Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
GROWTH OF PASTURE SPECIES IN THE SHADE IN RELATION TO ALDER SILVO-PASTORAL SYSTEMS

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (Ph.D.) in Pastoral Science, Institute of Natural Resources at Massey University, New Zealand

NABA RAJ DEVKOTA
2000
ABSTRACT

An increased understanding of the competitive interactions between tree species and understorey pastures is required for the development of deciduous tree based silvo-pastoral systems. In particular, the shade tolerance of pasture species likely to be used under trees in New Zealand needs to be determined. This thesis examines the effects of light intensity and quality on the growth of pasture species in a series of glasshouse experiments, and under the shade of alder trees pruned to different heights.

The shoot dry weight per plant of all grass and legume species examined showed a linear increase (P<0.0001) with % ambient photosynthetically active radiation (PAR). Highest shoot dry weight was at 73% and lowest was at 14% PAR (heavy shade). Shade also affected the tillering ability of pasture species. Under heavy shade, cocksfoot (*Dactylis glomerata* L.) produced more tillers per plant than the other grass species examined. Perennial ryegrass (*Lolium perenne* L.) had the lowest tillering in heavy shade. Under medium shade (43% ambient PAR), tiller number per plant for browntop (*Agrostis capillaris* L.) and *Poa trivialis* (*Poa trivialis* L.) was higher than other species. *Lotus* (*Lotus uliginosus* L.) produced a higher (P<0.0001) number of branches under heavy shade than white clover (*Trifolium repens* L.) and subterranean clover (*Trifolium subterraneum* L.).

Shade affected perennial ryegrass more than cocksfoot selections, especially at the lowest PAR level both in the glasshouse and the field experiment. For example, tillers per plant under tree shade, and also at the low PAR level in the glasshouse for perennial ryegrass were 18 compared with 28-29 (P<0.0001) for Wana cocksfoot and 24-27 for *PG 74* cocksfoot. Leaf area per plant for perennial ryegrass was also significantly (P<0.0001) lower than for Wana cocksfoot. Cocksfoot selections were more tolerant of heavy shade than perennial ryegrass, and Wana was the most tolerant of the cocksfoot selections of heavy shade.

There were no effects of R:FR ratio (P>0.05) on the shoot dry weight production of the pasture species examined. Similarly, the interaction between PAR × R:FR and species
was not significant (P>0.05) for most morphological characteristics when plants were not defoliated. Perennial ryegrass, Wana cocksfoot and Yorkshire fog (*Holcus lanatus* L.) at low PAR had similar yields, that higher than white clover and lotus, which were similar. However, when plants were defoliated weekly or three-weekly, Wana cocksfoot out produced Nui perennial ryegrass at low PAR/R:FR due to its ability to maintain higher leaf area and higher leaf dry weight, higher SLA, and more tillers per plant.

Herbage mass of swards in heavy and medium shade created by pruning alder trees was about 50% and 70%, respectively, of that of light shade (P<0.0001). Herbage mass was highest for cocksfoot either with lotus or white clover (P<0.0001), whereas values for perennial ryegrass and Yorkshire fog were lower and similar. Shade affected perennial ryegrass more than cocksfoot and Yorkshire fog, especially at the lowest PAR level. Cocksfoot in mixture with either white clover or lotus had the highest leaf expansion per tiller, which was in the order cocksfoot > Yorkshire fog > perennial ryegrass. There was no significant difference (P>0.05) between the pasture species in the total number of sheep grazing observations in 2 hours, but more sheep grazed in light shade than in heavy shade (P<0.05).

The research highlighted the importance of measuring shade tolerance of pasture species in terms of attributes that determined growth and persistence. As perennial pasture species are regularly defoliated they must be able to vegetatively reproduce in the shade as well as be productive. Shade tolerance of the pasture species examined varied greatly, but their relative shade tolerance was also sensitive to the level of shade. Although, cocksfoot was the most shade tolerant species in heavy shade (PAR level <200 μmoles photons m⁻² s⁻¹) it was similar to other species in medium shade (PAR level ≥ 400 μmoles photons m⁻² s⁻¹ or more).

Light intensity was more important for growth and vegetative reproduction than light quality for pasture species under shade. Likewise, pruning trees was more important for pasture production under tree shade. The morphological attributes related to shade tolerance of New Zealand hill country pastoral plants were identified in this thesis as tiller number per plant, leaf area, specific leaf area (SLA), and leaf appearance interval.
For alder silvo-pastoral systems with high tree density and heavy shade (PAR level <200 μmoles photons m⁻² s⁻¹) cocksfoot in combination with either lotus or white clover was the most productive pasture, while perennial ryegrass, or browntop, with white clover was as productive as cocksfoot if shade was maintained at a PAR level >200 μmoles photons m⁻² s⁻¹). Additionally, cocksfoot and lotus are both tolerant of the low to medium soil fertility and seasonal dry periods likely to be encountered on the hill country where deciduous trees are also used to control soil erosion.

Shade had a marked effect on tillering as well as on shoot dry weight, and is the most significant factor determining the understorey pasture production. However, the decrease in pasture production due to shading can be managed by appropriate pruning practices and choice of appropriate pasture species.
GLOSSARY AND ABBREVIATIONS OF TERMS USED

Agroforestry: it refers to silvo-pastoral systems oriented to timber production or soil erosion control. Agroforestry in New Zealand is often used synonymously with “farm forestry” i.e. farmers managing forest plantation on the farmland. Here, agroforestry is taken as an intensive land management practice using trees, pastures, and livestock on the same area of land at the same time.

AGR: absolute growth rate.

Agrosilviculture: a combination of crops plus trees.

Agrosilvopastoral: covers crops, pasture/animal and trees.

Breast height: breast height in New Zealand is 1.4 m above ground on the uphill side of the tree. Many other countries including Australia, use 1.3 m as breast height.

°**C**: degree Celsius.

C: carbon.

C₃: photosynthetic pathway of carbon assimilation for most of the temperate pasture species.

C₄: photosynthetic pathway of carbon assimilation for most of the tropical pasture species.

Canopy: the part of a tree consisting of branches and foliage. “Canopy closure” is the stand age when the branches at neighbouring trees touch, or nearly so, thereby restricting light to the forest floor.
CP: crude protein.

Cultivar name: all species and cultivars are fully named in the materials and methods section of each chapter. Elsewhere they are presented in an abbreviated form e.g. ‘Grasslands Wana’ has been referred to as Wana.

DBH: tree diameter at breast height.

Deciduous tree: broad-leaved hardwood tree that sheds its leaves during autumn/winter and develops new leaves the following spring. Some deciduous trees like alder can also fix atmospheric nitrogen.

Defoliation: practice of clipping or removing aerial plant parts. Here, defoliation means cutting pasture plants at a specific height at specific intervals.

GLM: general linear model of SAS.

HH: herbage harvested. The mass of herbage per unit area removed by mechanical means, usually expressed as g/m².

Hill country: all the land with slopes between 12 and 28⁰, but low relief; typically 100 to 300m difference in elevation. Valley bottoms are usually narrow.

HM: herbage mass. The total dry weight of herbage per unit area of land, usually above ground level and at a defined reference level. Commonly expressed as g/m².

Intercepted PAR: is the difference between global PAR above a canopy and PAR transmitted through a canopy.

J: joule, unit of measurement.

K: potassium.
kg: kilogram, 1000gram.

LAI: leaf area index, leaf area per unit ground area.

LAR: leaf area ratio, ratio of leaf area to whole plant dry weight.

LPC: light compensation point for photosynthesis.

Lopping: cutting one or more branches off a woody plant; synonym to pruning.

nm: nanometer.

NZMF: New Zealand Ministry of Forestry.

PB: polythene bag used as a pot to grow pasture species in glasshouse conditions.

PGU: plant growth unit.

Shelterbelt: a long narrow strip of trees and/or shrubs intended to reduce wind flow, often for agricultural gain.

Silviculture: the procedure used in growing trees, especially pruning and thinning.

Silvo-pastoral system: which includes trees plus pasture/animals. Basically pasture production is emphasised under tree shade. Generally the term agroforestry also describes silvo-pastoral systems.

Stocking rate: the number of live trees per hectare, also known as “tree density”.

TDR: time domain reflectometry.
Tissue turnover: in a given period the net change in the weight of living shoot material of a species brought about by the formation of new tissue and the gross decrease caused either by senescence and decomposition of older tissue, or by herbage intake is commonly known as tissue turnover. It is commonly expressed in g/m²/day.

Thinning: the removal of trees within a stand at some time before clear felling. If trees are left lying in the forest, it is “waste thinning”. If trees are extracted, it is “production thinning”.

Transmitted PAR: when shade is created with shade cloth, transmitted PAR is measured under the shade cloth. In the case of trees, transmitted PAR is measured under the canopy.

Abbreviations related to experimental treatments

ANOVA: analysis of variance.

CL: cocksfoot with lotus.

cm²: square centimetre.

cv: cultivar.

CVA: canonical variate analysis.

CV: canonical variate.

CW: cocksfoot with white clover.

d.f.: degrees of freedom.

DM: dry matter.
Fig: figure.

g: gram.

GP: white clover growing points.

ha: hectare.

h: hours.

H/N: high natural, here denotes high PAR with natural R:FR.

L/N: low natural, here denotes low PAR with natural R:FR.

L/R: low reduced, here denotes low PAR with reduced R:FR.

LSD: least significant difference.

m²: metre square area.

mg: milligram.

mm: millimetre.

N: nitrogen.

n: number.

na: data not available.

NA: data not taken.

NS: non-significant at P=0.05.
P: phosphorus.

P: probability.

PAR: photosynthetically active radiation. Measured in \(\mu \)moles photons m\(^{-2}\) s\(^{-1}\), 400-700 nm.

R:FR: red to far red ratio. Ratio of photon irradiance between 655 and 665 nm, and 725 and 735 nm, respectively.

RGR: relative growth rate.

RW: perennial ryegrass with white clover.

\(s^{-1} \): per second.

SEM: standard error of the mean.

SLA: specific leaf area, the area of leaf displayed per unit of leaf weight.

SU: site usage, expressed as tillers per leaf.

vs: versus.

W1: weekly defoliation.

W3: three-weekly defoliation.

YW: Yorkshire fog with white clover.

\(\alpha \): statistical significance.
ACKNOWLEDGEMENTS

I am highly grateful to all people and institutions who have contributed to my thesis research. They are too many to mention here individually, though I wish I could express my sincere gratitude to everyone.

My sincere thanks and gratitude goes to my supervisors Dr Peter David Kemp (Chief), Professor John Hodgson, and Dr Ian Valentine for their support, help, advice, and immense contribution in the preparation of this thesis. Dr Kemp provided the most valuable advice, guidance, encouragement and great patience through out the study period. I admire his free exchange of ideas, careful instructions, and helpful criticisms, which made this experience worthwhile.

I would like to thank Dr Siva Ganesh and Dr Bruce Mackay, Massey University, for their valuable help with the statistical analyses. Many thanks to Mr Ray Johnstone, Ms Lesley Taylor and Mr Lee at PGU, Massey University, for their great help and support. Help provided by Mr Ruwan Dissanayake, particularly to establish the field experiment is highly appreciated. Many thanks to Mr Mark Osborne and Mr Roger Levey at PTC, and Mr Philip Yalden of HortResearch, Aokautere for technical support in the field experiments. Thanks to Mr Matt Alexander for providing help in word processing.

I would like to thank the Margot Forde Germplasm Centre, AgResearch Grasslands, Palmerston North for providing seeds of the pasture species, and Alan Stewart, Pyne Gould Guiness Ltd. for providing seeds of cocksfoot PG lines, and also the related information.

I am grateful to the New Zealand Official Development Assistance (NZODA) of the Ministry of Foreign Affairs and Trade for the scholarship that allowed me to pursue my PhD study at Massey University. The moral support and encouragement provided by the staff from International Students’ office have been tremendous value in completing this
study. I would also like to acknowledge the administrative authority, Tribhuvan University, IAAS central campus Rampur, Nepal for granting me the study leave.

Many thanks and gratitude for the support and friendship provided by the staff of the Pasture and Crops group, Massey University. Thanks to Dr Cory Matthew, for providing valuable input during the research. I enjoyed help provided by Mrs Hera Kennedy and all those post graduate students on level 2 that enabled me to successfully complete my study. I would like to acknowledge the help provided by Tara Pande, Aurelio Guevara, Andrew Wall, Wagner Beskow, Wendy Griffiths, Mark Hyslop, Philippa Nicholas, Passang Thinley, and others. Thank you for your friendship. I am also grateful to Mrs Kathy Hamilton for her kind help at all times.

My immense appreciation goes to my wife, Durga Devkota for her tremendous support while conducting glasshouse as well as field experiments. My thesis work would have hardly come into this shape without her constant help in the field as well as in the lab work. She is a huge source of inspiration and courage who helped me all the way in the study as well as being my best friend. Thank you very much Durga. It is equally my pleasure to acknowledge our son Pramukh for his great understanding, patience and help to make my study successful. Our lovely daughter Pratibha who arrived in the middle of my thesis work to join in the family, this was a wonderful and added happiness to our home. I love you very much Pratibha. The support of all my relations and friends in Nepal is gratefully acknowledged. Especially I am highly grateful to my parents, uncle, grandmother, younger brothers Bharat and Jana, and sister Sakun for their constant support, motivation and sacrifices while I am far away from the country.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Glossary and terms of abbreviation used</td>
<td>v</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xi</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>xiii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xxv</td>
</tr>
<tr>
<td>List of Appendices</td>
<td>xxix</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td></td>
</tr>
<tr>
<td>1. General introduction and objectives</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Statement of the problem</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Broad objectives</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Thesis organisation</td>
<td>4</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td></td>
</tr>
<tr>
<td>Literature review</td>
<td>5</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td></td>
</tr>
<tr>
<td>Screening pasture species for shade tolerance</td>
<td>71</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td></td>
</tr>
<tr>
<td>Performance of perennial ryegrass and cocksfoot cultivars under glasshouse conditions and alder shade</td>
<td>92</td>
</tr>
<tr>
<td>CHAPTER 5</td>
<td></td>
</tr>
<tr>
<td>Effects of light intensity and quality on pasture species</td>
<td>130</td>
</tr>
<tr>
<td>CHAPTER 6</td>
<td></td>
</tr>
<tr>
<td>Effect of defoliation frequency on the performance of Nui perennial ryegrass and Wana cocksfoot under glasshouse conditions</td>
<td>164</td>
</tr>
<tr>
<td>CHAPTER 7</td>
<td></td>
</tr>
<tr>
<td>Performance of pasture species under deciduous tree shade</td>
<td>200</td>
</tr>
<tr>
<td>CHAPTER 8</td>
<td></td>
</tr>
<tr>
<td>Effect of tree shade on tissue turn over in perennial ryegrass/white clover, Yorkshire fog/white clover and cocksfoot/white clover pasture</td>
<td>248</td>
</tr>
<tr>
<td>CHAPTER 9</td>
<td></td>
</tr>
<tr>
<td>General discussion and conclusions</td>
<td>277</td>
</tr>
</tbody>
</table>
LIST OF TABLES

CHAPTER 2

<table>
<thead>
<tr>
<th>Table 2.1</th>
<th>Total photons (400-800 nm) and R:FR in nature</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.2</td>
<td>Characteristic differences between plants adapted or acclimated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>to sunny v. shady extremes in irradiance level</td>
<td>20</td>
</tr>
</tbody>
</table>

CHAPTER 3

<table>
<thead>
<tr>
<th>Table 3.1</th>
<th>Pasture species and cultivars used in the experiment</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.2</td>
<td>Effects of shade on pasture species tiller or branch numbers per</td>
<td></td>
</tr>
<tr>
<td></td>
<td>plant, their relative values (to that of 73% PAR), and leaf area</td>
<td></td>
</tr>
<tr>
<td></td>
<td>at final harvest under glasshouse conditions, 1996</td>
<td>82</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Rank of pasture species for their shade tolerance on the basis of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>relative tillers/branches per plant (to that of 73% PAR),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and leaf area at 43% and 14% PAR at final harvest</td>
<td></td>
</tr>
<tr>
<td></td>
<td>under glasshouse conditions, 1996</td>
<td>83</td>
</tr>
</tbody>
</table>

CHAPTER 4

<table>
<thead>
<tr>
<th>Table 4.1</th>
<th>Pasture species and cultivars used in the Experiment</th>
<th>98</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.2</td>
<td>Pasture species and cultivars used in the Experiment</td>
<td>99</td>
</tr>
</tbody>
</table>
Table 4.3 Effects of level of transmitted PAR on cumulative shoot dry weight (g/plant) of cocksfoot selections and perennial ryegrass in glasshouse conditions, 1997.................................103

Table 4.4 Effects of shade (different levels of PAR) on tillers per plant of cocksfoot selections and perennial ryegrass under glasshouse conditions, 1997..106

Table 4.5 Effects of shade (different levels of PAR) on per plant leaf area (mm$^2 \times 100$), leaf dry weight (mg), specific leaf area (mm2/mg), and leaf stem ratio of cocksfoot selections and perennial ryegrass under glasshouse conditions at final harvest, 1997...107

Table 4.6 Eigenvalues and the proportion of variation accounted for by the canonical variate analysis under different PAR levels.................109

Table 4.7 Information about pooled within canonical structure, and pooled within class standardized coefficients as influenced by different PAR levels..110

Table 4.8 Light environment and shade levels of Experiment 4.2..............114

Table 4.9 Effects of level of transmitted PAR on cumulative shoot dry weight (g/plant) of cocksfoot selections and perennial ryegrass under alder trees, 1997.................................115

Table 4.10 Effects of level of transmitted PAR on tillers per plant of cocksfoot selections and perennial ryegrass at final harvest, under alder trees, 1997...116
Table 4.11 Effects of shade on leaf area per plant (mm²), leaf dry weight (mg), specific leaf area (SLA) (mm²/mg), and root dry weight (mg) per plant of cocksfoot selections and perennial ryegrass under alder trees, 1997 ... 118

Table 4.12 Summary table of canonical variate analysis (CVA) on glasshouse experiment ... 123

CHAPTER 5

Table 5.1 Pasture species and cultivars used in the Experiment 136

Table 5.2 Effect of level of PAR and R:FR on shoot dry weight (g/plant) of grass and legume species at final harvest in glasshouse conditions, 1997 ... 138

Table 5.3 Effect of level of PAR and R:FR on leaf area (mm²/plant) of grass and legume species at final harvest in glasshouse conditions, 1997 ... 140

Table 5.4 Effect of level of PAR and R:FR on leaf dry weight (mg/plant) of grass and legume species at final harvest in glasshouse conditions, 1997 ... 140

Table 5.5 Effect of level of PAR and R:FR on stem dry weight (g/plant) of grass and legume species at final harvest in glasshouse conditions, 1997 ... 141

Table 5.6 Effect of level of PAR and R:FR on log₂ total tillers or stolons/branches per plant of grass and legume species at final harvest in glasshouse conditions, 1997. Values in parentheses are back transformed ... 142
Table 5.7	Effect of level of PAR and R:FR on loge net tillers or stolons/branches per plant of grass and legume species developed in the shade at final harvest in glasshouse conditions, 1997. Values in parentheses are back transformed	143
Table 5.8	Effect of level of PAR and R:FR on tiller weight per plant (mg) of grass species at final harvest in glasshouse conditions, 1997	144
Table 5.9	Effect of level of PAR and R:FR on total number of leaves per plant of grass and legume species at final harvest in glasshouse conditions, 1997	145
Table 5.10	Effect of level of PAR and R:FR on specific leaf area (mm²/mg) of hill grass and legume species at final harvest in glasshouse conditions, 1997	146
Table 5.11	Effect of level of PAR and R:FR on leaf: stem ratio of grass and legume species at final harvest in glasshouse conditions, 1997	147
Table 5.12	Effect of level of PAR and R:FR on root dry weight (g/plant) of grass and legume species at final harvest in glasshouse conditions, 1997	148
Table 5.13	Effect of level of PAR and R:FR on chlorophyll ‘a’ concentration (mg/g) of grass and legume species in glasshouse conditions, 1997	149
Table 5.14	Effect of level of PAR and R:FR on chlorophyll ‘b’ concentration (mg/g) of grass and legume species in glasshouse conditions, 1997	150
Table 5.15 Effect of level of PAR and R:FR on chlorophyll a: b ratio of grass and legume species in glasshouse conditions, 1997..151

Table 5.16 Summary table of the parameters measured: mean values of the PAR and R:FR and the differences..153

CHAPTER 6

Table 6.1 Pasture species and cultivars used in the Experiment..................171

Table 6.2 Light environment and shade levels used in Experiment 6.1........174

Table 6.3 Above ground mass for Grasslands Nui perennial ryegrass and Grasslands Wana cocksfoot under different PAR and R:FR levels..175

Table 6.4 Below ground mass for Grasslands Nui perennial ryegrass and Grasslands Wana cocksfoot under different PAR and R:FR levels..176

Table 6.5 Light environment and shade levels used in Experiment 6.2........178

Table 6.6 Effects of level of transmitted photosynthetically active radiation (PAR) and Red to Far red (R:FR) ratio: 71% PAR+natural R:FR, 1.36 (H/N); 25%PAR + natural R:FR, 1.34 (L/N), and 24% PAR + reduced R:FR, 0.68 (L/R) under weekly (W1) and three weekly (W3) defoliation frequencies on the cumulative herbage dry mass (g/plant; ln transformed) of cocksfoot (Grasslands Wana) and perennial ryegrass (Grasslands Nui) at final harvest in glasshouse conditions, 1998..179
Table 6.7 Effects of level of transmitted photosynthetically active radiation (PAR) and Red to Far red (R:FR) ratio: 71% PAR+natural R:FR, 1.36 (H/N); 25%PAR + natural R:FR, 1.34 (L/N), and 24% PAR + reduced R:FR, 0.68 (L/R) under weekly (W1) and three weekly (W3) defoliation frequencies on the % relative dry mass/plant (compared to that of 71% PAR + natural R:FR, 1.36) of cocksfoot (Grasslands Wana) and perennial ryegrass (Grasslands Nui) at final harvest in glasshouse conditions, 1998.................................180

Table 6.8 Effects of level of transmitted photosynthetically active radiation (PAR) and Red to Far red (R:FR) ratio: 71% PAR+natural R:FR, 1.36 (H/N); 25%PAR + natural R:FR, 1.34 (L/N), and 24% PAR + reduced R:FR, 0.68 (L/R) under weekly (W1) and three weekly (W3) defoliation frequencies on the leaf area (mm²/plant) of cocksfoot (Grasslands Wana) and perennial ryegrass (Grasslands Nui) at final harvest in glasshouse conditions, 1998.................................181

Table 6.9 Effects of level of transmitted photosynthetically active radiation (PAR) and Red to Far red (R:FR) ratio: 71% PAR+natural R:FR, 1.36 (H/N); 25%PAR + natural R:FR, 1.34 (L/N), and 24% PAR + reduced R:FR, 0.68 (L/R) under weekly (W1) and three weekly (W3) defoliation frequencies on the leaf dry weight (g/plant) of cocksfoot (Grasslands Wana) and perennial ryegrass (Grasslands Nui) at final harvest in glasshouse conditions, 1998.................................182
Table 6.10 Effects of level of transmitted photosynthetically active radiation (PAR) and Red to Far red (R:FR) ratio: 71% PAR+natural R:FR, 1.36 (H/N); 25%PAR + natural R:FR, 1.34 (L/N), and 24% PAR + reduced R:FR, 0.68 (L/R) under weekly (W1) and three weekly (W3) defoliation frequencies on the number of tillers/plant of cocksfoot (Grasslands Wana) and perennial ryegrass (Grasslands Nui) at final harvest in glasshouse conditions, 1998.

Table 6.11 Effects of level of transmitted photosynthetically active radiation (PAR) and Red to Far red (R:FR) ratio: 71% PAR+natural R:FR, 1.36 (H/N); 25%PAR + natural R:FR, 1.34 (L/N), and 24% PAR + reduced R:FR, 0.68 (L/R) under weekly (W1) and three weekly (W3) defoliation frequencies on root dry weight (g/plant; ln transformed) of cocksfoot (Grasslands Wana) and perennial ryegrass (Grasslands Nui) at final harvest in glasshouse conditions, 1998.

Table 6.12 Effects of level of transmitted photosynthetically active radiation (PAR), and Red to Far red (R:FR) ratio under different defoliation frequencies on the leaf appearance interval (in days) of cocksfoot (Grasslands Wana) and perennial ryegrass (Grasslands Nui) in glasshouse conditions, 1998.

CHAPTER 7

Table 7.1 Soil nutrient levels at Aokautere site, sampled to 75mm depth before and at the end of the experiment.

Table 7.2 Pasture species and cultivars used in the Experiment
Table 7.3a	Levels of transmitted PAR (photosynthetically active radiation), and R:FR (red:far-red) ratios measured at various occasions under tree canopies at Aokautere, February to April 1997 212
Table 7.3b	Levels of transmitted PAR (photosynthetically active radiation) measured at various occasions under tree canopies at Aokautere, November 1997 to May 1998 213
Table 7.3c	R:FR (red:far-red) ratios measured at various occasions under tree canopies with different shade levels at Aokautere, November 1997 to May 1998 214
Table 7.4a	Changes in % soil moisture to 200mm depth under different levels of shade at Aokautere during February to May 1997 215
Table 7.4b	Changes in % soil moisture to 200mm depth under different levels of shade at Aokautere during October 1997 to May 1998 216
Table 7.5a	Soil temperature at 100mm depth under different levels of shade at Aokautere from February to May 1997 217
Table 7.5b	Soil temperature at 100mm depth under different levels of shade at Aokautere from October 1997 to May 1998 218
Table 7.6	Pre-mowing herbage mass (HM) (g/m²) for March and April 1997 under different levels of shade at Aokautere 219
Table 7.7	Pre-mowing herbage mass (HM) (g/m²) for November 1997 to May 1998 under different levels of shade at Aokautere 220
Table 7.8 Herbage harvested above 50mm (re-growth)(g/m²) at each month, and total herbage harvested (g/m²) over all months (October 28, 1997 to May 28, 1998) (212 days) under different levels of shade at Aokautere. ... 223

Table 7.9a Tiller density (numbers/m²) of the grass component in grass-legume mixtures under three levels of tree shade at Aokautere from November 1997 to February 1998 ... 227

Table 7.9b Tiller density (numbers/m²) of the grass component in grass-legume mixtures under three levels of tree shade at Aokautere from March to May 1998 228

Table 7.10a Density of growing points or branches (number/m²) for white clover and lotus in grass-legume mixtures under different levels of tree shade at Aokautere from 24 November 1997 to 21 February 1998 (* In transformed, and value inside the parentheses are back transformed). ... 230

Table 7.10b Density of growing points or branches (number/m²) for white clover and lotus in grass-legume mixtures under different levels of tree shade at Aokautere from 20 March to 20 May 1998. .. 231

Table 7.11 Total number of sheep grazing, total number of observations of sheep grazing, grazed tillers and growing points/branches of marked legumes, and the ratio of grazed tillers to legumes for Yorkshire fog with white clover, cocksfoot with white clover and cocksfoot with lotus components of pastures grown under alder trees, at Aokautere, November 1998 ... 233
CHAPTER 8

<table>
<thead>
<tr>
<th>Table 8.1</th>
<th>Pasture species and cultivars used in the Experiments..............................254</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 8.2</td>
<td>Rates of net leaf expansion per tiller (mg/tiller/day) and net leaf production (g/m²/day) of the grass components of ryegrass-white clover (RW), Yorkshire fog-white clover (YW), cocksfoot-white clover (CW) and cocksfoot-lotus (CL) swards under different levels of shade at Aokautere, 1997...............259</td>
</tr>
<tr>
<td>Table 8.3</td>
<td>Rates of net production (stem+leaf) per tiller (mg/tiller/day) and per unit area (g/m²/day) of the grass components of ryegrass-white clover (RW), Yorkshire fog-white clover (YW), cocksfoot-white clover (CW) and cocksfoot-lotus (CL) swards under different levels of shade at Aokautere, 1997...........................261</td>
</tr>
<tr>
<td>Table 8.4</td>
<td>Rates of net dry weight accumulation (net stolon+net petiole+net leaf) per growing point (mg/growing point/day), and per unit area (g/m²/day) of the white clover component of ryegrass-white clover (RW), Yorkshire fog-white clover (YW), and cocksfoot-white clover (CW) swards under different levels of shade at Aokautere, 1997.................................263</td>
</tr>
<tr>
<td>Table 8.5</td>
<td>Rates of net leaf expansion per tiller (mg/tiller/day) and net leaf production (g/m²/day) of the grass components of ryegrass-white clover (RW), Yorkshire fog-white clover (YW), cocksfoot-white clover (CW) and cocksfoot-lotus (CL) swards under different levels of shade at Aokautere, 1998...............................265</td>
</tr>
</tbody>
</table>
Table 8.6 Rates of net production (stem+leaf) per tiller (mg/tiller/day) and per unit area (g/m²/day) of the grass components of ryegrass-white clover (RW), Yorkshire fog-white clover (YW), cocksfoot-white clover (CW), and cocksfoot-lotus (CL) swards under different levels of shade at Aokautere, 1998 .. 267

Table 8.7 Rates of net dry weight accumulation (net stolon+net petiole+net leaf) per growing point (mg growing point/day), and per unit area (g/m²/day) of the white clover component of ryegrass-white clover (RW), Yorkshire fog-white clover (YW), and cocksfoot-white clover (CW) swards under different levels of shade at Aokautere, 1998 ... 269

CHAPTER 9

Table 9.1 Summary of properties of cocksfoot and perennial ryegrass as determined under heavy shade in a series of experiments ... 282

Table 9.2 Tolerance index of perennial ryegrass and cocksfoot as indicated by cumulative shoot dry weight/plant at different PAR levels ... 283

Table 9.3 Tolerance index of perennial ryegrass and cocksfoot as indicated by tiller numbers/plant at different PAR levels ... 284
LIST OF FIGURES

CHAPTER 3

Figure 3.1 Effects of different levels of % PAR transmitted on shoot
dry weight of (a) legumes, (b) hill grass species, and (c) other
species. Standard error of the mean (SEM) for species = 2.06............77

Figure 3.2 Effects of different levels of % PAR transmitted on relative
(to that of 73% PAR transmitted) shoot dry weight of
(a) legumes, (b) hill grass species, and (c) other species.
(b) Standard error of the mean (SEM) for species = 0.3..................78

Figure 3.3 Specific leaf area (m²/kg) of (a) legumes, (b) hill grass species,
and (c) other species by repeated analysis. Vertical bar
represents standard error of the mean for species (0.29)..................80

Figure 3.4 Performance of (a) cocksfoot and (b) perennial ryegrass at
different PAR levels...85

CHAPTER 4

Figure 4.1 Linear regression between dry weight and specific leaf area
(SLA) for the cocksfoot selections and perennial ryegrass
(Grasslands Nui) under different levels of shade.........................104

Figure 4.2 Linear relationship between SLA at low and high PAR for ten
cocksfoot selections and perennial ryegrass............................108
Figure 4.3 Plot of mean canonical variate scores (CAN1*CAN2) using leaf area, leaf dry weight, SLA, leaf:stem, and final tillers as variables; (a) 73% PAR, and (b) 32% PAR.. 112

Figure 4.4 Plot of mean canonical variate scores (CAN1*CAN2) using leaf area, leaf dry weight, SLA, leaf:stem, and final tillers as variables; (c) 24% PAR, and (d) all PAR levels... 113

CHAPTER 6

Figure 6.1 Experimental set-up showing one replication: 24% PAR plus reduced R:FR with the use of filters, and 25% PAR plus natural R:FR without filters... 172

Figure 6.2 RGR of Wana and Nui grown under varied PAR levels and R:FR (P<0.01) for PAR as well as species with NS for interaction of PARxspecies. SEM of PAR and of species ±0.001................. 177

Figure 6.3 Specific leaf area (SLA) of Nui and Wana at different levels of PAR under two defoliation regimes of W1 and W3. Vertical bar represents standard error of the mean (SEM) for PAR/R:FR. SEM for species and defoliation were 1.23 and 1.24, respectively... 184

Figure 6.4 Site usage (tillers/leaf) of Nui and Wana under different PAR, R:FR and defoliation frequency: (a) cycle I (8 June-28 June), (b) Cycle II (29 June-19 July), (c) cycle III (20 July-9 August), and (d) cycle IV (for the whole period of 8 June-9 August, 1998). Where, 24% PAR was with low R:FR, and 25% and 71% PAR were with natural R:FR light.. 187
Figure 6.5 Effects of defoliation at weekly and three-weekly interval for Wana cocksfoot and Nui perennial ryegrass (a) under 71% PAR, natural R:FR, and (b) 24% PAR with reduced R:FR by using filters. Wana in background.................. 193

CHAPTER 7

Figure 7.1 Monthly total global radiation (MJ/m²/s) during the experiment period. Data from the nearest Meteorological Station (AgResearch, Palmerston North)................................. 206

Figure 7.2 Monthly total rainfall distribution (mm) during the experiment period. Data from the nearest Meteorological Station (AgResearch, Palmerston North)................................. 207

Figure 7.3 Field preparation to establish pasture under alder trees at Aokautere, September 1996................................. 209

Figure 7.4 Establishment of experimental plots under light, medium and heavy shade from front to back, respectively, at Aokautere, February 1997................................. 213

Figure 7.5 Percent mean grass composition of three shade levels on different grass-legumes combinations over selected months.................. 224

Figure 7.6 Percent mean legume composition of three shade levels on different grass-legume combinations over selected months.................. 225

Figure 7.7 Percent mean other materials composition of three shade levels on different grass-legume combinations over selected months.................. 226
Figure 7.8 Sheep grazing under light shade................................. 232

CHAPTER 9

Figure 9.1 Mechanism of leaf area/SLA maintenance of tillering
and shoot dry weight for shade tolerant grass species.................293
LIST OF APPENDICES

Appendix 3.1 Effects of shade on pasture species tiller or branch number per plant, and their relative values (to that of 73% ambient PAR) at different harvest dates under glasshouse conditions, 1996............311

Appendix 3.2 Effects of shade on mean specific leaf area (SLA, m²/kg) of the pasture species, and their relative values (to that of 73% ambient PAR) at different harvest dates under glasshouse conditions, 1996...312

Appendix 3.3 Effects of shade on mean plant height (cm) of the pasture species at different harvest dates under glasshouse conditions, 1996...313

Appendix 3.4 Effects of shade on mean leaf/petiole length (cm) of the pasture species at different harvest dates under glasshouse conditions, 1996...314

Appendix 7.1a Percent mean botanical composition under different levels of shade at Aokautere, 25 March 1997 to 24 November 1997............315

Appendix 7.1b Percent mean botanical composition under different levels of shade at Aokautere, 23 December 1997 to 28 May 1998.............316

Appendix Figure 7.1 Lay out of the field experiment. RW= perennial ryegrass with white clover, YW=Yorkshire fog with white clover, CW= cocksfoot with white clover, and CL= cocksfoot with lotus..317