Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
An Evaluation of a Dairy Systems Study of the Effects of Contrasting Spring Grazing Managements on Pasture and Animal Performance

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy (Ph.D.)

Pastures and Crops Group
Institute of Natural Resources
College of Sciences
Massey University
Palmerston North
New Zealand

Gregory John Bishop-Hurley
1999
Abstract

Traditionally, the emphasis in dairying systems in New Zealand has been on maintaining pasture quality in late spring through increased grazing pressure and occasionally topping. Recent studies have reported an increase in summer and autumn herbage production by allowing some reproductive development during spring, followed by a period of hard grazing at the time of anthesis when seed heads are immature and still palatable (late control), through effects on tiller population and size. The objectives of this study were to (i) evaluate whether the benefits of late control can be measured within the management constraints of a self-contained spring calving dairy production system, (ii) investigate the conditions under which late control spring grazing management can be implemented, and (iii) investigate the options available for the use of additional feed over spring and summer assuming late control spring grazing management is effective.

A dairying systems study at No 4 Dairy Unit, Massey University was set up in which two 20-paddock perennial ryegrass/white clover dominant farmlets of 45 hectares were each stocked with 120 spring calving Friesian cows in October 1993 and run for three lactations until May 1996. With the exception of spring grazing management and spring supplement feeding the farmlets were balanced.

The first treatment, designated early control (EC), involved strict control of grazing throughout the spring and summer with average pasture cover targeted at approximately 2 000 kg DM ha⁻¹ and a post-grazing residual of approximately 1 500 kg DM ha⁻¹. Pastures in the second treatment (late control - LC) were allowed to develop some reproductive growth through October and November for removal in December. Average pasture cover target was 2 700 kg DM ha⁻¹, with a post-grazing residual of approximately 2 000 kg DM ha⁻¹ over spring. Average pasture cover was reduced to 2 000 kg DM ha⁻¹ in December by grazing to lower residuals while at the same time removing paddocks from grazing for immediate conservation.
Bayesian smoothing provided an alternative to analysis of variance (ANOVA) for those variables where both treatments and/or all replicates were not measured at the same point in time, and for large data sets and produced mean values close to those that would be produced by conventional analysis methods without the need to group arbitrarily.

The development of a dynamic rising plate meter calibration equation which accounts for seasonal differences in pasture density allowed clearer definition of herbage mass estimates from rising plate meter measurements. Mass per unit height values showed a distinct seasonal pattern reflecting changes in the sward. The bulk density of pasture in the summer was found to be twice that in the winter.

Overall, there was no extended period of difference between early control and late control in either pasture production or animal production during the three years of the trial. However, large differences in animal performance would not be expected considering the marginal differences in pasture production achieved. While treatment differences in average pasture cover and pre- and post-grazing cover were achieved over late spring in all three years, the pasture cover differences required for the late control treatment were not achieved, and as a consequence the response in animal performance was smaller than the results of previous small-plot and paddock-scale experiments suggested.

The results of the trial showed good internal consistency between production components and good control of variability was achieved in this large systems trial, providing an objective basis for evaluation. A number of the variables (clover contents and tiller densities) measured during the trial suggest the potential for contrast in system performance between early control and late control. The ability of the system to buffer changes contributed to the difficulties in achieving treatment specifications. Systems research of this type needs to include tight specifications and control of pre- and post-grazing pasture cover in addition to average pasture cover. More flexibility in stocking rate or use of supplements may be needed to establish spring pasture cover contrasts in future studies.
A whole farm simulation model (UDDER) was used to investigate alternative management strategies for utilising grazed and conserved herbage, after modifications to achieve effective matching between predicted and measured levels of pasture production and animal performance. The level of milk production predicted by UDDER was not achieved in the field over three years using the same inputs, possibly due to the inability of the model to cope with the limitations of colder/wet winters and wetland dairy farming. The adjustments made to the parameters of UDDER were in general successful, allowing daily and annual milksolids production to be modelled. However, herbage intake was insensitive to higher spring pasture covers and resultant increase in allowance. For most of the year UDDER predicted the herbage intake of lactating cows to be at or near their potential.

Early control and late control base models were used to evaluate alternative management strategies for using the extra herbage accumulation generated under the late control management, including feeding conserved forage during summer to lactating cows or during winter to dry cows, stocking rate (2.6, 2.8 and 3.0 cows ha\(^{-1}\)) and the level of conservation (none versus increased).

The loss of quality associated with conservation meant that conserving and adding silage back into the system did not increase milksolids production or gross margin, particularly when UDDER predicted that no real feed shortage existed. However, in practice conserving herbage reduces the risk associated with poor growing years. The low stocking rate policy was the best for early control, although the stocking rate policy with 2.8 cows ha\(^{-1}\) and conserved supplements being fed back to lactating cows in summer was similar. The latter policy was the best for late control. At the high stocking rate the flexibility of the system was reduced. In general, milksolids production and gross margin were higher for late control than early control, provided the increase in herbage accumulation rate associated with lax spring grazing management (late control) was factored in.
Since a search of the literature failed to identify a model capable of predicting the response of pastures to late control spring grazing management, an attempt was made to develop a tiller-based model to allow the late control system to be investigated further. The model developed estimates equilibrium tiller density based on size or mass of ryegrass tillers at the environmental ceiling leaf area based on daily levels of photosynthetically active radiation. However, there was insufficient detailed sward data available to provide conclusive evidence for the validity of the tiller model.

Despite the lack of consistent treatment differences obtained from the trial and the difficulties experienced when modelling late control management alternatives, this project has provided a comprehensive data set and considerable insight into the dairy production system. Late control spring grazing management can potentially increase the overall productivity of the seasonal dairying systems of New Zealand. In practical terms the main requirement is for a change in conservation management over the spring period, with no other direct costs involved. However, the timing limitations which are an inevitable consequence of rotational grazing systems restrict the opportunity to impose late control management with the rigorous timing that component research suggests may be necessary. During the course of this trial spring grazing management on dairy farms has tended towards that of late control management, with farmers operating grazing systems with higher average pasture covers through the spring with the aim of improving per hectare production through per cow performance.
Dedicated to my wife, Sharon Bishop-Hurley
Acknowledgements

I would like to express my deepest gratitude to my chief supervisor, Professor John Hodgson for his expert guidance, interest, support, patience and assistance during the course of this study. I am also very grateful for the expert guidance and assistance given by my co-supervisor, Mr Parry Matthews. My special thanks extend to Dr Cory Matthew for his input. I am indebted to all three for sharing knowledge and providing feedback on manuscripts.

I would like to acknowledge all the people who assisted me in numerous ways during this study. Thanks are extended to Associate Professor C. W. Holmes, Dr David McCall, Dr Chris Dake, Shaun Wilson and the staff of No 4 Dairy Unit, Murray Hunt, Drew Dignam, Fiona Cayzer, Alastair MacDonald, Neil McLean, Dean Corson, Mark Osborne, Roger Levy, Kathy Hamilton, Hera Kennedy, Dr Peter Kemp, Matt Alexander, Dr David Baird, Dr Tony Pleasants, Dr J. Pollock, Dr I. Gordon, Dr G. Jones, Sergio Garcia, and finally all those who helped me but I have not named individually here and for which I apologise. Dr N.A. Thomson of the Dairy Research Corporation Limited, Hamilton is thanked for supplying the TARS data set which was collected by Debbie McCallum and Robin Hainsworth.

This dairy systems trial has been partially funded by the Dairying Research Corporation and their contribution to the project is gratefully acknowledged. The Dairying Research Corporation, Helen E. Akers PhD Scholarship and Pastoral Sciences Scholarship are gratefully acknowledged for providing stipend support during my studies.

My special thanks extend to Dr Silvia Assuero and Stephanie Bluett for their patience, help and company. I am also grateful to all my friends and the postgraduate students of the Pastoral Science Group, particularly Alfonso Hernández Garay, Carolina Realini, Sheryl Frew, Elizabeth Burtt, Ian Laurenson, Phillipa Nicholas, Mark Hyslop, Wendy Griffiths, Cesar and Beatriz Poli, D. Laborde, Luis Barioni and family and Fabio Montossi for their friendship.
I also wish to thank my parents, Joy and Ken, Margaret and John and my sisters and brother, Diane, Linda and Wayne, and my extended family for their love and support over the years.

Finally, my deepest gratitude to my wife, Sharon Bishop-Hurley for her endless support, encouragement, friendship and love, no matter how far apart we may have been.
Table of Contents

Abstract ... ii
Acknowledgements ... vii
Table of Contents .. ix
Appendices ... xv
List of Tables ... xviii
List of Figures ... xxii

Chapter One: Introduction, Objectives and Thesis Outline 1
1.1 Introduction .. 1
1.2 Objectives .. 2
1.3 Organisation of the thesis .. 4

Chapter Two: Literature Review 5
2.1 Introduction .. 5
2.2 Dairy production in New Zealand 6
2.3 Late control spring grazing management 8
 2.3.1 Introduction ... 8
 2.3.2 Evidence for late control 10
2.4 Agricultural systems .. 17
 2.4.1 Introduction ... 17
 2.4.2 Systems ... 18
 2.4.3 Models ... 23

Chapter Three: Dairy Systems Grazing Trial Methodology 26
3.1 Introduction .. 26
3.2 Experimental site .. 26
 3.2.1 Physical resources ... 26
 3.2.2 Pasture composition .. 28
 3.2.3 General management ... 28
3.3 Experimental treatments .. 29
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1</td>
<td>Early Control (EC)</td>
<td>29</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Late Control (LC)</td>
<td>30</td>
</tr>
<tr>
<td>3.4</td>
<td>Trial design</td>
<td>30</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Paddocks</td>
<td>30</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Animals</td>
<td>33</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Management</td>
<td>34</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Grazing management</td>
<td>34</td>
</tr>
<tr>
<td>3.5</td>
<td>Pasture measurements</td>
<td>35</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Pasture cover, digestibility and proximate analysis</td>
<td>35</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Pre- and post-grazing pasture cover, dry matter, digestibility and</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>proximate analysis</td>
<td></td>
</tr>
<tr>
<td>3.5.3</td>
<td>Botanical composition</td>
<td>37</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Species population densities</td>
<td>38</td>
</tr>
<tr>
<td>3.6</td>
<td>Animal measurements</td>
<td>39</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Liveweight and condition score</td>
<td>39</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Milk production and composition</td>
<td>39</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Reproduction and calving</td>
<td>40</td>
</tr>
<tr>
<td>3.7</td>
<td>Farmlet measurements</td>
<td>40</td>
</tr>
<tr>
<td>3.8</td>
<td>Statistical analysis</td>
<td>40</td>
</tr>
<tr>
<td>3.9</td>
<td>Availability of raw data</td>
<td>41</td>
</tr>
</tbody>
</table>

Chapter Four: Development of a Dynamic Rising Plate Meter

Calibration Equation which Accounts for the Seasonal Variation of Pasture Characteristics

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>Materials and methods</td>
<td>43</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Herbage mass per unit plate meter height</td>
<td>44</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Fitting the Fourier model</td>
<td>46</td>
</tr>
<tr>
<td>4.3</td>
<td>Results</td>
<td>46</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Introduction</td>
<td>46</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Model fitting</td>
<td>52</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Average pasture cover</td>
<td>55</td>
</tr>
</tbody>
</table>
Chapter Five: Results, Discussion and Conclusions from the Spring Grazing Management Trial

5.1 Introduction ... 66
5.2 Pasture measurements .. 66
 5.2.1 Grazing interval 66
 5.2.2 Average pasture cover 69
 5.2.3 Pre- and post-grazing pasture cover 70
 5.2.4 Pasture dry matter content 77
 5.2.5 Herbage accumulation rate 77
 5.2.6 Seasonal and annual production 79
 5.2.7 Utilisation of pasture 81
 5.2.8 Apparent intake of pasture 84
 5.2.9 Botanical composition 87
 5.2.9.1 Live herbage 87
 5.2.9.2 Clover content 88
 5.2.9.3 Ryegrass .. 89
 5.2.9.4 Proportion of leaf in ryegrass 89
 5.2.10 Grass tiller and weed population densities 91
 5.2.11 Weight of white clover stolon 93
 5.2.12 Pasture nutritive values (proximate analysis) 94
 5.2.12.1 Digestibility 94
 5.2.12.2 Crude protein 98
 5.2.12.3 Neutral detergent fibre 98
 5.2.12.4 Acid detergent fibre 101
 5.2.12.5 Soluble carbohydrates 101
 5.2.12.6 Lipid ... 101
 5.2.12.7 Ash ... 105
 5.3 Animal measurements 105
 5.3.1 Age of cows ... 105
5.3.2 Milk yield and composition .. 105
 5.3.2.1 Volume of milk ... 106
 5.3.2.2 Milk fat .. 106
 5.3.2.3 Milk protein ... 110
 5.3.2.4 Milksolids production 110
 5.3.3 Annual milksolids production 112
 5.3.4 Liveweight and condition score 113
 5.3.5 Reproductive performance 116
 5.4 Apparent intake of pasture and supplements (total).......... 119
 5.5 Supplement balance ... 122
 5.6 Discussion .. 123
 5.6.1 Research techniques 123
 5.6.1.1 General ... 123
 5.6.1.2 Sampling Procedures 125
 5.6.1.3 Statistical analysis 127
 5.6.2 Differences between treatments in general 130
 5.6.3 Specific treatment differences 133
 5.6.3.1 Grazing interval 133
 5.6.3.2 Average, pre- and post-grazing pasture cover 134
 5.6.3.3 Pasture production and utilisation 135
 5.6.3.4 Botanical composition 137
 5.6.3.5 Population densities 139
 5.6.3.6 Feed intake and nutritive value 141
 5.6.3.7 Milk production and composition 144
 5.6.3.8 Liveweight and condition score 147
 5.6.3.9 Reproductive performance 148
 5.6.3.10 Supplement balance 148
 5.6.4 Value of systems trials 149
 5.7 Conclusions ... 150
Chapter Six: Computer Simulation Modelling of Spring Grazing Management

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>153</td>
</tr>
<tr>
<td>6.2</td>
<td>UDDER</td>
<td>155</td>
</tr>
<tr>
<td>6.2.1</td>
<td>A brief description of UDDER</td>
<td>155</td>
</tr>
<tr>
<td>6.2.2</td>
<td>The simulation process used by UDDER</td>
<td>157</td>
</tr>
<tr>
<td>6.3</td>
<td>Calibrating UDDER</td>
<td>157</td>
</tr>
<tr>
<td>6.4</td>
<td>Setting up early control and late control</td>
<td>164</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Early control</td>
<td>164</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Late control</td>
<td>164</td>
</tr>
<tr>
<td>6.5</td>
<td>Alternative strategies for using the extra herbage produced by late control management alternatives</td>
<td>168</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Introduction</td>
<td>168</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Feeding supplements to lactating versus dry cows</td>
<td>169</td>
</tr>
<tr>
<td>6.5.2.1</td>
<td>Supplements fed during lactation</td>
<td>169</td>
</tr>
<tr>
<td>6.5.2.2</td>
<td>Supplements fed to dry cows in winter</td>
<td>173</td>
</tr>
<tr>
<td>6.5.2.3</td>
<td>Bought-in supplements</td>
<td>174</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Stocking rate</td>
<td>176</td>
</tr>
<tr>
<td>6.5.3.1</td>
<td>Low stocking rate</td>
<td>176</td>
</tr>
<tr>
<td>6.5.3.2</td>
<td>High stocking rate</td>
<td>178</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Level of forage conservation</td>
<td>181</td>
</tr>
<tr>
<td>6.5.4.1</td>
<td>No forage conservation or feeding of supplements</td>
<td>181</td>
</tr>
<tr>
<td>6.5.4.2</td>
<td>High level of forage conservation and supplement feeding</td>
<td>182</td>
</tr>
<tr>
<td>6.6</td>
<td>Discussion</td>
<td>186</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Use of UDDER</td>
<td>186</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Alternative management strategies</td>
<td>188</td>
</tr>
<tr>
<td>6.7</td>
<td>Conclusions</td>
<td>194</td>
</tr>
</tbody>
</table>
Chapter Seven: Overview and General Conclusions 197

7.1 Background ... 197
7.2 Field trial ... 198
7.3 Systems modelling 200
7.4 Modelled systems outcomes 202
7.5 Conclusions .. 203

Bibliography .. 204
Appendices

Appendix Three: ... 234
Table A3-1 Summary of climate conditions from January 1993 to December 1996, at AgResearch climate station two kilometres northwest of the trial site (40°23'S 175°37'E,34m asl). ... 234
Table A3-2 Fifty year mean climate conditions at AgResearch climate station, two kilometres northwest of the trial site (40°23'S 175°37'E,34m asl). ... 236
Table A3-3 Numbers of cows in milk during 1993/94. 237
Table A3-4 Numbers of cows in milk during 1994/95. 239
Table A3-5 Numbers of cows in milk during 1995/96. 241

Appendix Five: ... 243
Table A5-1 Detailed botanical composition (%) for early control and late control pastures. 247
Table A5-2 Metabolizable energy (MJ kg DM⁻¹) and dry matter (%) values used to calculate supplement balance. 251
Table A5-3 Monthly supplements fed (MJ ME) for the early control herd. 252
Table A5-4 Monthly supplements fed (MJ ME) for the late control herd. 253
Figure A5-1 Series one pre-grazing pasture cover (kg DM ha-1) calculated from average pasture cover for early control —●— and late control —○— paddocks over three years. Significant differences at p < 0.05 are indicated by separation of the bands. .. 243

Figure A5-2 Series one post-grazing pasture cover (kg DM ha-1) calculated from average pasture cover for early control —●— and late control —○— paddocks over three years. Significant differences at p < 0.05 are indicated by separation of the bands. .. 244

Figure A5-3 Series two pre-grazing pasture cover (kg DM ha-1) calculated from average pasture cover for early control —●— and late control —○— paddocks over three years. Significant differences at p < 0.05 are indicated by separation of the bands. .. 245

Figure A5-4 Series two post-grazing pasture cover (kg DM ha-1) calculated from average pasture cover for early control —●— and late control —○— paddocks over three years. Significant differences at p < 0.05 are indicated by separation of the bands. .. 246

Figure A5-5 Metabolisable energy values (MJ kg DM-1) for early control —●— and late control —○— indicator paddocks over three years. Significant differences at p < 0.05 are indicated by separation of the bands. .. 250

Figure A5-6 Metabolisable energy values (MJ kg DM-1) for early control —●— and late control —○— paddocks cut to estimated grazing height over three years. Significant differences at p < 0.05 are indicated by separation of the bands. 250
Appendix Six: Ten-day milk production (l) and composition (%) values used in UDDER, taken from records of milk delivered to the factory. 254

Table A6-1 Ten-day milk production (l) and composition (%) values used in UDDER, taken from records of milk delivered to the factory. 254

Table A6-2 Values used in gross margins. 255

Appendix Seven: A Step Closer to the Development of a Tiller-based Model 256

7.1 Introduction 256

7.2 Model development 258

7.2.1 Overview 258

7.2.2 Model development 259

7.2.3 Parameter estimates 261

7.3 Tiller-based model prediction of sward equilibrium 263

7.4 Using the model with field data 263

7.5 Conclusions 269

Figure A7-1 Daily photosynthetically active radiation values (PAR) for one year (MJ m² day⁻¹). 262

Figure A7-2 Predicted values for tiller density (number m⁻²) — and tiller size (mg) —— from the tiller model for a constant pre-grazing herbage mass of 3000 kg DM ha⁻¹ ———. 264

Figure A7-3 Predicted values for tiller density (number m⁻²) — and tiller size (mg) —— from the tiller model using pre-grazing herbage masses (kg DM ha⁻¹) ——— taken from EC. 268

Figure A7-4 Tiller size-density plot (log:log) for actual • and predicted ○ values from the tiller model using pre-grazing herbage masses (kg DM ha⁻¹) taken from EC. Actual and predicted regression equations are y = -0.4173x + 5.1424 (r² = 0.89) and y = -0.4642x + 5.0545 (r² = 0.86), respectively. 270
List of Tables

Chapter Two:
Table 2-1 Value of pastoral-based exports as a percentage of total New Zealand exports for the year ended June 1997, valued at $21033.2 million. 6
Table 2-2 Herd statistics for 1996/97. 7
Table 2-3 Farm production statistics for 1996/97. 7
Table 2-4 Herd test averages for 1996/97. 8

Chapter Three:
Table 3-1 Areas of the paddocks on No 4 Dairy Unit in the trial. 31
Table 3-2 Mean lactation length for early control and late control cows over three years. 33

Chapter Four:
Table 4-1 No 4 Dairy Unit and TARS fitted Fourier parameter estimates for three and four years pooled data, respectively. 55
Table 4-2 Seasonal calibration equations from L'Huillier & Thomson (1988). 57

Chapter Five:
Table 5-1 Monthly grazing intervals (days) from all paddocks for early control and late control over three years. 68
Table 5-2 Pre-control pre-grazing and post-control post-grazing pasture covers (kg DM ha⁻¹) from indicator paddocks for early control and late control over three years. 75
Table 5-3 Seasonal pasture production (kg DM) for early control and late control over three years. 81
Table 5-4 Monthly mean utilisation (%) of pasture on indicator paddocks for early control and late control over three years. ... 83
Table 5-5 Monthly pasture only intake values (kg DM cow⁻¹ day⁻¹) for early control and late control cows over three years. 85
Table 5-6 Seasonal pasture only intake values (kg DM cow⁻¹ day⁻¹) for early control and late control cows over three years. 86
Table 5-7 Annual pasture only intake values (kg DM cow⁻¹ day⁻¹) for early control and late control cows over three years. 86
Table 5-8 Percent live (green) in total herbage for early control and late control indicator paddocks over three years. 87
Table 5-9 Percent total clover (white and red clover) in live herbage for early control and late control indicator paddocks over three years. ... 88
Table 5-10 Percent white clover in live herbage for early control and late control indicator paddocks over three years. 89
Table 5-11 Percent ryegrass in the grass fraction for early control and late control indicator paddocks over three years. 90
Table 5-12 Percent leaf in the ryegrass fraction for early control and late control indicator paddocks over three years. 90
Table 5-13 Ryegrass tiller densities (number m⁻²) for early control and late control indicator paddocks over three years. 91
Table 5-14 Other grass tiller densities (number m⁻²) for early control and late control indicator paddocks over three years. 92
Table 5-15 Total grass tiller densities (number m⁻²) for early control and late control indicator paddocks over three years. 92
Table 5-16 Weed densities (number m⁻²) for early control and late control indicator paddocks over three years. 93
Table 5-17 Weight of white clover stolon (g m⁻²) for early control and late control indicator paddocks over three years. 94
Table 5-18 Mean age of early control and late control cows over four years. .. 105
Table 5-19 Summary of annual milk solids production (kg) for early control and late control cows over three years. 112
Table 5-20 Cumulative in-calf percentages (non-return after 49 days) for early control (EC) and late control (LC) cows over four years. ... 116
Table 5-21 Calving outcomes (%) of early control (EC) and late control (LC) cows over four years. ... 117
Table 5-22 Mean reproductive indices of early control and late control cows over four years. ... 118
Table 5-23 Monthly pasture and supplement intake values (kg DM cow\(^{-1}\) day\(^{-1}\)) for early control and late control cows over three years. ... 120
Table 5-24 Seasonal total (pasture and supplement) intake values (kg DM cow\(^{-1}\) day\(^{-1}\)) for early control and late control cows over three years. ... 121
Table 5-25 Annual total (pasture and supplement) intake values (kg DM cow\(^{-1}\) day\(^{-1}\)) for early control and late control cows over three years. ... 121
Table 5-26 Herbage conserved (MJ ME ha\(^{-1}\)), supplements fed (MJ ME ha\(^{-1}\)) and supplement balance (MJ ME ha\(^{-1}\)) on early control and late control farmlets over three years. 122

Chapter Six:

Table 6-1 Pasture base, average of calibration (kg DM ha\(^{-1}\)) and density (kg DM cm\(^{-1}\)) for 12 months. 159
Table 6-2 Comparison of pasture variables, animal variables and gross margins for actual farmlet and simulated farmlets with unmodified and modified parameters. 161
Table 6-3 Advantage (%) to accumulation rate from lax spring grazing management in three experiments reported by da Silva (1994) assuming attainment of the stipulated pasture cover contrasts between EC and LC. 165
Table 6-4 Effects of including an accumulation rate advantage on pasture variables, animal variables and gross margins for simulated late control farmlets. 166

Table 6-5 Effects of feeding conserved forage back to milking cows in summer versus feeding forage to dry cows in winter on pasture variables, animal variables and gross margins for simulated early control and late control farmlets. 170

Table 6-6 Effects of stocking rate on pasture variables, animal variables and gross margins for simulated early control and late control farmlets. 177

Table 6-7 Effects of conservation policy on pasture variables, animal variables and gross margins for simulated early control and late control farmlets. 182

Table 6-8 Summary of setting up early control, simulated late control, and early control and late control management strategies on milksolids production and gross margins. 190
List of Figures

Chapter Three:
Figure 3-1 Plan of No 4 Dairy Unit, Massey University. Early control (EC) and late control (LC) paddocks are shaded blue and orange, respectively. In addition, indicator paddocks are represented by diagonal lines. ... 32

Chapter Four:
Figure 4-1 Actual —*— and predicted, with ——●— and without ——○—- an intercept pasture cover values (kg DM ha⁻¹) over three years. ... 48
Figure 4-2 Mass per unit height estimates and fitted Fourier curves for early control ——●— and late control ——○—-, and associated 95% confidence intervals —— -- for three years pooled data. ... 49
Figure 4-3 Mass per unit height estimates and fitted Fourier curves for pre-grazing ——●— and post-grazing ——○—-, and associated 95% confidence intervals —— -- for three years pooled data. ... 50
Figure 4-4 Mass per unit height estimates and fitted Fourier curves for 1994/95 ——●— and 1995/96 ——○—- and associated 95% confidence intervals —— --. ... 51
Figure 4-5 No 4 Dairy Unit mass per unit height estimates •, fitted Fourier curve —— and associated 95% confidence intervals ————- for three years pooled data. ... 53
Figure 4-6 TARS mass per unit height estimates •, fitted Fourier curve —— and associated 95% confidence intervals ————- for four years pooled data. ... 54
Figure 4-7 No 4 Dairy Unit average pasture covers (kg DM ha⁻¹) over three years derived using the dynamic calibration equation —•—, a standard calibration equation (HM = 405 + 166 MR) ---△--- and the set of equations from L’Huillier & Thomson (1988) ---○---. 56

Figure 4-8 Average pasture covers (kg DM ha⁻¹) using the dynamic calibration equation —— and the calibration equation of Hainsworth (1999) ---- at a constant plate meter height of 10 (bottom) and 20 (top) units. 63

Chapter Five:

Figure 5-1 Grazing intervals (days) for early control —●— and late control —○— paddocks over three years. Significant differences at P < 0.05 are indicated by separation of the bands. ... 67

Figure 5-2 Series one average pasture covers (kg DM ha⁻¹) for early control —●— and late control —○— paddocks over three years. Significant differences are indicated by + P < 0.10 and * P < 0.05. Standard error of the mean (SEM) for early control ● and late control ○ means (n = 20). 71

Figure 5-3 Series two average pasture covers (kg DM ha⁻¹) for early control —●— and late control —○— paddocks over three years. Significant differences are indicated by + P < 0.10 and * P < 0.05. Standard error of the mean (SEM) for early control ● and late control ○ means (n = 20). 72

Figure 5-4 Pre-grazing pasture cover (kg DM ha⁻¹) for early control —●— and late control —○— indicator paddocks over three years. Significant differences at P < 0.05 are indicated by separation of the bands. ... 73
Figure 5-5 Post-grazing pasture cover (kg DM ha\(^{-1}\)) for early control —●— and late control —○— indicator paddocks over three years. Significant differences at P < 0.05 are indicated by separation of the bands. 74

Figure 5-6 Dry matter values (%) for early control —●— and late control —○— indicator paddocks over three years. Significant differences at P < 0.05 are indicated by separation of the bands. 78

Figure 5-7 Daily herbage accumulation rates (kg DM ha\(^{-1}\) day\(^{-1}\)) for early control —●— and late control —○— indicator paddocks over three years. Significant differences at P < 0.05 are indicated by separation of the bands. 80

Figure 5-8 Pasture utilisation values (%) for early control —●— and late control —○— indicator paddocks over three years. Significant differences at P < 0.05 are indicated by separation of the bands. 82

Figure 5-9 Organic matter digestibility values (%) for early control —●— and late control —○— indicator paddocks over three years. Significant differences at P < 0.05 are indicated by separation of the bands. 96

Figure 5-10 Organic matter digestibility values (%) for early control —●— and late control —○— paddocks cut to estimated grazing height over three years. Significant differences at P < 0.05 are indicated by separation of the bands. 96

Figure 5-11 Crude protein values for early control —●— and late control —○— indicator paddocks over three years. Significant differences at P < 0.05 are indicated by separation of the bands. 97

Figure 5-12 Crude protein values for early control —●— and late control —○— paddocks cut to estimated grazing height over three years. Significant differences at P < 0.05 are indicated by separation of the bands. 97
Figure 5-13 Neutral detergent fibre values for early control —●— and late control —○— indicator paddocks over three years. Significant differences at $P < 0.05$ are indicated by separation of the bands. 99

Figure 5-14 Neutral detergent fibre values for early control —●— and late control —○— paddocks cut to estimated grazing height over three years. Significant differences at $P < 0.05$ are indicated by separation of the bands. 99

Figure 5-15 Acid detergent fibre values for early control —●— and late control —○— indicator paddocks over three years. Significant differences at $P < 0.05$ are indicated by separation of the bands. 100

Figure 5-16 Acid detergent fibre values for early control —●— and late control —○— paddocks cut to estimated grazing height over three years. Significant differences at $P < 0.05$ are indicated by separation of the bands. 100

Figure 5-17 Soluble carbohydrate values for early control —●— and late control —○— indicator paddocks over three years. Significant differences at $P < 0.05$ are indicated by separation of the bands. 102

Figure 5-18 Soluble carbohydrate values for early control —●— and late control —○— paddocks cut to estimated grazing height over three years. Significant differences at $P < 0.05$ are indicated by separation of the bands. 102

Figure 5-19 Lipid values for early control —●— and late control —○— indicator paddocks over three years. Significant differences at $P < 0.05$ are indicated by separation of the bands. 103

Figure 5-20 Lipid values for early control —●— and late control —○— paddocks cut to estimated grazing height over three years. Significant differences at $P < 0.05$ are indicated by separation of the bands. 103
Figure 5-21 Ash values for early control —●— and late control —○— indicator paddocks over three years. Significant differences at $P < 0.05$ are indicated by separation of the bands. .. 104

Figure 5-22 Ash values for early control —●— and late control —○— paddocks cut to estimated grazing height over three years. Significant differences at $P < 0.05$ are indicated by separation of the bands. .. 104

Figure 5-23 Mean daily milk yield (l cow$^{-1}$ day$^{-1}$) for early control —●— and late control —○— cows over three years, adjusted using initial milk yield as covariate. Significant differences are indicated by $+ P < 0.10$ and $* P < 0.05$. Standard error of the mean (SEM) for early control ● and late control ○ means ($n =$ approx. 120). .. 107

Figure 5-24 Mean daily milk fat (%) for early control —●— and late control —○— cows over three years, adjusted using initial milk fat as covariate. Significant differences are indicated by $+ P < 0.10$ and $* P < 0.05$. Standard error of the mean (SEM) for early control ● and late control ○ means ($n =$ approx. 120). .. 108

Figure 5-25 Mean daily milk protein (%) for early control —●— and late control —○— cows over three years, adjusted using initial milk protein as covariate. Significant differences are indicated by $+ P < 0.10$ and $* P < 0.05$. Standard error of the mean (SEM) for early control ● and late control ○ means ($n =$ approx. 120). .. 109

Figure 5-26 Mean daily milk solids production (kg MS cow$^{-1}$ day$^{-1}$) for early control —●— and late control —○— cows over three years, adjusted using initial milk solids as covariate. Significant differences are indicated by $+ P < 0.10$ and $* P < 0.05$. Standard error of the mean (SEM) for early control ● and late control ○ means ($n =$ approx. 120). .. 111
Figure 5-27 Mean monthly liveweight (kg) values for early control —●— and late control —○— cows over three years, adjusted by using initial liveweight as covariate. Significant differences are indicated by + P < 0.10 and * P < 0.05. Standard error of the mean (SEM) for early control ● and late control ○ means (n = approx. 120). 114

Figure 5-28 Mean monthly condition score values for early control —●— and late control —○— cows over three years, adjusted by using initial liveweight as covariate. Significant differences are indicated by + P < 0.10 and * P < 0.05. Standard error of the mean (SEM) for early control ● and late control ○ means (n = approx. 120). 115

Chapter Six:

Figure 6-1 Comparison of actual farmlet —●— and simulated farmlet with unmodified parameters —○— on (a) numbers of milking cows, (b) herbage accumulation rates, (c) pre-grazing (top) and post-grazing (bottom) pasture covers, (d) herbage allowances, (e) herbage intakes and (f) milksolids production. 162

Figure 6-2 Comparison of actual farmlet —●— and simulated farmlet with modified parameters —○— on (a) numbers of milking cows, (b) herbage accumulation rates, (c) pre-grazing (top) and post-grazing (bottom) pasture covers, (d) herbage allowances, (e) herbage intakes and (f) milksolids production. 163

Figure 6-3 Simulated late control without —●— and with a 5-10% increase in herbage accumulation rate —○— for (a) numbers of milking cows, (b) herbage accumulation rates, (c) pre-grazing (top) and post-grazing (bottom) pasture covers, (d) herbage allowances, (e) herbage intakes and (f) milksolids production. 167
Figure 6-4 Effect of feeding conserved forage back to milking cows in summer on (a) numbers of milking cows, (b) herbage accumulation rates, (c) pre-grazing (top) and post-grazing (bottom) pasture covers, (d) herbage allowances, (e) herbage intakes and (f) milksolids production for simulated early control —●— and late control --○-- farmlets. 172

Figure 6-5 Effect of feeding conserved forage back to dry cows in winter on (a) numbers of milking cows, (b) herbage accumulation rates, (c) pre-grazing (top) and post-grazing (bottom) pasture covers, (d) herbage allowances, (e) herbage intakes and (f) milksolids production for simulated early control —●— and late control --○-- farmlets. 175

Figure 6-6 Effect of decreasing cow numbers to 115 cows on (a) numbers of milking cows, (b) herbage accumulation rates, (c) pre-grazing (top) and post-grazing (bottom) pasture covers, (d) herbage allowances, (e) herbage intakes and (f) milksolids production for simulated early control —●— and late control --○-- farmlets. 179

Figure 6-7 Effect of increasing cow numbers to 135 cows on (a) numbers of milking cows, (b) herbage accumulation rates, (c) pre-grazing (top) and post-grazing (bottom) pasture covers, (d) herbage allowances, (e) herbage intakes and (f) milksolids production for simulated early control —●— and late control --○-- farmlets. 180

Figure 6-8 Effect of not conserving forage on (a) numbers of milking cows, (b) herbage accumulation rates, (c) pre-grazing (top) and post-grazing (bottom) pasture covers, (d) herbage allowances, (e) herbage intakes and (f) milksolids production for simulated early control —●— and late control --○-- farmlets. 184
Figure 6-9 Effect of increasing the quantity of forage conserved on (a) numbers of milking cows, (b) herbage accumulation rates, (c) pre-grazing (top) and post-grazing (bottom) pasture covers, (d) herbage allowances, (e) herbage intakes and (f) milksolids production for simulated early control —●— and late control —○— farmlets.