Copyright© owned by the author of this thesis. Permission is given for a copy to be downloaded by an individual for the purposes of research and private study only. The thesis may not be reproduced elsewhere without the permission of the author.
Wavelet Signal Processing of Human Muscle Electromyography Signals

By Amur Hamed Mohammed Almanji

A thesis in partial fulfilment of the requirement for the degree of Masters of Engineering in Mechatronics

Massey University
Albany
New Zealand

2010
Abstract

A novel tool of biosignal processing is proposed to identify human muscle action through sEMG. The tool is based on the integration of continuous wavelet transforms, the Wavelet time entropy and the Wavelet frequency entropy to identify muscle actions through sEMG. The experiments are carried out on triceps, biceps and flexor digitorum superficialis (FDS) muscles. sEMG signals are measured at different intensities of FDS muscle contractions in order to verify the consistency of results. By taking the average entropies and basing it on the lowest average wavelet entropy, it was found in calibrated experiments that the complex Shannon wavelet family is the best candidate to identify the muscle activities among: derivative of Gaussians wavelet family, derivative of complex Gaussians wavelet family, complex Morlet family, Symlets, Coiflets and Daubechies wavelet families. Moreover, the results are consistent with the time-variant signal. The results presented in this paper have futuristic engineering implications in biomedical engineering and bio-robotic applications.

The proposed method has the potential of development, improvement and extension to include other wavelets. Future work includes compromising two wavelets that have different properties on both time and frequency domains, such as the complex Shannon wavelet (with very good frequency resolution but a slow decay in the time domain) and the Meyer wavelet (with good frequency resolution but a faster decay than the complex Shannon wavelet in the time domain), in order to produce optimal results of Wavelet time entropy and Wavelet frequency entropy.
Preface

This report is a result of my Master’s Thesis project conducted at Massey University, Albany Campus.

I wish to express my gratitude to my supervisor Dr Jen-Yuan Chang (James); without his unlimited support and valuable guidance this thesis would not have been possible.

It is a pleasure to thank Dr Carlo Liang for his valuable explanations of the mathematical aspects in my research, Dr Steven Brown for his unique assistance in neuromuscular systems, Simon Bennets for his help in the laboratory setup and data measurements.

Finally, I would like to thank Maha Osman, all my friends and family members for their unlimited support. Their support, both direct and indirect, gave me confidence during times of difficulty.

I hope this report will guide knowledge seekers to further development in the world. I would like to conclude my preface with the following proverb:

A drop of knowledge is greater than an ocean of strength.
Table of Contents

Abstract ... i

Preface ... ii

Table of Contents .. iii

Abbreviations ... vi

List of Figures ... vii

List of Tables ... x

Chapter 1: Introduction .. 1

1.1 Project Overview ... 1

Chapter 2: Literature Review ... 3

2.1 Neuromuscular systems and Electromyography signals .. 3

2.1.1 The mechanism of motor units’ recruitment .. 5

2.2 Signal Processing Techniques and Feature Extraction Method 6

2.2.1 Hilbert Huang Transforms (HHT) .. 8

2.2.1.1 Empirical Mode Decomposition (EMD) ... 9

2.2.1.2 The EMD algorithm ... 9

2.2.1.3 Hilbert Transform .. 12

2.2.2 Continuous Wavelet Transform (CWT) .. 13

2.2.2.1 Introduction to CWT .. 13

2.2.2.2 Mother wavelet requirement .. 14

2.2.2.3 Uncertainty (time resolution and frequency resolution) 15

2.2.2.4 Mother Wavelet vs. Father Wavelet (scaling wavelet) 19

2.2.2.5 Mother Wavelet Types ... 19

2.2.2.5.1 Mexican hat wavelet .. 19

...
2.2.2.5.2 Derivative of Gaussian (DOG) wavelets..22

2.2.2.5.3 Derivative of Complex Gaussian (DOCG) wavelets..................................23

2.2.2.5.4 Complex Morlet wavelet ..23

2.2.2.5.5 Meyer wavelet ..24

2.2.2.5.6 Complex Shannon wavelet..25

2.2.2.5.6 Daubechies, Symlets, and Coiflets wavelet family27

2.2.3 Short Time Fourier Transform (STFT)..30

2.2.4 Comparison of signal processing techniques ...30

2.2.4.1 Engineering judgment of the best signal processing technique31

2.3 Feature Extraction analysis ..32

2.3.1 Introduction ..32

Chapter 3: Experiment Design and Setup ..35

3.1 Experiment Setup ..36

3.2 Experiment Measurements ..37

3.3 MATLAB code implementation ...39

Chapter 4: Results, Discussion and Analysis ..41

4.1 Biceps muscle ..41

4.1.1 Complex Morlet ...41

4.1.2 Complex Shannon ..44

4.1.3 Symlets, Coiflets and Daubechies ...46

4.1.4 Derivative of Gaussian (DOG) and Derivative of Complex Gaussian (DOCG) ..47

4.1.5 Comparison of different lowest wavelet entropies ...48

4.1.6 Data Consistency ..50

4.2 Flexor Digitorum Superficialis muscle ...50

4.3 Consistency of results on a female subject ..53

4.4 Results Analysis ...55
Chapter 5: Conclusion, Constraints and Future Work ...57

5.1 Conclusion ..57

5.2 Constraints ..58

5.2.1 Complexity of the neuromuscular system and lacking experience58

5.2.2 Off-line processing vs. on-line processing ..58

5.2.3 Software functions ...59

5.3 Future Work ...59

Reference ..60

Appendices ...65
Abbreviations

CWT: Continuous Wavelet Transform
DOCG: Derivative of Complex Gaussian
DOG: Derivative of Gaussian
EMD: Empirical Mode Decomposition
EMG: Electromyography
FDS: Flexor Digitorum Superficial
GT: Gabor Transform
HHT: Hilbert Huang Transform
IMF: Intrinsic Mode Function
sEMG: Surface Electromyography
SNR: Signal Noise Ratio
STFT: Short Time Fourier Transform
TF: Time-Frequency
TFA: Time-Frequency Analysis
WFE: Wavelet Frequency Entropy
WT: Wavelet Transform
WTE: Wavelet Time Entropy
WFB: Wavelet Filter Bank
WVD: Wigner-Ville Distribution
List of Figures

Figure 1: Motor Units configuration (Toxin, 2009) ... 4
Figure 2: Configuration of neuromuscular system (Toxin, 2009)... 5
Figure 3: Raw sEMG signal is a sum of multiple Motor units’ action potential trains 6
Figure 4: Signal processing for pattern classification in a typical application (Sejdic, Djurovic & Jiang, 2009) ... 7
Figure 5: Hilbert Huang Transform flowchart.. 8
Figure 6: Empirical Mode Decomposition flowchart (Feng, Ding, & Jiang, 2010; Yu, Cheng, & Yang, 2005; Yan & Gao, 2006) .. 11
Figure 7: Heisenberg Box of different time-frequency resolutions of a wavelet 16
Figure 8: Bandwidth and central frequency .. 17
Figure 9: Bandwidth vs. Central frequency of STFT .. 18
Figure 10: Bandwidth vs. Central frequency of CWT (Lee, Lee, Kim, Min & Hong, 1999) 18
Figure 11: Nonlinear scaling wavelet ... 19
Figure 12: Mexican hat (time domain) ... 21
Figure 13: Energy spectrum of Mexican hat (frequency domain), central frequency is 0.251 Hz (see section two of appendices)... 21
Figure 14: 5th -DOG (time domain) ... 22
Figure 15: 8th -DOCG (time domain) ... 23
Figure 16: Complex Morlet (time domain) ... 24
Figure 17: Meyer wavelet (time domain) ... 25
Figure 18: Complex Shannon wavelet (frequency domain) ... 26
Figure 19: Complex Shannon, low central frequency (time domain) .. 26
Figure 20: Complex Shannon, high central frequency (time domain) 27
Figure 21: Daubechies family (order 2 and 10) .. 28
Figure 22: Symlets family (order 2 and 10) .. 28
Figure 23: Coiflets family (order 2 and 10) .. 29
Figure 24: Variable resolution of time and frequency in wavelet transform 32
Figure 25: Picture of implementation of WTE and WFE. (WTE.X, X: sample number, WFE.Y: Y: Frequency) .. 34
Figure 26: Methodology of analysis sEMG using CWT, WTE and WFE ... 35
Figure 27: Devices and apparatus used in the experiment ... 36
Figure 28: Placement of sEMG electrodes on muscles ... 37
Figure 29: Typical biceps sEMG signal acquired by the experiment apparatus, sampling rate is 1k samples per second ... 38
Figure 30: Measured percent contraction of FDS muscle over time ... 38
Figure 31: Measured sEMG vs. force of FDS muscle over time. Sampling rate is 1k samples per second . 39
Figure 32: Frequency to scale conversion .. 40
Figure 33: Wavelet time entropy of complex Morlet (constant frequency bandwidth, variable central frequency) ... 42
Figure 34: Wavelet frequency entropy of complex Morlet (constant frequency bandwidth, variable central frequency) ... 42
Figure 35: Wavelet time entropy of complex Morlet (variable frequency bandwidth, constant central frequency) ... 43
Figure 36: Wavelet time entropy of complex Morlet (variable frequency bandwidth, constant central frequency) ... 43
Figure 37: Wavelet time entropy of complex Shannon (constant frequency bandwidth, variable central frequency) ... 44
Figure 38: Wavelet frequency entropy of complex Shannon (constant frequency bandwidth, variable central frequency) ... 45
Figure 39: Wavelet time entropy of complex Shannon (variable frequency bandwidth, constant central frequency) ... 45
Figure 40: Wavelet frequency entropy of complex Shannon (variable frequency bandwidth, constant central frequency) ... 46
Figure 41: Wavelet time entropy of Symlets, Coiflets and Daubechies ... 46
Figure 42: Wavelet frequency entropy of Symlets, Coiflets and Daubechies ... 47
Figure 43: Wavelet time entropy of DOG and DOCG ... 47
Figure 44: Wavelet frequency entropy of DOG and DOCG ... 48
Figure 45: Comparisons of lowest wavelet entropy values of Biceps ... 49
Figure 46: Entropy values of complex Shannon on biceps sEMG showing its consistency 50
Figure 47: Lowest WTE & WFE values of Complex Shannon family along different force contraction 51
Figure 48: Comparison of different lowest wavelets entropies A: 15%, B: 50%, C: 70%, D: 90% 52
Figure 49: Typical biceps sEMG signal acquired by the experiment apparatus, sampling rate is 1k samples per second...

Figure 50: Measured percent contraction of FDS muscle over time (female subject).

Figure 51: Lowest WTE & WFE values of Complex Shannon family along different force contraction (female).
List of Tables

Table 1: Comparison of surface and indwelling EMG ... 3
Table 2: Empirical mode Decomposition .. 10
Table 3: Comparison between STFT, WT and HHT ... 31
Table 4: Comparison of lowest wavelet entropies ... 49
Table 5: Lowest WTE values (Complex Shannon Family) ... 54