Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
MINIMAX APPROACHES TO ROBUST CONTROL

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Robust Control at Massey University

Paul Milliken
1999

Copyright © 1999 by Paul Milliken
Abstract

This Thesis is a fundamental investigation of minimax approaches to robust control. The minimax games considered here are for bounded classes of uncertain plant where the performance is measured by a quadratic cost function. These games are between the controller and a group of uncertainty, disturbance and measurement noise signals with the possible inclusion of the initial condition of the plant.

An H_{∞} with transients problem is presented where a non zero initial condition and structured uncertainty are permitted. Necessary and sufficient conditions for the existence of controllers that solve this problem for state feedback and measurement feedback are given. The optimal solution to the state feedback problem may be found by a convex optimisation. These results represent an extension of [Khargonekar et al., 1991].

A state feedback minimax problem is presented where the initial condition is known and multiple channels of uncertainty, each satisfying an integral quadratic constraint, are permitted. Necessary and sufficient conditions for the existence of a minimax controller are given and the design is shown to be the result of a convex optimisation. These results are an extension of [Savkin and Petersen, 1995]. Similar measurement feedback problems are also discussed. Comparisons and special cases of the minimax and H_{∞} with transients and structure problems are presented. Also, expressions for the worst case uncertainty, disturbance and measurement noise signals are given.

Finally, a set valued estimation problem is considered for closed loop uncertain plants. The initial condition of the plant is constrained to lie in an ellipsoid and the uncertainty is permitted to be structured and satisfies a type of integral quadratic constraint. Given the history of measurements from the initial time to the current time, a method for determining the set of possible current states is presented. This result represents an extension of [Savkin and Petersen, 1995a] and [Bertsekas and Rhodes, 1971] to permit structured uncertainty. It is also shown how the set valued estimator may be used as a model invalidator for models with bounded uncertainty.
Acknowledgements

First and foremost, thankyou to my chief supervisor Clive Marsh who gave his time generously, enthusiastically and patiently to help me with this Thesis. Without Clive’s excellent supervision I would not have achieved what I have. Also, Clive, thankyou for your friendship, for introducing me to the pleasures of white water kayaking and for fishing me out of the water on numerous occasions. Thanks also to my second supervisor Bruce van Brunt who was always keen to explore new ideas and who helped to make the results of this Thesis rigorous.

There were a number of other researchers with whom I worked during my Ph.D. studies; thankyou to Bob Bitmead, Gordon Sutton, Michael Green, Ian Petersen and Chris Damaran. Also, thankyou to Bob Bitmead and to Clive for giving me the opportunity to spend three months at the RSISE in Canberra. Finally, thankyou to Bob Hodgson for giving me the opportunity to work as a Graduate Assistant in the Department of Production Technology, Massey University for three years.
Contents

Acknowledgements

Notation

1 Introduction
 1.1 Robust control ... 1
 1.2 The history of some existing methods for robust controller design 1
 1.2.1 The operator theoretic approach 2
 1.2.2 Guaranteed cost approaches 6
 1.2.3 A game approach 7
 1.3 Main contributions of this Thesis 8

2 Preliminaries
 2.1 Preliminaries .. 9
 2.2 An algebraic Riccati equation comparison theorem 9

3 H_∞ with Transients and Structure
 3.1 Introduction .. 12
 3.2 Preliminaries for state feedback 13
 3.3 Main results for state feedback 14
 3.4 Discussion for state feedback 23
 3.5 Preliminaries for measurement feedback 24
 3.6 Main results for measurement feedback 25
 3.7 Discussion for measurement feedback 41

4 Minimax controller design
 4.1 Introduction .. 43
 4.2 Preliminaries for state feedback 44
 4.3 Main results for state feedback 46
 4.4 Discussion .. 54
 4.5 Illustrative example 55
 4.6 The Measurement feedback Minimax problem 58
5 Set Valued Estimation and model invalidation 60
 5.1 Introduction .. 60
 5.2 Preliminaries .. 61
 5.3 Main results ... 61
 5.4 Discussion and model invalidation using the set valued estimator . 65

6 Conclusions .. 66

References ... 68
The following notation will be used throughout the Thesis: Signal norms will be represented as follows:

\[
\|a(t)\|_2^2 = \int_0^\infty a(t)'a(t) \, dt \quad \text{A squared } L_2 \text{ norm,}
\]

\[
\|a(t)\|_{2M}^2 = \int_0^\infty a(t)'Ma(t) \, dt \quad \text{A weighted squared } L_2 \text{ norm,}
\]

\[
\|a(t)\|_{[0,c]M}^2 = \int_0^c a(t)'Ma(t) \, dt \quad \text{A weighted time integral.}
\]

The \(L_2 \) induced norm, or infinity norm for a linear system, will be denoted using the same notation as for the \(L_2 \) norm of a signal:

\[
\|G\| = \sup_{\|w(t)\| \neq 0} \frac{\|G(w(t))\|}{\|w(t)\|} \quad \text{The } L_2 \text{ induced norm.}
\]

The following acronyms will also be used:

- \text{ARE} \quad \text{Algebraic Ricatti Equation,}
- \text{RDE} \quad \text{Ricatti Differential Equation,}
- \text{LQR} \quad \text{Linear Quadratic Regulator,}
- \text{LQG} \quad \text{Linear Quadratic Gaussian,}
- \text{IQC} \quad \text{Integral Quadratic Constraint,}

along with some additional notation:

\[
\dot{a} \quad \frac{da}{dt} \quad \text{Time derivative,}
\]

\[
(\cdot)' \quad \frac{d(\cdot)}{dx} \bigg|_{x=0} \quad \text{A derivative of a scaling matrix } \tau, \text{ in some direction. See equations (3.24) to (3.27) for details.}
\]

\(\mathbb{R}^n \quad \text{The set of real vectors of dimension } n \times 1. \)