Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A STUDY OF CITRIC ACID PRODUCTION BY
SUBMERGED AEROBIC FERMENTATION
USING THE FUNGUS
Aspergillus niger

A thesis presented in partial
fulfilment of the requirements for the degree
of Doctor of Philosophy
in Biotechnology at Massey University

MARK WILLIAM DAWSON
1986
Massey University Library. Thesis Copyright Form

Title of thesis: A STUDY OF CITRIC ACID PRODUCTION BY SUBMERGED AEROBIC FERMENTATION USING THE FUNGUS ASPERGILLUS NIGER

(1) (a) I give permission for my thesis to be made available to readers in the Massey University Library under conditions determined by the Librarian.

(b) I do not wish my thesis to be made available to readers without my written consent for ___ months.

(2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for ___ months.

(3) (a) I agree that my thesis may be copied for Library use.

(b) I do not wish my thesis to be copied for Library use for ___ months.

Signed

MARK WILLIAM DAWSON

Date 24/3/86

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

DATE

MASSEY UNIVERSITY LIBRARY
The aim of this work was to obtain detailed information on the production of citric acid during submerged fermentation by Aspergillus niger, in an attempt to understand and optimize the process. Initial experiments were performed to determine the effect of interruptions to aeration on citric acid production. Unless the value of the Dissolved Oxygen Tension (DOT) of the culture fell below the DOT_{crit} (20% of saturation), no gross effect was observed. When the DOT value fell to zero, citric acid production ceased. Production however, recovered after recommencement of aeration, albeit after a delay.

Experiments were performed in batch fermentation using various non-carbohydrate medium components as the growth-limiting nutrient. Nitrogen-, phosphate- or sulphate-limited cultures resulted in strong citric acid production. The most significant observation during these fermentations was that the maximum citric acid production rate occurred prior to the exhaustion of the limiting nutrient, i.e. when the organism was at a positive growth rate.

Chemostat experiments were performed in order to determine the effect of the growth rate and the culture DOT on citric acid production. Maximum citric acid production rates and yields were achieved at low growth rate (\(u = 0.017 \) h\(^{-1} \)) and high DOT (90% of saturation) values. The specific citric acid production rate was twice the maximum observed in batch fermentation, and the product yield was increased.
by 23%.

The information regarding growth rate and DOT gained from the chemostat experiments was applied to a continuous fed-batch fermentation using nitrogen as the growth-limiting nutrient. The overall fermenter productivity attained was double that of the batch fermentation, resulting in a halving of the fermentation period. This is the first reported use of the continuous fed-batch technique for citric acid production.

In all three fermentation modes (batch, chemostat and fed-batch), nitrogen limitation was superior to phosphate limitation in terms of citric acid production rates and yields. A double nitrogen/phosphate limitation gave results almost identical to a nitrogen limitation. The evidence suggests that the nitrogen nutrient exerts a form of catabolite repression on citric acid accumulation.
ACKNOWLEDGEMENTS

The author wishes to acknowledge the following people:

Drs I.S. Maddox, J.D. Brooks and R.C. Lawrence for guidance and supervision. Their availability and willingness to discuss problems when they arose, was greatly appreciated.

Professor R.L. Earle, Head of the Department of Biotechnology for his encouragement throughout the project.

Mr I.K. Gray and his staff of the New Zealand Dairy Research Institute for trace element analysis.

Dr R.D. Reeves of the Department of Chemistry, Massey University, for sulphate analysis.

Mr J. Alger and Mr B. Collins of the Department of Biotechnology for their assistance with the many technical problems which arose with the equipment.

Dr I.F. Boag of the Department of Production Technology for his assistance with computer analysis of data and developing the program for the construction of 3-D response surfaces.

Mr M. Stevens, Mr M. Lubbers, Miss A. Moran and Mrs A. McCutcheon of the Department of Biotechnology for their excellent laboratory support.

The New Zealand Dairy Research Institute, Palmerston North for financial support of myself and this project.
My parents, for their constant support and encouragement throughout this project.

My wife Deborah, for typing, proof-reading and advising on layout of the thesis, and for her patience, love and encouragement.
TABLE OF CONTENTS

Abstract i
Acknowledgements iii
Table of Contents v
List of Figures xi
List of Tables xvii
Abbreviations xx

CHAPTER 1 Introduction 1

CHAPTER 2 Production of citric acid by fermentation 3
2.1 Introduction 3
2.2 History 7
2.3 Citric acid-accumulating organisms 8
2.4 Industrial processes 9
2.5 Biochemistry of citric acid accumulation by A. niger 12
2.6 Environmental factors affecting citric acid accumulation 23
2.6.1 Form of growth 24
2.6.2 pH 26
2.6.3 Temperature 27
2.6.4 Aeration 28
2.6.5 Nutritional status of the growth medium 30
2.6.5.1 Carbohydrate 30
2.6.5.2 Nitrogen 31
2.6.5.3 Phosphate 32
2.6.5.4 Trace elements 33
2.6.6 Presence of methanol and other compounds

2.7 Relationship between growth rate and citric acid production

2.8 Continuous culture chemostat production of citric acid

2.9 Continuous fed-batch culture

CHAPTER 3 Materials and methods

3.1 Materials

- **3.1.1 Microbiological media**
- **3.1.2 Gases**
- **3.1.3 Chemicals**
- **3.1.4 Organism**

3.2 Media sterilisation

3.3 Cleaning of glassware

3.4 Analytical methods

- **3.4.1 pH measurement**
- **3.4.2 Determination of mycelial dry weight**
- **3.4.3 Analysis of sugars**
- **3.4.4 Determination of citric acid**
- **3.4.5 Determination of total nitrogen**
- **3.4.6 Determination of inorganic phosphate**
- **3.4.7 Determination of sulphate**
- **3.4.8 Determination of Mg\(^{2+}\) and trace metals**

3.5 Culture conditions

- **3.5.1 Preparation of spore suspension**
- **3.5.2 Shake-flask culture**
- **3.5.3 Batch Fermenter culture**
3.5.4 Continuous fed-batch fermentation
3.5.5 Chemostat continuous culture
3.5.6 Sterilization
3.5.7 Preparation of inoculum for fermenter experiments
3.5.8 Sampling of fermenters
3.5.9 Avoidance of wall growth in fermenter culture
3.6 Preparation of samples for HPLC analysis
3.7 Enzyme assays
3.7.1 Preparation of cell-free extract
3.7.2 Protein estimation
3.7.3 Aconitase (E.C. 4.2.1.3)
3.7.4 NAD-linked isocitrate dehydrogenase (E.C. 1.1.1.41)
3.7.5 NADP-linked isocitrate dehydrogenase (E.C. 1.1.1.42)
3.7.6 2-oxoglutarate dehydrogenase (E.C. 1.2.4.2)
3.7.7 Pyruvate carboxylase (E.C. 6.4.1.1)
3.7.8 Isocitrate lyase (E.C. 4.1.3.1)
3.8 Calculations
3.8.1 Statistical analyses
3.8.2 Carbon balance
3.8.3 Gas balance
3.9 Discussion of methods
3.9.1 Organism
3.9.2 Chemostat continuous culture
CHAPTER 4 The effect of interruptions to the air supply during citric acid production
4.1 Introduction
4.2 Results
 4.2.1 Shake-flask culture
 4.2.2 Combination of fermenter and shake-flask culture
 4.2.3 Fermenter culture
4.3 Discussion
4.4 Conclusions

CHAPTER 5 The effect of different nutrient limitations on citric acid production in batch culture
5.1 Introduction
5.2 Limitation of trace metals
5.3 Limitation of nutrient nitrogen, phosphate, sulphate and magnesium at low levels of biomass
 5.3.1 Time course of fermentations
 5.3.2 Rates of growth, Product formation and nutrient uptake
 5.3.3 Analysis of selected enzymes
 5.3.4 Discussion
5.4 Limitation of nutrient nitrogen, phosphate and double nitrogen/phosphate at high levels of biomass
 5.4.1 Time course of fermentations
5.4.2 Rates of growth, product formation and nutrient uptake

5.4.3 Discussion

5.5 Conclusions

CHAPTER 6 The production of citric acid in chemostat continuous culture

6.1 Introduction

6.2 Nitrogen-limited fermentations

6.3 Phosphate-limited fermentation

6.4 Double nitrogen/phosphate-limited fermentation

6.5 Analysis of selected enzymes during nitrogen-limited fermentation

6.6 Discussion

6.7 Conclusions

CHAPTER 7 Citric acid production in continuous fed-batch culture

7.1 Introduction

7.2 Nitrogen-limited fermentation

7.3 Phosphate-limited fermentation

7.4 Double nitrogen/phosphate-limited fermentation

7.5 Discussion

7.6 Conclusions

CHAPTER 8 Final discussion and conclusions

References

APPENDIX 1 Gas mass balance

APPENDIX 2 Determination of stoichiometry
APPENDIX 3 Full regression models for nitrogen-limited chemostat cultures which exhibited a significant lack of fit 235

APPENDIX 4 Reprint of publication concerning work described in this thesis 239
LIST OF FIGURES

2.1 Flow diagram for submerged citric acid manufacture

2.2 The tricarboxylic acid cycle with glyoxyllic acid cycle and carbohydrate input

2.3 Alternative pathway for the non-phosphorylating reoxidation of reduced adenine nucleotides

3.1 A schematic diagram of the fermenter vessel, showing various facilities and probes in the vessel head

3.2 A schematic diagram of the batch fermenter and its ancillary equipment

3.3 The chemostat fermenter head

3.4 A schematic diagram of the chemostat continuous culture fermenter and its ancillary equipment

3.5 A schematic diagram of the DOT control system which used proportional-integral control of agitation speed

3.6 A schematic diagram of the chemostat continuous culture overflow control system

4.1 Effect of interruptions to aeration on citric acid production in shake-flask culture

4.2 Effect of interruptions to aeration on sugar utilisation in shake-flask culture

4.3 Effect of interruptions to aeration on biomass production in shake-flask culture
4.4 Time course profile of the control fermenter culture (no interruptions) 88
4.5 Effect of interruptions to aeration on citric acid production in fermenter culture 90
4.6 Effect of interruptions to aeration on biomass production in fermenter culture 90
4.7 Effect of interruptions to aeration on sugar utilisation in fermenter culture 91
4.8 Effect of interruptions to aeration on the DOT of the cultures in the fermenter 91
4.9 Effect of interruption to aeration in a 2.0 litre fermenter. Aeration was interrupted on day 8 by replacing the air supply with nitrogen gas for 120 min 93
5.1 Effect of metal ion limitations on biomass production in shake-flask culture 99
5.2 Effect of metal ion limitations on citric acid production in shake-flask culture 100
5.3 Effect of metal ion limitations on sugar utilisation in shake-flask culture 100
5.4 The time course of a nitrogen-limited batch fermentation 103
5.5 The time course of a phosphate-limited batch fermentation 105
5.6 The time course of a sulphate-limited batch fermentation 106
5.7 The time course of a magnesium-limited batch fermentation 108
5.8 Growth rate, product formation rates and nutrient uptake rates under nitrogen limitation

5.9 Growth rate, product formation rates and nutrient uptake rates under phosphate limitation

5.10 Growth rate, product formation rates and nutrient uptake rates under sulphate limitation

5.11 Growth rate, product formation rates and nutrient uptake rates under magnesium limitation

5.12 The specific activities of some enzymes in a nitrogen-limited batch fermentation

5.13 The effect on biomass of various levels of excess nutrient nitrogen in phosphate-limited culture

5.14 The effect on citric acid production and yield of various levels of excess nutrient nitrogen in phosphate-limited culture

5.15 The effect on sugar utilisation of various levels of excess nutrient nitrogen in phosphate-limited culture

5.16 The levels of excess nutrient nitrogen in phosphate-limited culture

5.17 Time course of a nitrogen-limited batch fermentation with high levels of biomass

5.18 The time course of a phosphate-limited batch fermentation with high levels of biomass
5.19 The time course of a double nitrogen/phosphate-limited batch fermentation with high levels of biomass

5.20 Growth rate, product formation rates and nutrient uptake rates during a nitrogen-limited batch fermentation at high biomass level

5.21 Growth rate, product formation rates and nutrient uptake rates during a phosphate-limited batch fermentation at high biomass level

5.22 Growth rate, product formation rates and nutrient uptake rates during a double nitrogen/phosphate-limited batch fermentation at high biomass level

6.1 Predicted volumetric citric acid production at steady states during nitrogen-limited chemostat continuous culture

6.2 Predicted specific citric acid production rate at steady states during nitrogen-limited chemostat continuous culture

6.3 Predicted specific citric acid production rate calculated using mycelial nitrogen content at steady states during nitrogen-limited chemostat continuous culture
6.4 Predicted specific citric acid production rate calculated using mycelial phosphate content at steady state during nitrogen-limited chemostat continuous culture

6.5 Predicted citric acid yield based on sugar utilised at steady states during nitrogen-limited chemostat continuous culture

6.6 Extrapolated specific citric acid production rate at steady states during nitrogen-limited chemostat continuous culture

6.7 Extrapolated specific citric acid production rate calculated using mycelial nitrogen content at steady states during nitrogen-limited chemostat continuous culture

6.8 Extrapolated citric acid yield bases on sugar utilised during nitrogen-limited chemostat continuous culture

6.9 Storage carbon yield based on sugar utilised at steady states during nitrogen-limited chemostat continuous culture

6.10 Carbon dioxide yield based on sugar utilised at steady states during nitrogen-limited chemostat continuous culture

6.11 Predicted specific citric acid production rate at steady states during phosphate-limited chemostat continuous culture
6.12 Predicted citric acid yield based on sugar utilised at steady states during phosphate-limited chemostat continuous culture

7.1 Time course of a nitrogen-limited fed-batch fermentation

7.2 Growth rate, product formation rates and nutrient uptake rates during a nitrogen-limited fed-batch fermentation

7.3 Time course of a phosphate-limited fed-batch fermentation

7.4 Growth rate, product formation rates and nutrient uptake rates during a phosphate-limited fed-batch fermentation

7.5 Time course of a double nitrogen/phosphate-limited fed-batch fermentation

7.6 Growth rate, product formation rates and nutrient uptake rates during a double nitrogen phosphate-limited fed-batch fermentation
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Estimated production of citric acid by various countries</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Citric acid imports in New Zealand from 1976 to 1984</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>Sucrose-beef extract medium</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Medium for batch fermentation</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Feed medium for chemostat fermentation</td>
<td>43</td>
</tr>
<tr>
<td>3.4</td>
<td>Variation of pressure and temperature correction indices with flow rate in variable area flowmeters</td>
<td>76</td>
</tr>
<tr>
<td>4.1</td>
<td>The effect of interruption to aeration on citric acid production in samples withdrawn from a fermenter</td>
<td>85</td>
</tr>
<tr>
<td>5.1</td>
<td>Limiting nutrient concentration to obtain 15 g/l biomass</td>
<td>102</td>
</tr>
<tr>
<td>5.2</td>
<td>Summary of different nutrient-limited fermentations at low biomass levels</td>
<td>109</td>
</tr>
<tr>
<td>5.3</td>
<td>The ratio of citric acid produced to oxygen used as calculated from the respective specific rates</td>
<td>119</td>
</tr>
<tr>
<td>5.4</td>
<td>Summary of different nutrient-limited fermentations at high biomass levels</td>
<td>132</td>
</tr>
<tr>
<td>5.5</td>
<td>The ratio of citric acid produced to oxygen consumed at high biomass levels, calculated using the respective specific rates</td>
<td>139</td>
</tr>
<tr>
<td>6.1</td>
<td>Allocation of coded variables to specific growth rate (u) and DOT</td>
<td>145</td>
</tr>
</tbody>
</table>
6.2 Steady state concentrations during nitrogen-limited chemostat experiments

6.3 Volumetric and specific rates of nutrient uptake and product formation at steady states in nitrogen-limited chemostat experiments

6.4 Full regression models for nitrogen-limited chemostat cultures

6.5 Correlation coefficients of data from nitrogen-limited chemostat cultures

6.6 Concentrations, and volumetric and specific rates of product formation and nutrient uptake at the steady state $\mu = 0.017$ h$^{-1}$; DOT = 90% of saturation in nitrogen-limited culture

6.7 Concentrations, and volumetric and specific product formation and nutrient uptake rates, with increased biomass level, at the steady state $\mu = 0.017$ h$^{-1}$; DOT = 60% of saturation in nitrogen-limited culture

6.8 Carbon balances as % carbon used in nitrogen-limited chemostat cultures

6.9 Steady state concentrations during phosphate-limited chemostat experiments

6.10 Volumetric and specific product formation and nutrient uptake rates at steady states during phosphate-limited chemostat experiments

6.11 Correlation coefficients of data from phosphate-limited chemostat cultures

6.12 Carbon balances as % carbon used in phosphate-limited chemostat cultures
6.13 Concentrations, and volumetric and specific product formation and nutrient uptake rates at the steady state \(u = 0.017 \, \text{h}^{-1}; \) DOT = 90% of saturation in double nitrogen/phosphate-limited culture

6.14 The steady state activities of selected enzymes in nitrogen-limited chemostat culture

6.15 Molar ratio of citric acid produced: oxygen used by nitrogen- and phosphate-limited chemostat cultures

7.1 Summary of fed-batch fermentation results at day 7

7.2 Comparison of specific growth rates calculated from increase in mycelial dry weight and feed-medium flow rate

7.3 Overall fermenter productivities for citric acid in batch, chemostat and fed-batch fermentations

8.1 Summary of comparison of batch, continuous fed-batch and chemostat fermentations
ABBREVIATIONS

ABBREVIATIONS OF UNITS

°C degrees Celcius

d day

g gram

h hour

l litre

m meter

mg milligram

min minute

ml millilitre

mm millimeter

mM millimole

nm nanometer

rpm revolutions per minute

µl microlitre

vvm volume per volume per minute

OTHER ABBREVIATIONS

AMP Adenosine monophosphate

ATP Adenosine triphosphate

D Dilution rate

DOT Dissolved Oxygen Tension

DW Dry Weight

EDTA Ethylenediaminetetraacetic acid

HPLC High Performance Liquid Chromatography

ID Internal Diameter

N Nitrogen

NAD Nicotinamide Adenine Dinucleotide
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADH</td>
<td>Reduced Nicotinamide Adenine Dinucleotide</td>
</tr>
<tr>
<td>NADP</td>
<td>Nicotinamide Adenine Dinucleotide Phosphate</td>
</tr>
<tr>
<td>NADPH</td>
<td>Reduced Nicotinamide Adenine Dinucleotide Phosphate</td>
</tr>
<tr>
<td>P_4^{3-}</td>
<td>Phosphate</td>
</tr>
<tr>
<td>TCA</td>
<td>Tricarboxylic Acid</td>
</tr>
<tr>
<td>u</td>
<td>Specific Growth Rate</td>
</tr>
</tbody>
</table>