Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A SIMULATION STUDY OF THE EFFECTS OF APPLYING JIT MANUFACTURING TECHNIQUES IN A JOB SHOP ENVIRONMENT WITH KANBAN-BASED PRODUCTION CONTROL

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
in
Production Technology
at Massey University, Palmerston North
New Zealand

Jing-Wen Li
1999
ABSTRACT

Just-in-Time (JIT) manufacturing has long been considered effective for improving the performance of job shop manufacturing. For application in a job shop environment, the most often suggested JIT techniques include: cellular manufacturing, processing and transporting parts one at a time (i.e. single-unit production and conveyance), demand-pull production control with the Kanban (i.e. a visual signal), employing faster material handling facilities, and reducing the variability of setup / processing time.

However, how and to what extent these suggested JIT techniques can affect the performance of job shop manufacturing is still not well explored. Accordingly, the motivation behind this study was to gain more understanding of the effects of implementing the suggested JIT techniques on the production performance in a job shop environment. Two simulation experiments were carried out to investigate the effects of five influential factors that are related to the application of the JIT techniques in a job shop.

The findings through this study show that functional layout was more suitable for a Kanban-controlled job shop when the achievable amount of setup time reduction through the use of cellular manufacturing was small. On the other hand, if a large setup time reduction was achievable through cellular manufacturing, cellular layout should be adopted. As for a medium amount of setup time reduction achievable through cellular manufacturing, the performances for the two layouts were similar, except that cellular layout was more suitable with a medium to low setup time variability.

Although the use of single-unit production and conveyance (SUPC) in cellular layout had been emphasised by many JIT proponents, we found that SUPC was only suitable for a Kanban-controlled job shop with unidirectional intra-cell production flow and a large amount of setup time reduction achievable through cellular manufacturing.
The effects of material handling speed and variability of setup / processing time were not as essential as those of other influential factors. Therefore, to attain better performance for job shop manufacturing with Kanbans, employing faster material handling facilities and reducing setup / processing time variability should only be considered after the selection of appropriate shop layout and production flow patterns.
ACKNOWLEDGEMENTS

I would like to thank my Chief Supervisor, Professor Don Barnes for his positive attitude towards this research project, enthusiastic guidance and careful examination of the draft of the thesis.

I would also like to thank Dr. Saeid Nahavandi of Deakin University, Australia, who was my Chief Supervisor at the commencement of the project. This project wouldn’t have been undertaken without his encouragement. Thanks are also due to Dr. Jamil Khan, my Co-Supervisor for his support throughout the course of this project.

I have appreciated the funding provided by Massey University for the project through the Graduate Research Fund.

Finally, I would like to express my deepest gratitude and love to my wife, Ting-Fen and my children. Their support and understanding has made my study possible.
TABLE OF CONTENTS

Abstract ii
Acknowledgements iv
Table of Contents v

Chapter 1 Introduction

1.1 Characteristics of Job Shop Manufacturing 1
1.2 The Need for Reforming Job Shop Manufacturing 3
1.3 JIT Techniques for Reforming Job Shop Manufacturing 4
1.4 Purposes of this Research Project 5

Chapter 2 Advantages of Adopting JIT Manufacturing Techniques in Job Shop Environments

2.1 Adopting Cellular Manufacturing 9
2.2 Employing Single-Unit Production & Conveyance and Faster Material Handling Facilities 11
2.3 Implementing Demand-Pull Production Control with Kanbans 12
2.4 Reducing the Variability of Setup and Processing Times 15

Chapter 3 Implementation of the Kanban System in Job Shop Environments

17

Chapter 4 Research Questions to be Answered by This Study

21

Chapter 5 Design of the Experimental System

5.1 Design of the Operation Sequences of the Parts Manufactured 24
5.2 Cell Configuration Design for the Cellular Layouts 27
 5.2.1 Cell configuration design for the cellular layout with backtracking flow allowed 28
 5.2.2 Cell configuration design for the cellular layout with unidirectional flow 37
5.3 Configuration Design for the Functional Layout
5.4 Design of the Shop Layout
 5.4.1 Preparation of the flow relationship diagrams
 5.4.2 Preparation of the space relationship diagrams
 5.4.3 Determination of the inter-cell / department and intra-cell travelling distances
5.5 Design of the Shop Operations
 5.5.1 Arrival of jobs
 5.5.2 Production control using a hybrid push/pull Kanban system
 5.5.3 Processing of jobs
 5.5.4 Material handling speed settings

Chapter 6 Design of the First Set of Experiments
 6.1 Selection of the Independent Variables and Their Levels to be Investigated
 6.2 Selection of the Dependent Variables to be Measured
 6.3 Selection of the Appropriate Statistical analyses of the Simulation Output
 6.3.1 Statistical output analyses by the F-test
 6.3.2 Statistical output analyses by the planned comparison

Chapter 7 Development and Operation of the Simulation Model for the First Set of Experiments
 7.1 Selection of the Simulation Language
 7.2 Development / Coding of the Simulation Model
 7.2.1 Description of the preamble
 7.2.2 Description of the main program and related routines
 7.2.3 Description of the machines-level model
 7.2.4 Description of the workstation-level model
 7.2.5 Description of the cell-level model
 7.2.6 Description of the shop-level model
 7.3 Verification of the Simulation Model
 7.4 Running the Simulation Program
7.4.1 Determination of the initial transient period
7.4.2 Determination of the numbers of conveyance Kanban-container sets
7.4.3 Determination of the simulation run length (replications)
7.4.4 Performing the production simulation runs

Chapter 8 Analyses and Discussion of the Simulation Results for the First Set of Experiments

8.1 Simulation Results and Discussions for the High PFSRF level
 8.1.1 Discussions of the simulation output presented in bar charts
 8.1.2 Discussions of the results of overall F-tests and planned comparisons
8.2 Simulation Results and Discussions for the Medium PFSRF Level
 8.2.1 Discussions of the simulation output presented in bar charts
 8.2.2 Discussions of the results of overall F-tests and planned comparisons
8.3 Simulation Results and Discussions for the Low PFSRF Level
 8.3.1 Discussions of the simulation output presented in bar charts
 8.3.2 Discussions of the results of overall F-tests and planned comparisons

Chapter 9 Design and Execution of the Second Set of Experiments - For Investigating the Effects of the Variability of Setup and Processing Times

9.1 Design of the Experimental System
9.2 Selection of the Independent Variables and Their Levels to be Investigated
9.3 Selection of the Dependent Variables to be Measured
9.4 Settings of the Material Handling Speed
9.5 Selection of the Appropriate Statistical Analyses of the Simulation Output
 9.5.1 Statistical output analyses by the F-test
 9.5.2 Statistical output analyses by the planned comparison
9.6 Development and Operation of the Simulation Model
<table>
<thead>
<tr>
<th>Chapter 10</th>
<th>Analyses and Discussions of the Simulation Results for the Second Set of Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Simulation Results and Discussions for the High PFSRF level</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Discussions of the simulation output presented in bar charts</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Discussions of the results of overall F-tests and planned comparisons</td>
</tr>
<tr>
<td>10.2</td>
<td>Simulation Results and Discussions for the Medium PFSRF Level</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Discussions of the simulation output presented in bar charts</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Discussions of the results of overall F-tests and planned comparisons</td>
</tr>
<tr>
<td>10.3</td>
<td>Simulation Results and Discussions for the Low PFSRF Level</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Discussions of the simulation output presented in bar charts</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Discussions of the results of overall F-tests and planned comparisons</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 11</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Effect of Shop Layout and Production Flow Patterns</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Comparison between the cellular layout and the functional layout</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Comparison between the cellular layouts with unidirectional flow and those with backtracking flow allowed</td>
</tr>
<tr>
<td>11.1.3</td>
<td>Comparison between the cellular layouts with SUPC and those with BPC</td>
</tr>
<tr>
<td>11.2</td>
<td>Effect of Material Handling Speed</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Conclusions for the high PFSRF level</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Conclusions for the medium PFSRF level</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Conclusions for the low PFSRF level</td>
</tr>
<tr>
<td>11.3</td>
<td>Effect of the Variability of Setup and Processing Times</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Conclusions for the high PFSRF level</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Conclusions for the medium PFSRF level</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Conclusions for the high PFSRF level</td>
</tr>
<tr>
<td>11.4</td>
<td>Effect for the Extent of Setup Time Reduction Achievable through Cellular Manufacturing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 12</th>
<th>Managerial Implications and Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Managerial Implications</td>
</tr>
</tbody>
</table>
12.2 Recommendations for Industrial Applications

12.2.1 Vulnerability of the Kanban-based systems to disturbances
12.2.2 Incorporate the planning of cellular manufacturing in TQM activities
12.2.3 Using simulation and statistical methods correctly

12.3 Recommendations for Future Research Work

12.3.1 Investigating the effects of setup times and the setup to processing time ratio
12.3.2 Investigating the influence of setup time reduction by improving setup operations
12.3.3 Assessing the importance of influential factors using fractional factorial design

References

Appendixes

Appendix 1 From-To Charts for the Various Shop Layouts
Appendix 2 Flow-of-Material Intensities for the Various Shop Layouts
Appendix 3 Flow Relationship Diagrams for the Various Shop Layouts
Appendix 4 Space Relationship Diagrams for the Various Shop Layouts
Appendix 5 Inter-Cell / Department and Intra-Cell Travelling Distance Matrices
Appendix 6 Dependent Variable Moving Average Plots for the First Set of Experiments
Appendix 7 Numbers of Intra-Cell and Inter-Cell Conveyance Kanbans
Appendix 8 Summary of the Simulation Output for the First Set of Experiments
Appendix 9 Summary of Overall F-test Results for the First Set of Experiments
Appendix 10 Results of Planned Comparison for the First Set of Experiments
Appendix 11 Dependent Variable Moving Average Plots for the Second Set of Experiments
Appendix 12 Summary of the Simulation Output for the Second Set of Experiments
Appendix 13 Summary of Overall F-test Results for the Second Set of Experiments 288
Appendix 14 Results of Planned Comparison for the Second Set of Experiments 290
Appendix 15 List of Publications 296