performed in DMF was performed in H\(_2\)O. A 20 µL aliquot of the reaction mixture was taken and diluted with H\(_2\)O (10 mL) to give a concentration of 58.3 µmol L\(^{-1}\) which was measured against an identical sample containing only the free ligand, \(L18\).

\textit{A.7.5 Be complex with L19}
2-(((2-hydroxybenzyl)(2-hydroxyphenyl)amino)methyl)-4-nitrophenol (L19) (0.010 g, 27.3 µmol), beryllium sulphate (27.5 µL, 27.3 µmol, 0.99 M in H2O) and triethylamine (37.8 µL, 273 µmol) in DMF (1 mL) were stirred together for 16 h at 50 °C. The complex was characterised using DMSO-d6. 1H NMR (400 MHz, DMSO-d6) δ CH2 hidden under triethylamine peaks, 6.35 – 6.50 (m, 5H; ArH), 6.79 (t, J = 7.2, 1H; ArH), 6.90 – 6.97 (m, 2H; ArH), 7.30 (d, J = 7.5, 1H; ArH), 7.80 – 7.87 (m, 2H; ArH), 13C NMR (100 MHz, DMSO-d6) δ [55.1, 59.3] (CH2), [114.1, 114.7, 116.0, 119.0, 119.1, 121.2, 123.3, 124.2, 126.0, 126.4, 128.5, 129.5, 129.6, 135.0, 137.8, 163.6, 163.8, 172.46] (ArC).

NMR Analysis:
The ⁹Be NMR of the mixture in DMF and showed a single major peak at 4.40 ppm (line width 59 Hz) for the complex. An analogous experiment in DMSO-d6 and MeOH gave a peak at 5.10 ppm (line width 106 Hz) and 5.28 ppm (line width 159 Hz).

UV-Vis and Fluorescence Spectroscopy:
A 20 µL aliquot of the reaction mixture was taken and diluted with DMF (10 mL) to give a concentration of 54.6 µmol L⁻¹ which was measured against an identical sample containing only the free ligand, L19.
A.7.6 Be complex with L20

2-(((2-hydroxybenzyl)(quinolin-8-yl)amino)methyl)-4-nitrophenol \(\textbf{(L20)} \) (0.010 g, 22.4 \(\mu \text{mol} \)), beryllium sulphate (25.0 \(\mu \text{L}, 22.4 \mu \text{mol}, 0.99 \text{ M in } \text{H}_2\text{O} \)) and triethylamine (31.0 \(\mu \text{L}, 224 \mu \text{mol} \)) in DMF (1 mL) were stirred together for 16 h at 50 \(^\circ\text{C} \).

NMR Analysis:
The \(^{9}\text{Be NMR} \) of the mixture in DMF and showed only weak coordination as the free beryllium signal at 0.30 ppm was present as well as a peak at 5.15 ppm (line width 89 Hz) for the complex.

\[^{9}\text{Be NMR shift of L20 coordinated to beryllium in DMF} \]

UV-Vis and Fluorescence Spectroscopy:
A 20 \(\mu \text{L} \) aliquot of the reaction mixture was taken and diluted with DMF (10 mL) to give a concentration of 49.8 \(\mu \text{mol L}^{-1} \) which was measured against an identical sample containing only the free ligand, \textbf{L20}.
Change in UV-Vis spectrum at 10^{-5} M of neutral L20 (blue) and after BeSO$_4$ addition (red) in DMF.

Change in fluorescence at 10^{-5} M of neutral L20 (blue) and after BeSO$_4$ addition (red) in DMF.

A.7.7 Be complex with L21
2-(((2-Hydroxybenzyl)(2-phenylquinolin-8-yl)amino)methyl)-4-nitrophenol (L21) (0.010 g, 20.9 µmol), beryllium sulphate (21.0 µL, 20.9 µmol, 0.99 M in H₂O) and triethylamine (28.9 µL, 209 µmol) in DMF (1 mL) were stirred together for 16 h at 50 °C.

NMR Analysis:
No peaks were present in the ⁹Be NMR of the mixture in DMF suggesting no coordination occurred.

UV-Vis and Fluorescence Spectroscopy:
A 20 µL aliquot of the reaction mixture was taken and diluted with DMF (10 mL) to give a concentration of 41.9 µmol L⁻¹ which was measured against an identical sample containing only the free ligand, L21.

As there was no corresponding ⁹Be NMR signal, the change in UV-Vis and fluorescence might be due to a central proton occupying the cavity.
Change in UV-Vis spectrum at 10^{-5} M of neutral L21 (blue) and after BeSO$_4$ addition (red) in DMF.

Change in fluorescence at 10^{-5} M of neutral L21 (blue) and after BeSO$_4$ addition (red) in DMF.

A.7.8 Cu complex with L16
2-(((2-Hydroxybenzyl)(pyridin-2-ylmethyl)amino)methyl)-4-nitrophenol (L16) (0.048 g, 0.132 mmol) and copper acetate (0.026, 0.132 mmol) in MeOH (5 mL) were mixed together, MeCN (1 mL) was added and crystallisation was set up by vapour diffusion of diethyl ether. The green crystals obtained were completely insoluble and unsuitable for solution based analysis techniques.

Crystal data for [Cu(L16)]. C20H17N3O4Cu, green chip, dimensions 0.6 x 0.2 x 0.05 mm, triclinic, space group P-1, a = 8.9881(18), b = 9.3333(19), c = 12.050(2) Å, α = 91.39(3)°, β = 111.86(3)°, γ = 98.81(3)°, U = 923.5(4) Å³, µ = 1.974 mm⁻¹, Z = 1, Dc = 1.564 g cm⁻³, F(000) = 447, T = 100(2) K. 15723 Reflections were collected using a Rigaku MM007 rotating anode in the range 6.51 < 2θ < 143.94°. A semi-empirical absorption correction (ABSCOR; Higashi, 1995) was applied. The 2873 independent reflections were used to solve the structure by direct methods (SHELXS97) which resulted in the location of all non-hydrogen atoms. All non-hydrogen atoms were made anisotropic and the refinement (SHELXL97) of 269 parameters converged to R₁ = 0.0476 [for 2652 reflections having I > 4σ (I)], wR₂ = 0.1390 and goodness of fit 1.077 (for all 2652 F² data). Peak / hole 0.601 / -0.622 e Å⁻³.

A.7.9 Zn complex with L16
2-(((2-Hydroxybenzyl)(pyridin-2-ylmethyl)amino)methyl)-4-nitrophenol (L16) (0.020 g, 0.055 mmol) and zinc acetate (0.012, 0.055 mmol) in MeOH (2.5 mL) and CH₂Cl₂ (2.5 mL) and mixed and crystallisation was set up by vapour diffusion of diethyl ether. The yellow crystals obtained were completely insoluble and unsuitable for solution based analysis techniques.

Crystal data for [Zn(L16)]. C₂₀H₁₇N₅O₄Zn, yellow plate, dimensions 0.16 x 0.06 x 0.05 mm, monoclinic, space group P2₁/n, a = 16.915(3), b = 13.403(3), c = 19.396(4) Å, α = 90.00°, β = 105.61(3)°, γ = 90.00°, U = 4235.0(15) Å³, μ = 1.858 mm⁻¹, Z = 4, Dc = 1.345 g cm⁻³, F(000) = 1760, T = 100(2) K. 44104 Reflections were collected using a Rigaku MM007 rotating anode in the range 6.61 < 2θ < 133.10°. A semi-empirical absorption correction (ABSCOR; Higashi, 1995) was applied. The 7399 independent reflections were used to solve the structure by direct methods (SHELXS97) which resulted in the location of all non-hydrogen atoms. All non-hydrogen atoms were made anisotropic and the refinement (SHELXL97) of 506 parameters converged to R₁ = 0.0907 [for 3956 reflections having I > 4σ(I)], wR₂ = 0.2370 and goodness of fit 1.047 (for all 3956 F² data). Peak / hole 1.103 / -0.738 e Å⁻³.
Appendix B: Abandoned Proton Sponge Syntheses

B.1 Introduction

As the synthesis of B01^{85} was not immediately successful a number of alternate routes were attempted early on in the investigation. The closest analogous heterocycles which had been synthesised in abundance were 1,10-phenanthroline, B02, and quinoline, B03, and promising new routes for these were attempted to be adapted for the synthesis of quino[7,8-h]quinoline.

![Heterocycles with related synthetic methodologies](image)

Figure B.1: Heterocycles with related synthetic methodologies
B.2 Muthusubramanian and Misra Synthesis

B.2.1 Introduction

Muthusubramanian and Misra have reported on the synthesis of quinolines by cyanoethylation and in three steps they synthesised B07.

\[
\text{Scheme B.1: Synthesis of } 4,9\text{-dioxo-1,2,3,4,9,10,11,12-octahydroquinolino[7,8-h]quinoline, B07}
\]

It was unknown whether any further reactions were attempted with B07, but dehydrogenation with Pd should give B08 which could be converted to B09 with phosphorus oxychloride. Chandrasekhar and co-workers utilised a similar conversion with a substituted quinoline.

\[
\text{Scheme B.2: Proposed conversion of B07 to B08 and B09}
\]

B.2.2 Results / Discussion

The first step of the reaction claimed to obtain a 48 % yield which was purified by crystallisation alone.
Despite varying reaction time and temperature, the mono-substituted $\textbf{B10}$ was predominantly formed in low yields with only trace formation of $\textbf{B05}$.

Although this reaction scheme appeared promising, it was abandoned due to the unreliability of the first step. The literature was unable to be replicated in this case and it was unknown why the seemingly simple reaction did not work. In light of the research conducted during Chapter 3, $\textbf{B08}$ would likely have limited utility due to the stable preferred tautomer, $\textbf{B11}$. This could be converted to $\textbf{B09}$ with POCl$_3$; however, since Staab’s original preparation already gave reasonable yields of $\textbf{B09}$, this route was not pursued further.

$\textit{B.2.3 Experimental}$

358
The reaction was performed as per the literature procedure. The products were purified by silica gel column chromatography eluting with 4:1 hexanes / EtOAc to give \textbf{B10} in 16% yield and \textbf{B05} in 1% yield. Characterisation data for \textbf{B05}: $R_f = 0.17$ (2:1 hexanes / EtOAc). $^1\text{H NMR}$ (500 MHz, CDCl$_3$) δ 2.69 (t, $J = 6.5$, 4H; CH_2), 3.50 (t, $J = 6.5$, 4H; CH_2), 6.37 (br s, 2H; NH), 6.70 (d, $J = 7.1$, 2H; ArH), 7.29-7.36 (m, 4H; ArH); $^{13}\text{C NMR}$ (125 MHz, CDCl$_3$) δ 17.9 (d), 42.0 (d), 110.5 (s), 117.9 (s), 118.9 (s), 121.5 (q), 126.3 (s), 137.0 (q), 143.3 (q). Characterisation data for \textbf{B10}: $R_f = 0.20$ (2:1 hexanes / EtOAc). $^1\text{H NMR}$ (500 MHz, CDCl$_3$) δ 2.69 (t, $J = 6.5$, 2H; CH_2), 3.50 (t, $J = 6.5$, 2H; CH_2), 4.41 (br s, 2H; NH$_2$), 6.25 (br s, 1H; NH), 6.46 (dd, $J = 2.0$, 6.7, 1H; ArH), 6.66 (dd, $J = 1.2$, 7.2, 1H; ArH), 7.17-7.27 (m, 4H; ArH); $^{13}\text{C NMR}$ (125 MHz, CDCl$_3$) δ 17.7 (d), 40.8 (d), 106.5 (s), 113.8 (s), 117.3 (s), 118.5 (q), 119.6 (s), 120.8 (s), 126.2 (s), 137.0 (q), 143.3 (q), 144.5 (q).
B.3 Schmittel and Ammon Synthesis

B.3.1 Introduction

Schmittel and Ammon, during their investigation into the synthesis of precursors to macrocyclic oligophenanthrolines, achieved the efficient synthesis of 3,8-dialkyl/diarylated 4,7-dihalo phenanthrolines. The generalised reaction scheme is shown below.

![Scheme B.4: Synthesis of substituted phenanthrolines](image)

In the synthesis by Staab, the cyclisation step left esters at the 2,11 positions which could only be removed by a high-temperature, low-pressure thermal decarboxylation. This route would avoid the need for such a step and give alkylated substituents at the 3,10 positions.

B.3.2 Results / Discussion

The first step was the formation of the α-formylacetic ester. In the original literature the ester which gave the highest yield had 1-butylphenyl R groups. A cheaper compromise which still gave reasonable yields had a phenyl group. B16 could be purchased; however, it was much cheaper to alkylate phenylacetic acid by reacting the caesium salt with ethyl iodide. B16 was then converted to B18.

360
Scheme B.5: Synthesis of (2)-ethyl-3-hydroxyl-2-phenylacetate, B18

The substitution of B04 with B18 gave none of the desired B19. The major by-product was the result of an internal reaction after mono-substitution. B21 formed in near-quantitative yield.

Scheme B.6: Side reaction of B04 and B18 leading to the formation of B21

The inability to avoid the formation of B21 meant the reaction scheme had to be abandoned.

B.3.3 Experimental

B.3.3.1 Ethyl-2-phenylacetate (B16)
Caesium carbonate (1.19 g, 3.68 mmol) was added to a suspension of phenylacetic acid (B22) (1.00 g, 7.35 mmol) in dry MeOH (14 mL). The homogeneous mixture was stirred at RT under N₂ for 2 h. The solvent was removed under reduced pressure and the colourless solid was dissolved in dry DMF (14 mL) and treated with ethyl iodide (0.700 mL, 1.37 g, 8.82 mmol). The resulting colourless suspension was stirred at RT overnight. The reaction mixture was diluted with EtOAc (200 mL), washed with water (3x 100 mL), dried over MgSO₄, filtered and concentrated to give the product B16 as a yellow oil (92 %).

Rᶠ = 0.36 (5:1 hexanes / EtOAc). The product matched the literature characterisation data.¹⁰³¹H NMR (500 MHz, CDCl₃) δ 1.24 (t, J = 7.1, 3H; CH₃), 3.60 (s, 2H; CH₂), 4.15 (q, J = 7.1, 2H; CH₂), 7.23 – 7.33 (m, 5H; ArH); ¹³C NMR (125 MHz, CDCl₃) δ 14.1 (t), 41.3 (d), 60.7, (d), 126.9 (s), 128.4 (s), 129.1 (s), 134.1 (q), 171.5 (q).

B.3.3.2 Ethyl-3-hydroxy-2-phenylacetate (B18)

![Chemical Reaction Diagram]

Sodium hydride as 60 % oil dispersion (0.228 g, 5.71 mmol) was added to a solution of ethyl-2-phenylacetate (B16) (0.468 g, 2.85 mmol) in dry DMF (6 mL) and was stirred for 30 min under N₂, allowing the H₂ to escape. Ethylformate (0.253 g, 3.42 mmol) was added and the reaction was left to stir overnight for 24 h. 5 % HCl (50 mL) was added and the aqueous layer was extracted with diethyl ether (2x 100 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated. The crude product was purified by silica gel column chromatography eluting with 6:1 hexanes / EtOAc to give B18 in 25 % yield.

Rᶠ = 0.60 (2:1 hexanes / EtOAc). The product matched the literature characterisation data.¹⁰²¹H NMR (500 MHz, CDCl₃) δ 1.33 (t, J = 7.1, 3H; CH₃), 4.34 (q, J = 7.1, 2H; CH₂), 7.31 – 7.40 (m, 6H; ArH), 12.19 (d, J = 13.1, 1H; OH); ¹³C NMR (125 MHz, CDCl₃) δ 14.1 (t), 60.9,(d), 108.1 (q), 126.9 (s), 128.1 (s), 129.3 (s), 134.1 (q), 163.3 (s), 171.5 (q).
B.3.3.3 1H-Perimidine (B21)

The reaction between B04 and B18 invariably lead to B21,\(^{204}\) refluxing in CH\(_2\)Cl\(_2\) for 2 h promoted quantitative formation of B21. \(^1\)H NMR (500 MHz, MeOH) \(\delta\) 6.77 (d, \(J = 7.4\), 2H; 4,5-H), 7.33 (t, \(J = 7.8\), 2H; 3,6-H), 7.41 (d, \(J = 8.4\), 2H; 2,7-H), 8.24 (s, 1H; CH) \(^{13}\)C NMR (125 MHz, MeOH) \(\delta\) 94.3 (s), 102.6 (s), 108.2 (s), 123.1 (q), 128.3 (s), 131.7 (q), 150.0 (s). MS for C\(_{11}\)H\(_8\)N\(_2\) (MH\(^+\)) 169.17.
B.4 Molock and Boykin Synthesis

B.4.1 Introduction

Molock and Boykin reacted B12 with B23 to give B25.

![Scheme B.7: Synthesis of diethyl 4,7-dichloro-1,10-phenanthroline-3,8-dicarboxylate, B25]

This reaction was attempted with B04 in place of B12 to give the corresponding quino[7,8-h]quinoline.

B.4.2 Results / Discussion

The first step of this synthesis was the substitution of B04 with B26 to give B27.

![Scheme B.8: Synthesis of tetraethyl 2,2'-((naphthalene-1,8-diylbis(azanediyl))bis(methan-1-yl)-1-ylidene)dimalonate, B27]

The reaction proceeded as indicated; however, only trace quantities of B27 formed (1 %). The major by-product was B21, as seen in section B.3 above, over a wide range of reaction times and temperatures. Thermal cyclisation of the small amount of product isolated from the first step did not lead to a precipitate of B28.
The very low yield of the first reaction step and the inability to obtain any product in the second step meant that this reaction scheme had to be abandoned.

B.4.3 Experimental

B.4.3.1 Tetraethyl 2,2’-(naphthalene-1,8-diylbis(azanediyl))bis(methan-1-yl-1-ylidene)dimalonate (B27)

1,8-Diaminonaphthalene (B04) (0.200 g, 1.26 mmol) and diethyl ethoxymethyleneemalonic ester (B26) (0.547 g, 0.506 mL, 2.53 mmol) were heated together at reflux (100°C) for 2 hours. The reaction was diluted with CH₂Cl₂, filtered, concentrated and then purified by column chromatography (1:2 EtOAc / hexanes). The fraction containing the product was crystallized in a small amount of hexane in the fridge overnight. This gave 5 mg (0.8 %) of B27 as a colourless crystalline solid. Rᵣ = 0.28 (2:1 hexanes / EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 1.30-1.37 (m, 12H, CH₃), 4.17-4.28 (m, 8H, CH₂), 2.29 (d, J = 7.7 Hz, 2H, ArH), 7.51 (t, J = 7.7 Hz, 2H, ArH), 7.74 (d, J = 8.3 Hz, 2H, ArH), 8.47 (d, J = 12.5 Hz, 2H, NHCH), 11.47 (d, J = 13.1 Hz, 2H, NH); ¹³C NMR (125 MHz, CDCl₃) δ [14.2, 14.4] (CH₃), [59.9, 60.3] (CH₂), 95.5 (C=CH), [119.9, 120.0, 126.6, 126.9, 135.9, 136.1] (ArC), 153.5 (C=CH), [165.6, 168.9] (COCH₂CH₃).
B.5 Montalban et al. Synthesis

B.5.1 Introduction

This was a similar reaction as in B.3 and B.4 above where a substitution of B12 with an oxyethene derivative (in this case B29) and subsequent thermal cyclisation and dehydration lead to B31.

![Scheme B.10: Synthesis of 4,7-dichloro-1,10-phenanthroline, B31]

This reaction was attempted with B04 in place of B12 to give the corresponding quino[7,8-\(h\)]quinoline.

B.5.2 Results / Discussion

Similarly to 7.3 and 7.4, the major by-product of the first step was B21, regardless of the reaction time or temperature.
B.6 Summary

The difficulty in synthesising quino[7,8-\textit{h}]quinoline compared to other heterocycles (such as phenanthroline) can be rationalised by the unique separation of the nitrogens which promote the formation of the internal nitrogen-bridged species B21. The Staab synthesis is the only confirmed route to quino[7,8-\textit{h}]quinoline as the ester substituents are crucial for hindering the formation of B21. The first step of the Staab synthesis gives B32, before the second amine is substituted. Likewise, the generalised B33 would be formed in sections B.3, B.4 and B.5.

\begin{center}
\includegraphics[width=0.5\textwidth]{initial_substituted_products.png}
\end{center}

\textit{Figure B.4: Initial mono-substituted products}

Unlike B32, the lack of steric hindrance in B33 leads to a favourable side-reaction giving B21.

\begin{center}
\includegraphics[width=0.5\textwidth]{side_reaction.png}
\end{center}

\textit{Scheme B.11: Proposed side reaction leading to B21}

In the Staab synthesis, one of the minor by-products was a bridged species with a methyl ester in place of the hydrogen on B21; however, the major product is the desired B34.
The resistance of **B34** to **B21** is more likely due to steric reasons than electronic effects. The electron-withdrawing effect of the methyl esters would increase the electrophilicity of \(\alpha \) carbon making it more susceptible to attack from the adjacent nitrogen. Instead it is likely that the methyl esters force the orientation of the \(\alpha \) carbon away from the adjacent nitrogen so an internal reaction cannot occur. In contrast, with only a proton on the \(\alpha \) carbon there is no steric hindrance to prevent formation of **B21**. To date, the only confirmed route to quino[7,8-\(h \)]quinoline is via the Staab synthesis.
References

376

