The Algebraic Structure of B-Series

A thesis presented in total fulfillment of the requirements for the degree of

Master of Science

in

Mathematics

at Massey University, Palmerston North

New Zealand

James Benn

2010
Abstract

Runge-Kutta methods are some of the most widely used numerical integrators for approximating the solution of an ordinary differential equation (ODE). These methods form a subset of a larger class of numerical integrators called B-series methods. B-Series methods are expressed in terms of rooted trees, a type of combinatorial graph, which are related to the vector field of the ODE that is to be solved. Therefore, the conditions for B-series methods to preserve important properties of the solution of an ODE, such as symplecticity and energy-preservation, may be expressed in terms of rooted trees. Certain linear combinations of rooted trees give conditions for a B-series to be Energy-preserving while other linear combinations give conditions for a B-series to be Hamiltonian. B-series methods may be conjugate (by another B-series) to an Energy-preserving or an Hamiltonian B-series. Such B-series methods are called conjugate-to-Energy preserving and conjugate-to-Hamiltonian, respectively. The conditions for a B-series to be conjugate-to-Energy preserving or conjugate-to-Hamiltonian may also be expressed in terms of rooted trees.

The rooted trees form a vector space over the Real numbers. This thesis explores the algebraic structure of this vector space and its natural energy-preserving, Hamiltonian, conjugate-to-Energy preserving and conjugate-to-Hamiltonian subspaces and dual subspaces.

The first part of this thesis reviews important concepts of numerical integrators and introduces the general Runge-Kutta methods. B-series methods, along with rooted trees, are then introduced in the context of Runge-Kutta methods. The theory of rooted trees is developed and the conditions for a B-series to be Hamiltonian or have first integral are given and discussed. In the final chapter we interpret the conditions in the context of vector spaces and explore the algebraic structure of, and the relationships between, the natural vector subspaces and dual spaces.
“Do you like Phil Collins? I’ve been a big Genesis fan ever since the release of their 1980 album, Duke. Before that, I really didn’t understand any of their work. Too artsy, too intellectual. It was on Duke where, uh, Phil Collins’ presence became more apparent. I think Invisible Touch was the group’s undisputed masterpiece. It’s an epic meditation on intangibility. At the same time, it deepens and enriches the meaning of the preceding three albums. Christy, take off your robe.”

-Brett Easton Ellis

“Wu-Tang Clan ain’t nuttin to f’ wit”

-The RZA

“Possibilities of sweetness on technicolor beaches had been trickling through my spine for some time...”

-Vladimir Nabokov

“I have to return some videotapes.”

-Brett Easton Ellis
Acknowledgments

Ladies and Gentlemen of the jury, if you've made it this far then you're doing well. First and foremost I would like to thank my parents, Ken and Cheryl, for their support over the past six months. Thanks for the dinners, the room and the heat pump. I couldn’t have done it without the heat pump.

I would also like to thank my distinguished supervisor, Prof. Robert McLaehlan (aka Rob Dogg, Rob G, the DE Hunter), for his bottomless well of ideas and knowledge. Thank you for the opportunity to attend COCO2010 and pushing me to present work. Thanks for your confidence and encouragement over the past two years and making it an enjoyable experience.

To Matt Perlmutter and Stephen Marsland, thank you for your support and encouragement. It hasn't gone unnoticed.

Thank you to Elena Celledoni, Hans Munthe-Kaas, Brynjulf Owren, Reinout Quispel and Will Wright for their insight, input and assistance while at COCO2010. Big thanks.

A big thank you to Laïla, Dave, Caitlin, Jake (aka MC Sleepy Conrad), Jeremy (aka DJ Tender Loins), Ross (aka Fudgey C), Brad and Isabel. Thank you for always reminding me that I am a nerd and will never be accepted by mainstream society.

A very honorable mention goes out to the RZA, the GZA, the Ol Dirty BZA, U-God, Chef, the Ghostface Killah and Meth, Rebel I soldier for the foreclosure don’t forget about the Masta, yo.
Contents

1 Introduction ... 1
 1.1 Outline of Thesis 3

2 Basic Numerical Methods 4
 2.1 The Lipschitz Condition 4
 2.2 The Explicit Euler Method 5
 2.3 The Implicit Euler Method 10
 2.4 The Implicit Mid-Point Rule 12
 2.5 The Symplectic Euler Method 13
 2.6 Numerical Experiments 14
 2.6.1 The Lotka-Volterra Model 14
 2.6.2 The Pendulum 17
 2.7 Symplectic Transformations and Symplectic Integrators 19

3 Runge-Kutta Methods 22
 3.1 Gaussian Quadrature 22
 3.2 Explicit Runge-Kutta Schemes 23
 3.3 Implicit Runge-Kutta Schemes 27

4 Butcher’s Order Conditions for Runge-Kutta Methods 29
 4.1 Runge-Kutta Order Conditions 29
 4.1.1 Derivation of the Order Conditions 29
 4.2 B-Series .. 38
 4.2.1 Order Conditions 40
 4.3 Composition Methods 42
 4.4 Composition of B-Series 44

5 Backward Error Analysis 46
 5.1 The Modified Differential Equation 46
5.2 The Modified Equation and Trees .. 47
5.3 B-Series of the Modified Equation .. 48
5.4 Elementary Hamiltonians .. 51
5.5 First Integrals Close to the Hamiltonian .. 55

6 The Algebraic Structure of B-Series ... 59
6.1 Energy-Preserving and Hamiltonian B-Series 59
6.2 Conjugate-to-Energy Preserving and Conjugate-to-Hamiltonian B-Series .. 67
6.3 The Annihilator of \mathcal{T}_H .. 76
6.4 Relationships Between the Sub-spaces ... 80

7 Conclusions .. 87
List of Figures

2.1 Approximate solution curves to $\frac{dx}{dt} = 2t(1+x^2)$ using Euler’s Method with step sizes of $h = 0.1$, $h = 0.05$, $h = 0.01$. .. 6
2.2 Level curves of the Lotka-Volterra Equation. .. 15
2.3 Solutions of the Lotka-Volterra equations with step size $h=0.12$; initial conditions $(.,.)$ for the Euler method, (1,1) for the backward Euler method, (2,1) for the implicit midpoint rule and $(.,)$ for the symplectic Euler method. .. 16
2.4 Level Curves of the Pendulum .. 18
2.5 Solutions of the Pendulum equations; step sizes $h=0.2$. .. 19
2.6 Energy Conservation of the numerical methods applied to the Pendulum system. .. 20
3.1 Geometric depiction of the Runge-Kutta method; $h=1$. .. 24
4.1 Construction of the rooted tree corresponding to $f''(f'f, f)$. .. 32
4.2 Rooted tree obtained recursively from τ_1, \ldots, τ_m. .. 32
4.3 Combinations of Bullets and Circles with non-zero products. .. 43
4.4 A tree with a sub-tree θ composed of “circle” nodes and sub-trees δ left over. .. 44
4.5 A tree with Symmetry .. 44
5.1 Splitting of an ordered tree ω into a sub-tree θ and $\{\delta\} = \omega \setminus \theta$.. 48
5.2 Splittings of an ordered tree with 5 vertices (example taken from [10]) .. 50
5.3 The superfluous (left) and non-superfluous (right) free trees of order 4 .. 53
6.1 Venn diagram of the Energy-preserving and Hamiltonian subspaces .. 67
6.2 Relationship between the 5 natural subspaces of B-series. The dot represents the exact flow of the differential equation and is an element of every subspace. .. 77
List of Tables

3.1 RK Tableau’s displaying some popular coefficient choices for a 2-stage Runge-Kutta method .. 26

3.2 Left: The classical Runge-Kutta method, Centre Left: The Nystrom Method, Centre Right: Implicit Midpoint Rule 27

4.1 Trees, Elementary Differentials and Coefficients .. 38

6.1 Dimensions of the Linear spaces spanned by the rooted trees and their 5 natural subspaces .. 76