Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Maintaining Design Aesthetics

Case studies investigating grading for body shape variation; the translation of garment designs to fit fuller figured women

An essay presented in partial fulfilment of the requirements for the degree of
Master of Design
Massey University, Wellington
New Zealand
Michelle Freeth
2011
Fit problems continue to plague the women’s fashion design industry. Complete garment fit for women whose bodies are not the standard size or shape can be difficult to find or non-existent. Yet, fit is an essential design feature. In this design-led research project, I have used techniques of grading to translate design details into other sizes, while maintaining the design aesthetic. This mode and process of grading and fitting complex designs to a variety of body shapes is sensitive to line, shape and form and ultimately reveals the potential to cater to a wider garment-wearing audience.

Selecting various fuller figured women’s body shapes to use for parallel case studies allowed techniques for analysis of shape and its effect on pattern to be developed, and shape-based-grading rules created. A collection of draped dresses developed in the base size acts as a challenging test for this shape-based-grading model. During shape-based-grading, pattern pieces are morphed to reflect the underlying body shape of the fit models in the case studies. Using Gerber Accumark pattern design software facilitates the incorporation of body shape into grading practice and the translation between the 2D and 3D realms. Shape-based-grading is used to develop patterns that fit fuller figured women and yet maintain the design aesthetic.

The process of shape-based-grading has been successfully implemented when applied to non-complex designs of fitted straight grained dresses. When applied to an intricate draped dress, shape based grading was successful in achieving fit, however, the design aesthetic was partially compromised by complications related to fabric behaviour. Fabric behaviour was incorporated into the grading for the draped dress, and patterns fully maintaining the design aesthetic are presented for each fit model in the case studies.
Acknowledgements

I would like to thank Massey University, Julieanna Preston, and Deb Cumming for accepting me as a candidate into the graduate program.

I would like to express my deep gratitude to my supervisors Deb Cumming, Holly McQuillan, and Lilian Muisaers for their assistance, guidance, support and time at every stage of this project and to Julieanna Preston for her guidance, encouragement and support especially during times of stress. Thanks also to my colleagues in the masters program for inspiring conversations and mutual support.

A big thanks to my partner, parents, sister and the rest of my family, and friends for their love, endless support, patience, help and encouragement throughout this challenging period. I cannot thank them enough, and will be forever grateful.

And lastly, and perhaps most importantly, my thanks go to the four women who participated in this project as my fit models; while I can’t name you, you know who you are. Thank you so much for your time, patience, and support throughout this year. Without you I could not have completed this project.
This project is a series of parallel case studies requiring the participation of human subjects to act as fit models during the design and fitting process. The ethical requirements set out in the Massey University ethics application, information sheet, and consent form has been followed. Following approval for my application to use four human fit models, I have removed any identifying markers on the fit models. For this purpose, I developed a stand-in face that would allow the reading of the garments and images to be consistent and unimpeded by the disguising of the face. This face is a merging of several different faces. This was only possible for front view images. For the side images the face has been disguised by blurring the image of the face.
<table>
<thead>
<tr>
<th>Terms and Abbreviations</th>
</tr>
</thead>
</table>

Anthropometry

The scientific study of the measurements and proportions of the human body (Oxford University, 2010).

Axes (x/y)

The straight lines on a graph that are used as reference for the measurement of an object. The x axis is horizontal and the y axis is vertical. These x and y axes are at right angles to one another (Moore, et al., 2001).

Base Size

The starting reference for grading. Master patterns are developed and traced for the sample size and then graded to other sizes within the given size range (Moore, et al., 2001).

Balance lines

A general description, as the word suggests, for a lack of distortion (Taylor & Shoben, 1990).

Block

A template of the basic pattern/shape upon which design details can be superimposed (Cooklin, 1990). Blocks are used for flat pattern design and consist of the minimum number of pattern pieces for a basic fitted garment. They are free of fashion details. They do not have seam allowances and all darts extend to their respective pivot points. Known in America as slopers (Moore, et al., 2001).

Digitizing

The process of entering the pattern piece, along with its identifying information, into the computer. The information is translated into the format required by the specific computer so that shape and size of each pattern piece can be worked with and manipulate (Moore, et al., 2001).

Drape

A patternmaking system that relies on fabric in creating design (Joseph-Armstrong, 2008).

Ease

The amount of ease in a garment necessary to allow the wearer to move freely (Moore, et al., 2001).

Fit model

An individual whose body measurements reflect those of the sample size for the target market for which a manufacturer produces. The fit of garments is tested and perfected on the fit model (Moore, et al., 2001).
Girth
Circumference body measurement (Moore, et al., 2001).

Grading
The process of systematically increasing and decreasing the dimensions of a master pattern into a range of pattern sizes for a specific design (Moore, Muller, & Prevatt Young, 2001).

Grade rules
The written record of the designated movement required to grade a pattern for a range of sizes. Each grade point on a pattern piece requires a grade rule (Moore, et al., 2001).

Hand/Handle
How the fabric feels to the touch, its weight and responsive movement (Joseph-Armstrong, 2008).

Lining
An additional layer of material attached to the inside of a garment (Oxford University, 2010).

Morphing
Undergo or cause to undergo a gradual process of transformation (Oxford University, 2010).

Mannequin
A model of a human body representing a specific size (Campbell, 2005).

Nest
An illustration of a set of pattern pieces showing all sizes within a size range stacked along a common reference line. The nest illustrates the differences in each successive size (Moore, et al., 2001).

Pattern
A diagram of each of the component pieces required to construct a garment (Moore, et al., 2001).

Prototype
A test sample of actual materials used to test the product for fit, durability and design translation. Provides the most accurate measure of materials and production costs (Fasanella, 1998).

Shape-based-grading
A system of grading that morphs the master pattern to various underlying body shapes (Freeth, 2010).

Toile
An early version of a finished garment made up in cheap material so that the design can be tested and perfected (Oxford University, 2010).
Table of Contents

Abstract 3
Acknowledgements 5
Ethics 7
Terms and Abbreviations 9
Table of Contents 11
Introduction 17
Research Aims and Questions 21
Context Review 23
Sizing System 23
Sizing Used in this Research 25
Fit 26
Fit Definitions for this Research 28
Shape 29
Grading, Fit and Design 31
Grading Used in this Research 34
Technological and Commercial Advances 35
Technology Available for this Research 37
Methods and Processes 39
Fit Models
Shape Variation
Draped Collection: Design Development
Creation of Tunic Blocks
Shape Based Grading

Results
Shape and the Fit Models
Tunic Blocks
Ease, Shape and the Fit Relationship
Shape Based Grading
Design Linings
Draped Designs
Fabric Behaviour in Relation to Shape Based Grading

Conclusion
References
Appendix

Method and Processes
Collection Design Development
Tunic Block Development
Shape Based Grading Development
Results
Designs
Draped Designs
Fabric Behaviour
Prototypes
Colour Ways
Materials Analysis
Originality Declaration