Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE MEASUREMENT AND CORRELATES
OF WOMEN'S HEALTH CARE UTILIZATION

A thesis presented in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy
in Psychology

at Massey University
Palmerston North
New Zealand.

Gillian L Madison-Smith
1998
ABSTRACT

Andersen’s Behavioural Model of Health Care Utilization was used to examine New Zealand women’s use of six health care services. The model conceptualises health care utilization as a function of predisposing, enabling and need variables. Predisposing variables encompass the individual’s characteristics which are present prior to the onset of illness that represents their propensity to use health services, for example, age. Enabling variables represent features affecting the means to obtain services, for example, income. Need variables represent the presence of illness, either self perceived or professionally diagnosed. Of the six services investigated in the present study, two were non-medical (use of disability and bed days) and four were medical (use of General Practitioners (GPs), health professionals, hospitals and prescription items). The study examined a geographically stratified sample of 964 women between the ages of 19 and 90 drawn from a range of New Zealand households. Five hypotheses were tested for each of the six health services. Incorporating new measures to capture the model’s components, the first two hypotheses replicated the model by examining use of health services in terms of ‘contact’ and ‘volume’. Contact focused on whether or not a service had been accessed, while volume focused on the amount of consumption that occurred over a defined catchment period. Predisposing and enabling characteristics were important predictors of contact; but need became more important when predicting ongoing service use. The last three hypotheses expanded the model by examining the effects of trauma and Post-Traumatic Stress Disorder (PTSD) on health care utilization. Traumatic events were associated with ongoing use of bed days and hospitals. PTSD was associated with use of bed days, hospitals, and GPs. Suggestions are made regarding future research in terms of overcoming research limitations and expanding the field. These included improving measures to capture needs for women of all ages as opposed to focusing on measures capturing chronic conditions best suited for the elderly, examination of service use in terms of episode events and suggested developments for the model incorporating reciprocal and feedback loops to account for traumatic events, PTSD, personal health habits and satisfaction with use of health services.
ACKNOWLEDGEMENTS

I owe special thanks and a debt of gratitude to my supervisor, Dr. Ross Flett, who presented me with the opportunity to participate in health care utilization research and whose guidance was clear, decisive and actionable. Ross smoothly assisted my transition to a new country and provided outstanding support through out the PhD process. His words of encouragement and special sense of humor kept life in perspective. One could not ask for a better supervisor.

Thanks are due to my second supervisor, Dr. Kevin Ronan, for comments on early thesis drafts. Grateful thanks are due to the School of Psychology, Massey University and in particular Professor Nigel Long for creating a supportive environment for my work.

For reliable and valid statistical advice, thanks to Dr. Frederic Wolinsky, Dr. John Spicer and Mr. Duncan Hedderly.

The support of the New Zealand Accident Compensation Corporation is gratefully acknowledged. Thanks to the individuals who consented to participate in this research, to the trained interviewers at the National Research Bureau, and Dr Carol McDonald for assistance in data entry and setting up the original data files. Fellow PhD candidates, Ms. Cathie Collinson and Mr. Rody Withers have also supported my work. Cathie did an extraordinary job assisting with proof-reading, and Rody’s insightful knowledge of the health care literature was gratefully received.

On a personal note, I would like to thank my father Roy, who is the very definition of generosity, honesty and integrity; and my mother Mignon, whose grace, compassion and kindness is the standard bearer to which all humans aspire. It is their foresight that has enabled me to achieve my goals.

Finally, the support crew of Mrs. Deborah Allpike, Ms. Leigh Coombes, Ms. Caryl Huzziff, and Mrs. Alethea Lombard is not to be overlooked. And my last thanks go to the office cleaners, who cleaned quietly in the early hours of the mornings while I slept under my desk.
More isn’t always better Linus. Sometimes, it’s just more.

- Julia Ormond [ABRINA, Paramount Pictures, 1996]
THE MEASUREMENT AND CORRELATES OF WOMEN'S HEALTH CARE UTILIZATION

TABLE OF CONTENTS

Abstract ... i
Acknowledgements .. ii
Appendices ... viii
List of figures ... ix
List of tables .. ix

CHAPTER 1: EXAMINING WOMEN'S HEALTH 1
1.1 Chapter preview .. 2
1.2 Why women's health? ... 3
1.3 An historical perspective 3
1.4 Andersen's Behavioural Model of Health Care Utilization 9
1.5 Relation to this thesis .. 16
1.6 Chapter overview .. 17

CHAPTER 2: PREDISPOSING CHARACTERISTICS, WOMEN AND UTILIZATION 19
2.1 Chapter preview .. 20
2.2 Demographics .. 20
2.3 Social structure ... 25
2.4 Health beliefs .. 32
2.5 Summary: predisposing characteristics 36
2.6 Chapter overview .. 37

CHAPTER 3: ENABLING CHARACTERISTICS, WOMEN AND UTILIZATION 38
3.1 Chapter preview .. 39
3.2 Affordability (ability to pay) 39
3.3 Acceptability (patient attitude toward provider characteristics) 43
3.4 Accessibility (geographic location of supply) 45
3.5 Availability (same day availability) 47
3.6 Accommodation (waiting room time) 47
3.7 Chapter overview .. 49
CHAPTER 4: NEED CHARACTERISTICS, WOMEN AND UTILIZATION

4.1 Chapter preview

4.2 Self rated health

4.3 Physical health

4.4 Mental health

4.5 Traumatic events and PTSD

4.6 Chapter overview

CHAPTER 5: HEALTH CARE UTILIZATION

5.1 Chapter preview

5.2 Contact vs volume analyses

5.3 Use of non-medical services

5.4 Use of medical services

5.5 Chapter overview

CHAPTER 6: RESEARCH RATIONALE

6.1 Chapter preview

6.2 Summary of the model

6.3 Summary of arguments for objectives

6.4 Summary of objectives and research questions

6.5 Summary of hypotheses

6.6 Chapter overview

CHAPTER 7: METHODOLOGY

7.1 Chapter preview

7.2 Design

7.3 Respondents and sampling procedure

7.4 Procedure

7.5 Measures

7.6 Analysis overview

7.7 Chapter overview
CHAPTER 8: RESULTS: THE SAMPLE DESCRIBED STATISTICALLY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Chapter preview</td>
<td>100</td>
</tr>
<tr>
<td>8.2</td>
<td>Predisposing characteristics</td>
<td>100</td>
</tr>
<tr>
<td>8.3</td>
<td>Enabling characteristics</td>
<td>105</td>
</tr>
<tr>
<td>8.4</td>
<td>Need characteristics</td>
<td>106</td>
</tr>
<tr>
<td>8.5</td>
<td>Trauma characteristics</td>
<td>110</td>
</tr>
<tr>
<td>8.6</td>
<td>Health care utilization measures</td>
<td>112</td>
</tr>
<tr>
<td>8.7</td>
<td>Chapter overview</td>
<td>116</td>
</tr>
</tbody>
</table>

CHAPTER 9: RESULTS: HYPOTHESIS 1: CONTACT

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Chapter preview</td>
<td>118</td>
</tr>
<tr>
<td>9.2</td>
<td>Hypothesis one: ‘contact’</td>
<td>119</td>
</tr>
<tr>
<td>9.3</td>
<td>Data screening for ‘contact’ analyses</td>
<td>119</td>
</tr>
<tr>
<td>9.4</td>
<td>Analysis of ‘contact’ measures</td>
<td>121</td>
</tr>
<tr>
<td>9.5</td>
<td>Summary (contact)</td>
<td>138</td>
</tr>
<tr>
<td>9.6</td>
<td>Chapter overview</td>
<td>142</td>
</tr>
</tbody>
</table>

CHAPTER 10: RESULTS: HYPOTHESIS 2: VOLUME

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Chapter preview</td>
<td>144</td>
</tr>
<tr>
<td>10.2</td>
<td>Hypothesis two: ‘volume’</td>
<td>144</td>
</tr>
<tr>
<td>10.3</td>
<td>Data screening for ‘volume’ analyses</td>
<td>144</td>
</tr>
<tr>
<td>10.4</td>
<td>Analysis of ‘volume’ measures</td>
<td>145</td>
</tr>
<tr>
<td>10.5</td>
<td>Summary (volume)</td>
<td>164</td>
</tr>
<tr>
<td>10.6</td>
<td>Chapter overview</td>
<td>168</td>
</tr>
</tbody>
</table>

CHAPTER 11: RESULTS: HYPOTHESIS 3: OVERALL TRAUMA

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Chapter preview</td>
<td>170</td>
</tr>
<tr>
<td>11.2</td>
<td>Hypothesis three: ‘overall traumatic events’</td>
<td>170</td>
</tr>
<tr>
<td>11.3</td>
<td>Data screening for ‘traumatic events’</td>
<td>171</td>
</tr>
<tr>
<td>11.4</td>
<td>Analysis of ‘traumatic events’</td>
<td>171</td>
</tr>
<tr>
<td>11.5</td>
<td>Summary (traumatic events)</td>
<td>180</td>
</tr>
<tr>
<td>11.6</td>
<td>Chapter overview</td>
<td>181</td>
</tr>
</tbody>
</table>
APPENDICES

Appendix A: Predisposing measures
Appendix B: Enabling measures
Appendix C: Need measures
Appendix D: Trauma measures
Appendix E: Health care utilization measures
Appendix F: Interactive effects of PTSD x trauma on use of bed days

LIST OF FIGURES

Figure 1. The Behavioural Model of Health Care Utilization (Andersen, 1968, 1995)
Figure 2. The model extended: future research using LISREL analysis
Figure 3. Interaction of PTSD and traumatic events on the use of bed days

LIST OF TABLES

CHAPTER 7
Table 1 Overview of analyses: order of entry for variables into the regression equation for the five hypotheses

CHAPTER 8
Table 2 Means, standard deviations and coding algorithms for predisposing characteristics (N=964)
Table 3 Age range: Comparison of sample (N=964) with NZ female population
Table 4 Comparative educational attainment between sample statistics, NZ population and United States population
Table 5 Crosstab frequencies for health worry and health control
Table 6 Frequency of life events
Table 7 GP satisfaction frequencies
Table 8 Means, standard deviations and coding algorithms for enabling characteristics (N=964)
Table 9 Means, standard deviations and coding algorithms for need characteristics (N=964)
Table 10 Chronic health conditions
Table 11 Means, standard deviations and coding algorithms for trauma characteristics (N=964)
Table 12 Total number of traumatic events (N=964)
Table 13 Specific traumatic events: recoded categories abstracted from 12 original TES categories (N=964)
Table 14 Frequency of use for disability days, bed days, GPs, health professionals, hospitals and prescription items

Table 15 Means, standard deviations and coding algorithms for use of non-medical and medical services (N=964)

Table 16 Crosstabs showing volume of GPs visits by age

Table 17 Health professionals consulted over 12-months

Table 18 Hospital utilization over 12-months

Table 19 Prescription items utilized over 12-months

CHAPTER 9

Table 20 Adjusted odds ratio obtained from hierarchical logistic regression modeling on the effect of predisposing, enabling and need characteristics on disability days (contact) taken over a 3-month period among New Zealand women (N=721)

Table 21 Adjusted odds ratio obtained from hierarchical logistic regression modeling on the effect of predisposing, enabling and need characteristics on bed days (contact) among New Zealand women (N=722)

Table 22 Adjusted odds ratio obtained from hierarchical logistic regression modeling on the effect of predisposing, enabling and need characteristics on GP contact among New Zealand women (N=721)

Table 23 Adjusted odds ratios obtained from hierarchical logistic regression modeling on the effect of predisposing, enabling and need characteristics on contact with health professionals among New Zealand women (N=724)

Table 24 Adjusted odds ratio obtained from hierarchical logistic regression modeling on the effect of predisposing, enabling and need characteristics on contact with hospitals among New Zealand women (N=724)

Table 25 Adjusted odds ratio obtained from hierarchical logistic regression modeling on the effect of predisposing, enabling and need characteristics on whether or not prescription items were used by New Zealand women over a 12-month period (N=716)

Table 26 Summary table for contact P, E & N*: R² improvement obtained from each stage of hierarchical logistic regression modeling contact with health services for New Zealand women

Table 27 Summary table for contact measures: Adjusted odds ratios obtained from the final stage of hierarchical logistic regression modeling on measures of whether or not health services were contacted by New Zealand women
CHAPTER 10

Table 28 Hierarchical multiple regression of predisposing, enabling and need characteristics on number of disability days taken over a 3-month period showing standardised regression coefficients, R, adjusted R² and R² change for New Zealand women, (N=345) 147

Table 29 Hierarchical multiple regression of predisposing, enabling and need characteristics on number of bed days over a 12-month period showing standardised regression coefficients, R, adjusted R² and R² change for New Zealand women, (N=327) 150

Table 30 Hierarchical multiple regression of predisposing, enabling and need characteristics on number of GP visits over a 12-month period showing standardised regression coefficients, R, adjusted R² and R² change for New Zealand women, (N=604) 153

Table 31 Hierarchical multiple regression of predisposing, enabling and need characteristics on use of health professionals over a 12-month period showing standardised regression coefficients, R, adjusted R² and R² change for New Zealand women, (N=515) 156

Table 32 Hierarchical multiple regression of predisposing, enabling and need characteristics on use of hospitals over a 12-month period showing standardised regression coefficients, R, adjusted R² and R² change for New Zealand women, (N=241) 158

Table 33 Hierarchical multiple regression of predisposing, enabling and need characteristics on number of prescription items used over a 12-month period showing standardised regression coefficients, R, adjusted R² and R² change for New Zealand women, (N=565) 162

Table 34 Summary table for volume P, E & N*: R² change (adjusted increments) and adjusted R² obtained from each stage from hierarchical OLS regression modeling of health services utilized by New Zealand women 165

Table 35 Summary table for volume measures: Standardised coefficients, R, adjusted R² and R² change obtained from the final stage of the Hierarchical Regression modeling on measures of health services for New Zealand women. 166

CHAPTER 11

Table 36 Hierarchical multiple regression of effect of significant model predictors and traumatic events on number of disability days taken over a 3-month period showing standardised regression coefficients, R, adjusted R² and R² change for New Zealand women, (N=453) 172

Table 37 Hierarchical multiple regression of effect of significant model predictors and traumatic events on number of bed days taken over a 12-month period showing standardised regression coefficients, R, adjusted R² and R² change for New Zealand women, (N=443) 174
Table 38: Hierarchical multiple regression of effect of significant model predictors and traumatic events on number of *GP visits* over a 12-month period showing standardised regression coefficients, R, adjusted R^2 and R^2 change for New Zealand women, ($N=783$)ankind 175

Table 39: Hierarchical multiple regression of effect of significant model predictors and traumatic events on use of *health professionals* over a 12-month period showing standardised regression coefficients, R, adjusted R^2 and R^2 change for New Zealand women ($N=668$)ankind 177

Table 40: Hierarchical multiple regression of effect of significant model predictors and traumatic events on use of *hospitals* over a 12-month period showing standardised regression coefficients, R, adjusted R^2 and R^2 change for New Zealand women ($N=288$)ankind 178

Table 41: Hierarchical multiple regression of effect of significant model predictors and traumatic events on use of *hospitals* over a 12-month period showing standardised regression coefficients, R, adjusted R^2 and R^2 change for New Zealand women ($N=288$)ankind 178

Table 42: R^2 change (increments) obtained from each stage, overall R^2 and adjusted R^2 from hierarchical OLS regression modeling of model predictors and traumatic events on health services utilized by New Zealand women 181

CHAPTER 12

Table 43: Hierarchical multiple regression of effect of significant model predictors and different types of traumatic events on number of *disability days taken* over a 3-month period showing standardised regression coefficients, R, adjusted R^2 and R^2 change for New Zealand women, ($N=455$)ankind 185

Table 44: Hierarchical multiple regression of effect of significant model predictors and different types of traumatic events on number of *bed days* taken over a 12-month period showing standardised regression coefficients, R, adjusted R^2 and R^2 change for New Zealand women ($N=446$)ankind 187

Table 45: Hierarchical multiple regression of effect of significant model predictors and different types of traumatic events on number of *GP visits* over a 12-month period showing standardised regression coefficients, R, adjusted R^2 and R^2 change for New Zealand women ($N=785$)ankind 188

Table 46: Hierarchical multiple regression of effect of significant model predictors and different types of traumatic events on use of *health professionals* over a 12-month period showing standardised regression coefficients, R, adjusted R^2 and R^2 change for New Zealand women ($N=670$)ankind 190

Table 47: Hierarchical multiple regression of effect of significant model predictors and different types of traumatic events on use of *hospitals* over a 12-month period showing standardised regression coefficients, R, adjusted R^2 and R^2 change for New Zealand women ($N=289$)ankind 192

Table 48: Hierarchical multiple regression of effect of significant model predictors and different types of traumatic events on number of *prescription items* used by New Zealand women over a 12-month period showing standardised regression coefficients, R, adjusted R^2 and R^2 change ($N=742$)ankind 193
Table 49 \(R^2 \) change (increments) obtained from each stage, overall \(R^2 \) and adjusted \(R^2 \) from hierarchical OLS regression modeling of model predictors and specific events on health services utilized by New Zealand women

CHAPTER 13

Table 50 Hierarchical multiple regression of effect of significant model predictors, traumatic events and PTSD on number of disability days taken over a 3-month period showing standardised regression coefficients, \(R \), adjusted \(R^2 \) and \(R^2 \) change for New Zealand women, \((N=451) \) 200

Table 51 Hierarchical multiple regression of effect of significant model predictors and traumatic events and PTSD on number of bed days taken over a 12-month period showing standardised regression coefficients, \(R \), adjusted \(R^2 \) and \(R^2 \) change for New Zealand women, \((N=438) \) 201

Table 52 Hierarchical multiple regression of effect of significant model predictors, traumatic events and PTSD on number of GP visits over a 12-month period showing standardised regression coefficients, \(R \), adjusted \(R^2 \) and \(R^2 \) change for New Zealand women, \((N=771) \) 202

Table 53 Hierarchical multiple regression of effect of significant model predictors, traumatic events and PTSD on use of healthcare professionals over a 12-month period showing standardised regression coefficients, \(R \), adjusted \(R^2 \) and \(R^2 \) change for New Zealand women, \((N=657) \) 203

Table 54 Hierarchical multiple regression of effect of significant model predictors, traumatic events and PTSD on use of hospitals over a 12-month period showing standardised regression coefficients, \(R \), adjusted \(R^2 \) and \(R^2 \) change for New Zealand women, \((N=284) \) 204

Table 55 Hierarchical multiple regression of effect of significant model predictors, traumatic events and PTSD on number of prescription items used by New Zealand women over a 12-month period showing standardised regression coefficients, \(R \), adjusted \(R^2 \) and \(R^2 \) change, \((N=728) \) 206

Table 56 Hierarchical multiple regression of effect of significant model predictors and traumatic events, PTSD and their interaction on number of bed days taken over a 12-month period showing standardised regression coefficients, \(R \), adjusted \(R^2 \) and \(R^2 \) change for New Zealand women, \((N=431) \) 207

Table 57 \(R^2 \) change (increments) obtained from each stage, overall \(R^2 \) and adjusted \(R^2 \) from hierarchical OLS regression modeling of model predictors, traumatic events and PTSD on health services utilized by New Zealand women 210

CHAPTER 14

Table 58 Summary of health services: results that supported each hypothesis 218
CHAPTER 15
Table 59 Comparison of health care studies: populations examined and total variance explained by the Andersen model ... 224
Table 60 Comparison of contact vs. volume predictors .. 227
Table 61 Profile of women not contacting health care services: Summary of significant variables for each model of the logistic hierarchical multiple regressions .. 244
Table 62 Profile of women who frequently used health services: Summary of significant variables for each step of the OLS hierarchical multiple regressions ... 249
TABLE OF CONTENTS

1.1 Chapter preview .. 2
1.2 Why women's health? .. 3
1.3 An historical perspective ... 3
 1.3.1 Political ... 4
 1.3.2 Biological .. 5
 1.3.3 Social ... 6
 1.3.4 Economic .. 8
 1.3.5 Summary: women and health care 9
1.4 Andersen’s Behavioural Model of Health Care Utilization 9
 1.4.1 Independent variables (predictors of service use) 10
 1.4.2 Dependent variables (outcome variables) 11
 1.4.3 Methodologic and research issues 12
1.5 Relation to this thesis ... 16
1.6 Chapter overview .. 17