Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Quantitative genetics in apple (Malus x domestica (Borkh.)) breeding:

Fruit shape traits, genetic parameter estimation and breeding strategy development

A thesis presented in partial fulfilment of the requirements for the degree of
Doctor of Philosophy in Animal Science (Breeding and Genetics)
at
Massey University
Palmerston North
New Zealand

Alastair John Currie
2000
Abstract

The aim of this thesis was to investigate some aspects of breeding for quantitative traits in apple. First, this study explored the measurement and inheritance of a complex quantitative trait (fruit shape). Fourier analysis was used to mathematically describe apple fruit shape in an objective manner and principal component analysis grouped the Fourier descriptors into meaningful shape traits. Heritabilities were estimated to determine genetically inherited shape traits, and genotype by environment interactions were estimated to determine the stability of the trait expression across environments. Fruit aspect ratio accounted for over 76% of the phenotypic variation in shape, fruit conicity for 6% and fruit squareness for only 2%. These traits had moderate to high narrow-sense heritabilities (0.79, 0.38 and 0.38 respectively), which indicated that individual selection would be efficient. High between-site genetic correlation ($r_A > 0.8$), indicated low genotype-by-environment interaction and suggests breeding based at one site would be efficient for altering shape at other sites. A shape chart was constructed to enable these three apple shape traits to be evaluated quickly and accurately in the field, avoiding the need for image capture and Fourier analysis.

Second, heritabilities and genetic correlations were estimated for a range of apple traits from a genetically broad-based apple breeding population of 71 families. Narrow-sense heritability was estimated at each of two sites and across sites for fruit acidity (0.17-0.22), fruit sugars (0.25-0.26), and tree growth habit (0.19-0.41). Higher heritabilities were estimated for fruit squareness (0.32-0.43), fruit conicity (0.32-0.46), powdery mildew incidence (0.40), vigour (0.28-0.62), fruit firmness (0.44-0.53), harvest time (0.66-0.82), leafing (0.60-0.83), fruit aspect ratio (0.74-0.89), flowering (0.92) and fruit size (0.90-1.01). Traits with a high narrow-sense heritability could be selected for efficiently with individual selection. High genetic correlation between sites ($r_A \geq 0.64$) indicated low genotype by environment interaction and that breeding based at one site would be efficient for improving these traits at other sites. High positive genetic correlations between traits at site 1 were estimated for leafing with flowering (0.95), harvest time with fruit firmness (0.92), leafing with harvest time (0.69), and fruit acidity with fruit firmness (0.61). High negative genetic correlations were reported for vigour with fruit squareness (-0.82) and tree growth habit with leafing (-0.53). Rapid gains can
be made with positively correlated traits, but high negatively correlated traits will make simultaneous gain in both traits difficult. Caution must be applied when interpreting genetic correlations between traits due to high standard errors and the possible influence of environmental interaction between traits (dependence) and linkage disequilibrium.

Third, the traditional apple breeding strategy (mass selection) was compared to an option based on recurrent selection for general combining ability (RS-GCA). The excessively long generation interval of the traditional breeding strategy meant negligible gains were made. However, the traditional breeding strategy generated greater gains per generation than the RS-GCA strategy but at a greater cost in terms of eroding genetic diversity, thereby reducing the potential for long-term gain. The slower rate of gain in the RS-GCA was due to the slower rate of gain in the breeding population. However, the RS-GCA strategy made greater gains in the cultivars relative to the breeding population despite similar selection intensities due to better utilisation of the between-family genetic variance as well as the within-family genetic variance.

Breeding strategies based on quantitative genetics have been applied with success to animal, crop and forest tree breeding, but only recently in apple breeding. It is clear that future breeding programmes would benefit from the application of quantitative genetic theory.
Acknowledgements

This thesis could not have been made possible without the patience, assistance and encouragement from a wide range of people.

I am grateful to Prof. Dorian Garrick (Massey University), my chief supervisor, for taking on yet another student in his heavy workload. I have appreciated his encouragement and guidance through the theory of breeding, and his clear, concise criticism for each project.

I am greatly indebted to Dr. Dominique Noiton (HortResearch) who was first my boss, then my supervisor, writing tutor and always a friend. Dominique developed the quantitative genetics programme and set up the scholarship to enable me to pursue full-time study. Throughout the last few years she has been a constant source of encouragement, guidance and motivation. I also appreciate the more recent efforts of Dr. Nnadozie Oraguzie (HortResearch), who supplied valuable advice on the writing and structure of the thesis as well as offering helpful suggestions for each chapter.

I am thankful for Dr. Tony Shelbourne’s (Forest Research) invaluable input into every aspect of this thesis. He introduced me to the forest tree breeding theory that this thesis is founded on. I have also benefited from the input of other breeders at Forest Research (Dr. Mike Carson, Dr. Rowland Burdon, Dr. Luis Gea, Dr. Paul Jefferson, Simon Weaver, Dr. Keith Jayawickrama and Dr. Sue Carson). Their input has been educational, motivating and greatly appreciated.

This thesis would not have been possible without access to financial support, facilities and the apple breeding programme offered by The Horticultural and Food Research Institute (HortResearch), New Zealand. In particular I thank Dr Paul Glucina, Dr. Dominique Noiton and Dr. Nnadozie Oraguzie (management) and Madelein Hofstee and Janice Fraser (technical assistance).

Free access to Arthur Gilmour’s ASREML program and helpful suggestions were appreciated for the estimation of genetic parameters. The maps were generated with the
map-making program available on the Charles Sturt University web site http://life.csu.edu.au/cgi-bin/gis/Map.

Throughout my time at Massey I have been lucky to have good friends and colleagues that have provided questions, answers, feedback and diversion! Thank you especially to Satish Kumar, Luis Apiolaza, Lisa Watson, Nicolás Villalobos and the rest of the postgraduates in room 2.02.

Although a PhD student has little spare time, I thank members of St Albans Presbyterian Church for stretching my horizons beyond the here and now. They have provided balance in my life and helped me to focus on what is really important.

Lastly I would like to give a special acknowledgement to my family, especially my wife, Deborah, for love and support throughout.

Two are better than one, because they have a good return for their work:

If one falls down, his friend can help him up.

But pity the man who falls and has no one to help him up!

Ecc 4: 9-10
Contents

ABSTRACT ... I
ACKNOWLEDGEMENTS .. III
CONTENTS .. V
LIST OF TABLES AND FIGURES ... VI

CHAPTER 1: INTRODUCTION

SUMMARY OF CHAPTERS ... 2
CHAPTER 2. REVIEW OF LITERATURE: APPLE BREEDING STRATEGY AND OBJECTIVES 2
CHAPTER 3. APPLE SHAPE TRAITS .. 3
CHAPTER 4. ESTIMATING GENETIC PARAMETERS ... 4
CHAPTER 5. APPLE BREEDING STRATEGY ... 5
REFERENCES .. 6

CHAPTER 2: LITERATURE REVIEW OF APPLE BREEDING

INTRODUCTION .. 8

GENETIC ORIGIN OF THE APPLE

- TAXONOMY OF APPLE .. 8
- SPECIES WITHIN THE MALUS GENUS ... 9

GEOGRAPHIC DISTRIBUTION OF M. ×DOMESTICA .. 11

BREEDING STRATEGIES FOR APPLE

- INITIAL BREEDING STRATEGIES ... 12
- CONTROLLED POLLINATION .. 14
- CURRENT BREEDING STRATEGIES .. 14
 - Recurrent mass selection ... 15
 - Recurrent selection for GCA (RS-GCA) .. 15
 - Inbreeding .. 17
 - Modified backcross .. 18
 - Marker assisted selection .. 19
 - Gene transformation .. 21
 - Mutation breeding .. 21

BREEDING OBJECTIVES AND SELECTION CRITERIA FOR APPLE

- WHAT ARE BREEDING OBJECTIVES AND SELECTION CRITERIA? .. 23
- MULTIPLE TRAIT SELECTION IN APPLE IMPROVEMENT ... 23
- DEVELOPMENT OF BREEDING OBJECTIVES AND SELECTION CRITERIA IN APPLE 24
- CURRENT DESSERT APPLE BREEDING OBJECTIVES .. 25
 - Fruit quality .. 25
 - Production costs ... 30
 - Productivity .. 34
- SELECTION INDEX .. 37

SUMMARY .. 38
List of figures and tables

Chapter 2: Literature of apple breeding

Figure 1. Diagram of the possible evolution of the Rosaceae subfamilies based on morphological, cytological and chemical data (Challice, 1974)50
Figure 2. World map of the origins of apple species ..51
Figure 3. World map of the origins of apple species involved in the ancestry of the domestic apple ...52
Figure 4. Map of the distribution and domestication of apple (M. X domestica)53

Table 1. Origin and botanical description of apple species involved in the domestication of apple ..54

Chapter 3: Quantitative evaluation of apple (Malus x domestica Borkh.) fruit shape by principal component analysis of Fourier descriptors

Table 1. Proportion of the total phenotypic variance accounted for by the first 6 PCs. 71
Table 2. Visualisation of the first six PC shape traits (minimum to maximum value). Apple shapes are drawn with the stem end at the top and the calyx at the bottom. 72
Table 3. Heritability estimates (and standard errors) for PC apple shape traits at the Havelock North and Nelson sites ..73
Table 4. Genetic correlation (r) between sites and standard error for apple shape traits ..74
Table 5. Regression coefficients between apple PC shape traits and calliper measurements ..75
Table 6. Apple shape chart based on aspect, conicity and squareness PC traits. Apple shapes are drawn with the stem end at the top and the calyx at the bottom.76

Figure 1. Apple cross-section showing the calliper measurements. B = stem, G = calyx, BG = stem-calyx axis, CH = length (L), DE = width (W), EI = maximum width distance (MWD), AC = stem cavity width, FH = calyx basin width79

Chapter 4: Estimates of heritability and genetic correlation for apple (Malus x domestica Borkh.) traits

Table 1. Name and description for each apple trait ...99
Table 2. Basic statistics for apple traits at Havelock North (site 1), Nelson (site 2) and combined sites of the breeding population ..100
Table 3. Univariate narrow-sense heritability (standard error in brackets) for apple traits estimated separately for Havelock North and Nelson, and across both sites.101
Table 4. Bivariate genetic correlations between sites for each apple trait as an indication of GxE

Table 5. Bivariate genetic correlations (max S.E. 0.20) in lower triangle and phenotypic correlations above the diagonal between apple traits on individual trees with combined sites data

Chapter 5: Comparison of two breeding strategies in apple (Malus Xdomestica (Borkh.))

Figure 1. Task flow chart for a typical traditional apple breeding strategy (numbers indicated for a simulation of a fixed resource of 30,750 trees indicated)

Figure 2. Task flow chart of recurrent selection for general combining ability (RS-GCA) strategy based on a fixed resource of approximately 30,750 trees per generation.

Table 1. 3x3 disconnected factorial mating design for the RS-GCA breeding population. The parents of the first cross in each of the 25 sets (P^1 to P^25) were positively assortative mated, the remaining parents were randomly mated (R).

Table 2. RS-GCA cultivar production population mating design. Two 6x6 disconnected factorials

Figure 3. Genetic gain for a trait with initial values for $h^2 = 0.2$, $\mu = 10$, and $\sigma_p^2 = 1.0$ for both the traditional apple breeding strategy and the RS-GCA breeding strategy.

Figure 4. Genetic gain for a trait with initial values for $h^2 = 0.6$, $\mu = 10$, and $\sigma_p^2 = 1.0$ for both the traditional apple breeding strategy and the RS-GCA breeding strategy.