DEVELOPMENT OF
A MUTTON-BASED PROCESSED MEAT PRODUCT
FOR EXPORT FROM NEW ZEALAND TO THAILAND

A thesis
presented in partial fulfilment of
the requirements for the degree of
Doctor of Philosophy in Product Development
at Massey University

NINNART CHINPRAHAST
1988
Massey University Library. Thesis Copyright Form

Title of thesis: Development of a Mutton-Based Processed Meat Product for Export from New Zealand to Thailand

(1) √ (a) I give permission for my thesis to be made available to readers in the Massey University Library under conditions determined by the Librarian.

(b) I do not wish my thesis to be made available to readers without my written consent for ______ months.

(2) √ (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for ______ months.

(3) √ (a) I agree that my thesis may be copied for Library use.

(b) I do not wish my thesis to be copied for Library use for ______ months.

Signed

Date

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

DATE
ABSTRACT

There is a need for the development of processed meat products from New Zealand mutton so that marketing of the country's sheepmeats can be diversified and expanded, if possible to new overseas markets. Thailand, a country with a relatively big population, may be one of the importing countries for mutton-based processed meat products from New Zealand. However, there was a possibility that the Thai people might be unlikely to accept the products made from this unfamiliar meat with strong aroma and flavour.

There had never been research into the development of processed meat products made from New Zealand mutton for the Thais. Therefore, this thesis studied whether any product could be made acceptable to the target Thai consumers who were the middle and upper classes in the Bangkok area. The steps of the systematic product development process were followed to guide how such a product could be designed. In brief, the process started from surveying the Thai market for some suitable products, identifying the product (meatballs) to be developed using mutton, development of the formulation in New Zealand, improvement of the formulation in Thailand, and finally it ended with consumer testing of the developed product in the target market in Bangkok.

Different types of sensory panels were used at various stages of the development. These included: a laboratory panel (n=12) in Bangkok to identify important sensory attributes and the ideal profiles of some potential products in the Thai markets, a laboratory panel (n=8) to control the formulation development in New Zealand, a small household consumer panel (n=17) in New Zealand to test for acceptance of the intermediate product made by the selected formulation, a focus group panel (n=6) in Bangkok to optimise the formulation and a 'home use' consumer test panel (n=488) in Bangkok to test whether the final product was acceptable to the consumers.

The success of the development was believed to rely heavily on the formulation process which combined the use of appropriate experimental designs with the sensory evaluation methods. Experimental designs controlled by a laboratory taste panel using the ideal profile technique were used to formulate the meatball product. A mixture design was used to choose the appropriate kinds and levels of meat and meat fat to be mixed with mutton. A full
factorial design studied the texture development varying three ingredients - salt, phosphate and tapioca starch. Empirical equations relating the quantitative characteristics, determined either by subjective tests or objective tests, to the ingredient contents were derived so that the formulation could be directed systematically. A Plackett and Burman design was then used in the flavour development for screening of suitable spices. A quarter fractional factorial design was finally used to study the effects of the six ingredients, i.e. three texture improvers and three spices, on the sensory attribute acceptability of the product. An optimum formulation was selected and tested for acceptance by a small household consumer panel. This intermediate product was not highly acceptable.

A series of focus groups were therefore conducted in Thailand to optimise the formulation. The focus group panels provided valuable information as to how the product could be improved and, as a result, the prototype formulation was obtained and then used in a production trial to make the final product for a consumer test in Bangkok. The consumer test panel played its role at the final stage of this project to identify whether the developed product was acceptable.

The meatball product developed was acceptable to the target Thai consumers. It was believed that the product was successfully made by trimming of the mutton fat to reduce the strong aroma and flavour; this resulted in the high proportion (75%) of mutton which could be used with pork and pork fat (replacing mutton fat). Added ingredients also significantly improved the sensory characteristics of the product. Tapioca starch, sodium tripolyphosphate and particularly salt helped improve the texture and the spices, white pepper, garlic, onion and ginger, helped improve the aroma and flavour.
ACKNOWLEDGEMENTS

This research study was financially supported by the Meat Industry Research Institute of New Zealand; I express my sincere appreciation for this assistance.

I shall always be grateful to my major supervisor, Dr. Mary D. Earle, for her constant inspiration, valuable guidance and patience throughout the project.

To my co-supervisors, Dr. R.F. Mawson, J.C. Hutton Ltd., Hamilton; Mr. S.L. Oldfield, Biotechnology Department, Massey University and Dr. Chaiyute Thunpitayakul, Food Technology Department, Chulalongkorn University, I express my appreciation for their useful suggestions.

The research has been successfully completed by either the direct or indirect cooperation of many people. In particular I would like to thank:

* Prof. R.L. Earle and the staff of the Faculty of Technology, Massey University.

* Prof. E.L. Richards and the staff of the Department of Food Technology and the Sub-Department of Product Development, Massey University, especially Mrs. Joan Brookes.

* Mr. Dean Stockwell and the staff of the Food Technology Research Centre, Massey University.

* Assoc. Prof. Patcharee Parnkul, the staff and students of the Department of Food Technology, Chulalongkorn University, Bangkok.

* the staff of the Department of Home Economics, Kasetsart University, Bangkok.

* the staff of the Department of Livestock Development, Ministry of Agriculture and Cooperatives, Bangkok.
* the Thai students at Massey University who were taste panelists.

* the consumers who tested the final product.

* the staff of the Library and the Registry, Massey University.

* Mrs. K.B.L. McDonald for her moral support and kindness during my stay with her for two and a half years.

* Mr. Wichien Chatupote and Mr. Pairote Wiriyacharee for their help in preparation of the graphs.

* Miss Myra Keal, Miss Louise Rose and Mrs. Anneke Visser for their work in typing and correcting the thesis.

Finally, I would like to thank my parents (Prof. Kasem and Mrs. Saing), my aunts (Miss Arb and Mrs. Russamee), my sisters (Arpa and Marasri) and my brother (Suwit), for their constant support mentally and physically during the course of my study.
TABLE OF CONTENTS

ABSTRACT	ii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	xv
LIST OF APPENDICES	xvii

CHAPTER

1 **GENERAL OVERVIEW**

1.1 Need for Imported Meat in Thailand

1.2 New Zealand Sheepmeat Production and Exporting

1.3 New Zealand Sheepmeat Exports to Thailand

1.4 Possible Mutton Meat Products for Thailand

1.5 Reasons for Developing a Mutton-Based Processed Meat Product for the Thais

2 **PRODUCT DEVELOPMENT AND THE PROJECT**

2.1 Product Development and Consumers

 2.1.1 Food Product Development

 2.1.2 Consumer Inputs in Product Development

2.2 The Method of Product Development in the Project

2.3 Overall Aim and Objectives of the Research Project

3 **IDENTIFYING THE PRODUCT TO BE DEVELOPED USING MUTTON**

3.1 Introduction

3.2 Preliminary Identification of Some Potential Products in Thailand

 3.2.1 A Market Survey and Technical Information about the Thai Processed Meat Products

 3.2.2 Preliminary Experiments on the Four Groups of Products

 3.2.2.1 An Investigation on Sensory Properties of Commercial Products

 3.2.2.2 An Investigation on the Effects of Using Mutton on the Four Groups of Products

3.3 Selection of the Final Product in New Zealand

 3.3.1 Introduction

 3.3.2 A Desk Study on Flavours for the Three Groups of Products Using Brainstorming and Screening Techniques

 3.3.2.1 Literature Review on Product Idea Generation and Screening

 3.3.2.2 Consumer Input for Idea Generation

 3.3.2.3 Preliminary Screening of Variations of the Ideas

 3.3.3 Consumer Information on the Three Groups of Products

 3.3.4 Preliminary Investigation on the Effects of Using Mutton in the Three Products

 3.3.5 Selection of the Final Thai Meat Product to be Developed Using Mutton

 3.3.5.1 Prediction of Market Potential for the Three Screened Products

 3.3.5.2 Selection of Meatball as the Final Product
3.4 Description of the Meatballs
3.5 Use of Mutton in the Meatball Product for the Thai Consumers

4 MATERIALS AND METHODS
4.1 Raw Materials and Processing Methods
 4.1.1 Raw Materials
 4.1.2 Processing Methods
4.2 Testing Methods
 4.2.1 Introduction
 4.2.2 Objective Tests
 4.2.2.1 Weight
 4.2.2.2 Percentage Cook Yield
 4.2.2.3 pH Value
 4.2.2.4 The Instron Compression and Shear Force
 4.2.2.5 Chemical Analyses
 4.2.3 Subjective Tests
 4.2.3.1 Ideal Profile Testing
 4.2.3.2 Ranking
 4.2.3.3 Triangle Test
 4.2.3.4 Category Scaling Tests
 4.2.3.5 Sensory Testing Organisation
4.3 Analyses of Data
4.4 Experimental Designs Used in the Research
 4.4.1 Mixture Design
 4.4.2 Factorial Design
 4.4.3 Plackett and Burman Design and Fractional Factorial Design
4.5 Chapters Related to the Method of the Product Development Process in this Study

5 SELECTION OF MEATS AND FATS FOR INCORPORATION WITH MUTTON TO PRODUCE MEATBALLS
5.1 Introduction
5.2 Literature Reviews
 5.2.1 Use of Mutton in Processed Meat Products
 5.2.2 Meatball Products
 5.2.3 Scaling for Sensory Evaluation
5.3 The Experimentation
 5.3.1 Effect of Mutton Lean, Beef or Pork Lean and Mutton Fat on Characteristics of the Meatballs
 5.3.1.1 Experimental Methods
 5.3.1.2 Subjective Evaluation Results
 5.3.1.3 Correlations of Subjective Evaluation Results
 5.3.1.4 Relationships between Sensory Attributes and Meatball Components
 5.3.1.5 Objective Evaluation Results
 5.3.1.6 Correlation of Instron Values
 5.3.1.7 Relationships between Objective Test Values and Meatball Components
 5.3.1.8 Correlations between Subjective Evaluation Results and Instron Values
 5.3.1.9 Discussion and Conclusion
 5.3.2 Effect of Mutton Lean, Pork Lean and Pork Fat on Characteristics of the Meatballs
 5.3.2.1 Experimental Methods
 5.3.2.2 Subjective Evaluation Results
5.3.2.3 Percentage Cook Yield 77
5.3.2.4 Discussion and Conclusion 79
5.3.3 Overall Discussion and Conclusion 79

6 DEVELOPMENT OF TEXTURE OF MEATBALLS 81
6.1 Introduction 81
6.2 Literature Review on Use of Salt, Phosphate and Other Added Ingredients in Processed Meat Products 81
6.3 The Experimentation 84
6.3.1 Effects of Tapioca Starch, Salt and STPP on Characteristics of Meatballs 85
 6.3.1.1 Experimental Methods 85
 6.3.1.2 Subjective Evaluation Results 86
 6.3.1.3 Correlations of Subjective Evaluation Results 88
 6.3.1.4 Relationships between Sensory Attributes and Meatball Components 89
 6.3.1.5 Objective Evaluation Results 90
 6.3.1.6 Correlations of Instron Values 93
 6.3.1.7 Relationships between Objective Evaluation Values and Meatball Components 93
 6.3.1.8 Correlations between Subjective Evaluation Results and Instron Values 95
 6.3.1.9 Use of Empirical Equations to Estimate the Optimum Contents of the Three Ingredients 96
 6.3.1.10 Discussion and Conclusion 98
6.3.2 A Comparison between Sodium Tripolyphosphate, Tetrasodium Pyrophosphate and Borax for Their Effects on the Characteristics of Meatballs 99
 6.3.2.1 Experimental Methods 99
 6.3.2.2 Subjective Evaluation Results 100
 6.3.2.3 Objective Evaluation Results 101
 6.3.2.4 Discussion and Conclusion 102
6.3.3 Overall Discussion and Conclusion 102

7 DEVELOPMENT OF THE FLAVOUR AND AROMA 104
7.1 Introduction 104
7.2 Literature Review 104
 7.2.1 Masking of Mutton Flavour and Aroma 104
 7.2.2 Consumer Panel Evaluation of Acceptability of a Product 105
7.3 Screening of Spices 106
 7.3.1 Experimental Methods 106
 7.3.2 Preliminary Investigation 108
 7.3.3 Plackett and Burman Experiment 108
7.4 Effects of All Ingredients on Acceptability 113
 7.4.1 Experimental Methods 113
 7.4.2 Results of Fractional Factorial Experiment 116
 7.4.3 Conclusion 120
7.5 Testing of the Selected Formulation 121
 7.5.1 Experimental Methods 121
 7.5.2 Laboratory Panel Results 123
 7.5.3 Household Consumer Panel Results 124
 7.5.4 Correlation of Laboratory and Household Consumer Panel Results 126
 7.5.5 Fat Contents of the Prepared Meatballs 126
 7.5.6 Discussion and Conclusion 126
7.6 Flavour Improvement of the Optimum Formulation and Development of a Different Product for the Thai Market

7.7 Overall Conclusion

8 OPTIMISATION OF THE FORMULATION USING FOCUS GROUPS

8.1 Literature Review
 8.1.1 Focus Groups: Advantages and Disadvantages
 8.1.2 Applications of Focus Groups in Product Development

8.2 Use of Focus Groups in Bangkok

8.3 Materials and Experimental Methods
 8.3.1 Raw Materials and Ingredients
 8.3.2 Preparation of the Meatballs
 8.3.3 Focus Groups and Sensory Evaluation

8.4 Results and Discussion
 8.4.1 Comparison of the Ideal Profiles
 8.4.2 Improvement of Sensory Attributes by the Focus Groups
 8.4.3 Ideas from the Kasetsart Focus Group
 8.4.4 Ideas from the Chulalongkorn Focus Group

8.5 Conclusion

9 TESTING OF THE DEVELOPED PRODUCT

9.1 Literature Review
 9.1.1 Consumer Tests
 9.1.2 Sensory Evaluation for Consumer Tests

9.2 Selection of the Consumer Testing Technique

9.3 Methods
 9.3.1 The Production Trial
 9.3.1.1 Raw Materials and Ingredients
 9.3.1.2 Preparation of Raw Materials
 9.3.1.3 Preparation of Meatballs
 9.3.2 Consumer Testing
 9.3.2.1 The Sample
 9.3.2.2 The Respondents
 9.3.2.3 The Questionnaires
 9.3.2.4 Organisation of the Test
 9.3.2.5 Analyses of the Data

9.4 Return from the Survey
 9.4.1 Returned Responses
 9.4.2 Profile of General Respondents
 9.4.3 Non-responses

9.5 Acceptability of the Meatballs
 9.5.1 Liking by Age Group
 9.5.2 Liking by Sex
 9.5.3 Frequencies of the Hedonic Scores
 9.5.4 Correlations between Sensory Attribute Liking and Overall Liking
 9.5.5 Relationships between Overall Liking and Sensory Attributes
 9.5.6 Comments on the Product

9.6 Buying Information

9.7 Marketing Information
 9.7.1 Retail Outlets
 9.7.2 Packaging of the Developed Product
 9.7.3 Promotion of the Developed Product
 9.7.4 Estimation of Sales Potential

9.8 Conclusion
LIST OF TABLES

1.1 Total New Zealand sheep meat production and sheepmeat available for export, 1985-1987 (in thousand tonnes, bone in)
1.2 Sheepmeat exports from New Zealand to ASEAN countries, 1985-1987 (in tonnes)
3.1 Mean ideal absolute scores for sensory attributes of commercial cocktail sausages, vienna sausages and meatballs
3.2 Variations of ideas remaining after sequential screening
3.3 Variations of ideas remaining after checklist screening
3.4 Consumer ranking for preference of the ideas
3.5 Triangle test to investigate the effect of various proportions of mutton in meat patties
3.6 Triangle test to investigate the effect of spices in meat patties incorporated with mutton
3.7 Factorial design to study the effects of mutton fat and beef fat content on sensory attributes and acceptability of meatballs, dried meat and sausages
3.8 Composition of commercial meatballs in Thailand
3.9 Ideal absolute scores for important sensory attributes of commercial meatballs
5.1 Sensory attribute scores for meatballs formulated with various proportions of mutton lean, beef or pork lean and mutton fat
5.2 Correlation coefficients between sensory characteristics of the meatballs
5.3 Correlation between the descriptive category scaling and the ideal profile testing
5.4 Regression equations showing the relationships between sensory attributes and mutton lean and pork lean
5.5 Objective test values for meatballs formulated with various proportions of mutton lean, beef or pork lean and mutton fat
5.6 Correlation coefficients between the Instron values
5.7 Regression equations showing the relationships between objective test values and mutton, beef, pork lean and mutton fat
5.8 Correlation coefficients between the sensory attribute scores and the Instron objective test values of the meatballs

5.9 Ideal ratio scores for meatballs made from various proportions of mutton lean, pork lean, and mutton or pork fat

5.10 Mean deviations from ideal for meatballs with added pork or mutton fat

5.11 Percentage cook yield of the meatballs made from various proportions of mutton lean, pork lean, and mutton or pork fat

6.1 Factorial design to study the effects of tapioca starch, salt and STPP on the characteristics of the meatballs

6.2 Mean deviations from ideal for meatballs with different tapioca starch, salt and STPP contents

6.3 Correlation coefficients between sensory characteristics of the meatballs with salt, phosphate and tapioca starch

6.4 Regression equations showing the relationships between sensory attributes of the meatballs and tapioca starch, salt, STPP contents and their interactions

6.5 Correlation coefficients between the Instron objective test values of the meatballs

6.6 Regression equations showing the relationships between objective test values of the meatballs and tapioca starch, salt, STPP contents and their interactions

6.7 Correlation coefficients between the sensory ideal ratio scores and the Instron values

6.8 Ideal ratio scores for sensory attributes of the meatballs with sodium tripolyphosphate (STPP) or tetrasodium pyrophosphate (TSPP)

6.9 Effect of sodium tripolyphosphate (STPP), tetrasodium pyrophosphate (TSPP) and borax on the objective test values of the meatballs

7.1 Combinations of spices in a Plackett and Burman experiment to study their effects on flavour and aroma of mutton-based meatballs
7.2 Mean ideal ratio scores for flavour and aroma of meatballs with different types and levels of spices in the Plackett and Burman experiment

7.3 Main effects of spices on flavour and aroma of meatballs in the Plackett and Burman experiment

7.4 Combinations of ingredients in a quarter fractional 2^6 factorial experiment to study their effects on sensory attribute acceptability of mutton-based meatballs

7.5 Yates' algorithm, the defining contrasts and the aliases in the quarter fractional 2^6 factorial experiment

7.6 Mean ideal ratio scores of sensory attribute acceptability and Instron initial yield forces of meatballs made with untrimmed mutton in a quarter fractional 2^6 factorial experiment

7.7 Mean ideal ratio scores of sensory attribute acceptability and Instron initial yield forces of meatballs made with trimmed mutton

7.8 Main effects of the six ingredients and their two-factor interactions in a quarter fractional 2^6 factorial experiment

7.9 Correlation coefficients between mean ideal ratio scores of sensory attribute acceptability of meatballs

7.10 Regression equations showing relationships between overall acceptability and different attribute acceptabilities

7.11 Percentages of meats and fat used in meatballs

7.12 Mean ideal ratio scores for sensory attribute acceptability of meatballs tested by the laboratory panel

7.13 Mean hedonic scores for liking of sensory attributes of meatballs tested by a household consumer panel

7.14 Numbers and percentages of the consumers who expressed their willingness to purchase meatballs in a household consumer panel

8.1 The ideal profiles of the sensory attributes of the mutton-based meatballs by the two focus groups

8.2 Mean ideal ratio scores of the sensory attributes of the meatballs tested in a sequence of focus groups
9.1 Advantages and disadvantages of field and home use tests
9.2 Profile of respondents in the home use test
9.3 Careers of the respondents
9.4 Hedonic scores for sensory attributes of the developed meatballs by age group and for total sample
9.5 Hedonic scores for sensory attributes of the developed meatballs by sex
9.6 Frequencies of the hedonic scores for overall liking of the developed meatballs
9.7 Correlation coefficients between each of four sensory attribute liking and overall liking within each age group and for total sample
9.8 Regression equations showing relationships between overall liking and sensory attribute liking by total sample
9.9 Buying intentions related to price
9.10 Buying intentions
9.11 Distribution of frequency of purchase
9.12 Retail outlets preferred for the developed meatballs
9.13 Packaging of the meatballs
9.14 Number of balls preferred in a package
9.15 Information on the labels needed by the consumers
9.16 Means of communication to promote the product
10.1 Specification for the meatballs
10.2 Experimental designs, stages and objectives during the formulation process
10.3 Types of panel and sensory evaluation techniques used in the project
10.4 A summary on the ideal profile as determined by the ideal absolute scores of the meatballs at two different stages of development
10.5 Comparison between hedonic scores of the sensory attributes of the intermediate product and the final product
LIST OF FIGURES

1.1 Number of buffalo, cattle and swine slaughtered in Bangkok, 1973-1982
1.2 Number of buffalo, cattle, swine and chicken in Thailand, 1982-1986
2.1 A systematic process for product development
2.2 Product development and acceptance test flow
2.3 Consumer panels in product development
2.4 Stages of product development process and consumer inputs using sensory evaluation in the research project
3.1 Sensory ideal ratio scores (sample score: floating ideal score) for two brands of commercial sausages and meatballs
3.2 Sensory ideal ratio scores (sample score: fixed ideal score) for experimental cocktail sausages, vienna sausages and meatballs made with varying amounts of mutton
3.3 Sensory ideal ratio scores (sample score: floating ideal score) for experimental spiced and dried meat (100% mutton)
3.4 Sensory ideal ratio scores (sample score: floating ideal score) for experimental pressed-ham made with varying amounts of mutton
3.5 Sensory ideal ratio scores (sample score: fixed ideal score) and overall acceptability for meatballs at different beef fat and mutton fat levels
3.6 Sensory ideal ratio scores (sample score: fixed ideal score) and overall acceptability for sausages at different beef fat and mutton fat levels
3.7 Sensory ideal ratio scores (sample score: fixed ideal score) and overall acceptability for spiced and dried meat at different beef fat and mutton fat levels
4.1 Process flow chart for production of the meatballs
5.1 Complete mixture space showing feasible area for experimentation
5.2 Complete mixture space showing feasible area for experimentation (with an extension)
6.1 Ideal ratio scores for sensory attributes of the meatballs as affected by tapioca starch, salt and sodium tripolyphosphate (STPP) contents

6.2 Objective test values for the meatballs as affected by tapioca starch, salt and sodium tripolyphosphate (STPP) contents

7.1 Scales used for screening of spices

8.1 The flow of focus groups and sensory evaluations to optimise the formulation

8.2 Profiles of the ideal ratio scores of the sensory attributes of the meatballs tested in a sequence of focus groups

9.1 Histogram of hedonic scores for overall liking of the developed meatballs by total sample
LIST OF APPENDICES

1.1 Average household expenditures in a 7-day period for food by region in Thailand 1986 (in baht) 188
1.2 Number of buffalo, cattle and swine slaughtered and wholesale meat price in Bangkok, 1973-1982 189
1.3 Number of buffalo, cattle, swine, and chicken in Thailand, 1982-1986 190
3.1 Information concerning processed meat products sold in Bangkok supermarkets (1 NZ$ = 13 baht) 191
3.2 Processing steps for production of four groups of the meat products 195
3.3 Food additives allowed in meat products in Thailand 198
3.4 A questionnaire used for an investigation on sensory properties of commercial products 199
3.5 Formulations and methods for preparation of the four groups of processed meat products 201
3.6 Summary of variations of ideas obtained from the brainstorming 207
3.7 Sequential screening of variations of ideas 208
3.8 Checklist screening 210
3.9 Formulations and methods for preparation of the meat patties used in the triangle test 212
3.10 Formulations of the meat patties to study the effects of spices using the triangle test 213
3.11 Formulations used to investigate the effects of mutton fat and beef fat on sensory attributes and acceptability of the three products 214
3.12 Estimated annual sales potential of the three screened mutton-based processed meat products 215
3.13 Cash outflow and cash inflow over eight years of the three screened mutton-based processed meat products 216
3.14 Net present value of the three screened mutton-based processed meat products at 16% rate of interest 218
3.15 Proximate composition of vienna, cocktail sausages and meatballs 221
5.1 Sensory evaluation questionnaire for the meatballs 222
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>A questionnaire used in sensory evaluation of the meatballs with tapioca starch, salt and sodium tripolyphosphate</td>
<td>226</td>
</tr>
<tr>
<td>6.2</td>
<td>Ideal ratio scores for sensory attributes of the meatballs as affected by tapioca starch, salt and STPP contents</td>
<td>228</td>
</tr>
<tr>
<td>6.3</td>
<td>Objective test values for the meatballs as affected by tapioca starch, salt, and STPP contents</td>
<td>229</td>
</tr>
<tr>
<td>7.1</td>
<td>Descriptions of the spices used in the experiments</td>
<td>230</td>
</tr>
<tr>
<td>7.2</td>
<td>A questionnaire used for sensory evaluation in a Plackett and Burman design experiment</td>
<td>232</td>
</tr>
<tr>
<td>7.3</td>
<td>A questionnaire used for sensory evaluation in the fractional factorial experiment</td>
<td>234</td>
</tr>
<tr>
<td>7.4</td>
<td>A questionnaire used for a household consumer panel</td>
<td>236</td>
</tr>
<tr>
<td>9.1</td>
<td>A questionnaire used for hedonic rating in a home use test</td>
<td>240</td>
</tr>
<tr>
<td>9.2</td>
<td>A supplementary questionnaire used in a home use test</td>
<td>243</td>
</tr>
<tr>
<td>9.3</td>
<td>Frequencies of hedonic scores for four sensory characteristics of the developed meatballs</td>
<td>246</td>
</tr>
<tr>
<td>9.4</td>
<td>Estimation of sales potential of the developed meatballs</td>
<td>248</td>
</tr>
</tbody>
</table>