Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Mycobacterium paratuberculosis infection in sheep: aspects of diagnosis and immunity

Jacek Michał Andrzej Gwoźdź

...the essential part of scientific research is dedicated to struggling, not against the evils of Nature, but against the evils begotten by our so-called progress...

Henri-Frederic Blanc

Abstract

Paratuberculosis is a chronic, wasting disease of ruminants caused by *Mycobacterium paratuberculosis*. Programmes aimed at controlling paratuberculosis are based on either vaccination or detection and culling of infected animals. Because of its chronic nature, and the lack of suitable tests for early diagnosis, control of the disease using the latter approach is difficult.

Standard procedures for the isolation of *M. paratuberculosis* are time-consuming and some strains are difficult or impossible to grow. Using the published sequence data of IS900, an insertion sequence considered unique for *M paratuberculosis*, a polymerase chain reaction (PCR) assay was developed. With purified extracts of bacterial DNA the PCR assay was found to be highly sensitive and specific. Among 30 bacterial species tested, the assay showed cross-reactivity only with DNA from *M. scrofulaceum*. The possibility of *M. scrofulaceum* causing false positive results in clinical samples from sheep was considered remote, and the assay was subsequently applied to clinical samples. In a study involving 20 sheep suspected of having clinical paratuberculosis, *M. paratuberculosis* DNA was detected in 90% of liver samples and 66% of blood samples from sheep with advanced clinical paratuberculosis. However, in a longitudinal study involving 14 sheep infected experimentally with *M. paratuberculosis*, the PCR failed to consistently detect the target DNA in liver biopsy specimens and blood samples of subclinically infected and clinically affected sheep with mild or moderate extraintestinal infection. Furthermore, the sensitivity of the PCR on samples of ileum and ileocaecal lymph node was similar to that achieved by histological examination.

An experimental model of ovine paratuberculosis, which was developed primarily to validate the PCR assay, created an opportunity to evaluate the diagnostic performance of three commercially available antibody assays for paratuberculosis: complement fixation test (CFT), agar gel immunodiffusion test (AGID), and enzyme-linked immunosorbent assay (ELISA). Two experimental trials demonstrated a limited value of serology for the control of ovine paratuberculosis, as none of the antibody assays was able to detect all sheep with histologically confirmed paratuberculosis. In comparison, the whole-blood interferon-γ (IFN-γ) assay, which
was assessed only during the second trial, detected significantly more experimentally infected sheep and over shorter period of time than any of the serological tests. Furthermore, in a pilot study involving 19 sheep infected experimentally with *M. paratuberculosis*, 18 of the 19 sheep gave positive reactions in the IFN-γ assay on samples of prescapular lymph node (PLN). The PLN-based IFN-γ assay detected significantly more experimentally infected sheep than the CFT, AGID, ELISA or the blood-based IFN-γ assay. Since the specificities of the blood- and PLN-based IFN-γ assay were similar to that of the serological tests, these data indicate the potential utility of this assay, using blood or samples of peripheral lymph nodes, for the detection of sheep exposed to *M. paratuberculosis*. Interestingly, among the 18 sheep tested positive by PLN-based IFN-γ assay, 13 had no histological evidence of paratuberculosis at the time of collection of the PLN samples. In addition, results obtained in a study involving 14 sheep infected experimentally with *M. paratuberculosis* suggest a positive relationship between the magnitude of antigen-induced IFN-γ response in blood and animal's ability to control the infection. Thus, attempts to use this assay in control programmes that are based on testing and culling of positive reactors could result in the removal of animals that have successfully mounted an immune response to the infection.

Vaccination provides an alternative method to test-and-cull programmes of controlling paratuberculosis. Results of a study involving 28 lambs infected experimentally with *M. paratuberculosis*, 14 of which were vaccinated against paratuberculosis with a live-attenuated vaccine 2 weeks postinfection, indicate that vaccination of lambs already exposed to the organism triggered early and strong humoral and cell-mediated immune responses and led to a reduced mycobacterial burden.
But remember,
nothing is actually happening,
and nothing will occur
till the end.

M. Zablocki

Acknowledgements

There is only one author listed on the cover of this manuscript. This is more than misleading. It would not have been possible to carry out the work presented here without the help of many people inside the former Department of Veterinary Pathology and Public Health, which after restructuring is currently a part of the Institute of Veterinary, Animal and Biomedical Sciences. I am very grateful to my supervisors Keith Thompson, Bill Manktelow, Alan Murray and Dave West for the opportunity of undertaking the study, their support and intellectual contribution to this thesis. Special thanks go to Colin Wilks for his assistance throughout. Others who have provided me with help, advice and, sometimes, with enlightenment include Frazer Allan, Maurice Alley, Suzanne Borich, Liz Carpenter, Julie Collins-Emerson, Mark Collett, James Dickson, Magda Dunowska, Linley Fray, Stan Fenwick, Eamonn Gormley, Bob Jolly, Richard Johnson, Joanne Meers, Jane Oliaro, Matthew Perrott, Dirk Pfeiffer, Laurie Sandall and Caroline Twentyman. I also wish to express my appreciation of invaluable technical expertise and assistance I have received from Barbara Adlington, Sheryl Bayliss, Shirley Calder, Pat Davey, Jan Schrama, Farris Sharpe, Pam Slack and Peter Wildbore.

Help and support have not been limited to the "old" Department of Veterinary Pathology and Public Health. I would like to thank Dr. G. de Lisle and Dr. D Collins, both of the AgResearch, Wallaceville Animal Research Centre, for their advice and assistance. Staff at the Central Animal Health Laboratory, Wallaceville, performed a considerable part of immunological testing, and I wish to acknowledge contribution made to this thesis by Michael Reichel. Invaluable assistance on statistical analysis was provided by Dr. S. Ganesh of the Department of Statistics, Massey University. I am also grateful to Barry Parlave for his technical assistance during experimental trials.

This study was funded in part by Wools of New Zealand, the Massey University Research Fund and the Veterinary Research Fund. Without the support of these funding agencies much of this research would not have been performed.
But money is not everything, and much of the work presented in this thesis would not have been even contemplated without the encouragement and ongoing support of my wife, Magda, and my children, Karolina and Mateusz. They shared my seldom "ups" and frequent "downs", always showing a lot of patience and understanding. Finally, what would I have done without my friends: Jasiu, Kylie, Magda D, Matthew and Stan? I would probably have done more than I did, but without their delightful company and distraction from work I would certainly have become a "mad scientist". Considering the importance of an individual, this may not have been perceived as a great loss to the mankind. The fundamental question, which I have no intention to provide an answer to, is whether the mankind is more important than an individual.

At the end, I wish to acknowledge the involuntary contribution made by animals used in the experiments.

This thesis is dedicated to my parents.
Table of contents

Abstract ................................................................................................................................. I

Acknowledgements ............................................................................................................... III

Table of contents .................................................................................................................. V

List of Tables ......................................................................................................................... XI

List of Figures ....................................................................................................................... XIII

CHAPTER 1

Introduction ......................................................................................................................... 1

1.1. Literature review ......................................................................................................... 1

  1.1.1 The organism ........................................................................................................... 1

  1.1.2. Transmission ......................................................................................................... 3

  1.1.3. Clinical manifestation ........................................................................................... 5

  1.1.4. Pathology .............................................................................................................. 5

  1.1.5. Pathogenesis .......................................................................................................... 7

  1.1.6. Resistance ............................................................................................................. 8

  1.1.7. Immunology .......................................................................................................... 10

  1.1.8. Diagnosis of paratuberculosis ............................................................................... 14

    1.1.8.1. Methods that identify M. paratuberculosis and provide direct evidence of
            infection ...................................................................................................................... 14

    1.1.8.2. Tests which provide indirect evidence of infection with Mycobacterium
            paratuberculosis ....................................................................................................... 16

  1.1.9. Control .................................................................................................................... 22

  1.1.10. Vaccination ........................................................................................................... 22

  1.1.11. Treatment ............................................................................................................ 24

  1.1.12. Economic impact .................................................................................................. 25

  1.1.13. Crohn's disease in people and M. paratuberculosis ........................................... 25

1.2. Aims of the thesis ........................................................................................................ 28
CHAPTER 2
Development of a rapid assay based on polymerase chain reaction for the detection of *Mycobacterium paratuberculosis*.................................30

2.1. Introduction.................................................................................................30
2.2. Materials and methods................................................................................30
  2.2.1. Oligonucleotide primer selection...............................................................30
  2.2.2. Templates for amplification.........................................................................32
  2.2.2.1. DNA extraction from bacteria...............................................................32
  2.2.2.2. DNA extraction from ovine solid tissues...............................................35
  2.2.3. PCR reaction mixture..................................................................................36
  2.2.4. Generation and labelling of 194-bp probe......................................................37
  2.2.5. Validation of identity of 194-bp PCR product..............................................38
  2.2.6. PCR product analysis...................................................................................38
  2.2.7. Optimisation procedures............................................................................39
  2.2.8. Specificity of the PCR................................................................................42
  2.2.9. Sensitivity of the PCR................................................................................42
2.3. Results ........................................................................................................42
  2.3.1. Optimisation of magnesium concentration and sensitivity of the PCR........42
  2.3.2. Specificity of the PCR................................................................................44
  2.3.3. Methods of DNA extraction from mammalian tissues.............................45
  2.3.4. Expand Long Template vs. Taq polymerase system....................................46
  2.3.5. Validation of identity of 194-bp PCR product..............................................46
2.4. Discussion....................................................................................................46

CHAPTER 3
Validation of the polymerase chain reaction assay for the detection of *Mycobacterium paratuberculosis* on samples of solid tissue and blood from sheep with clinical paratuberculosis. .................................................................50

3.1. Introduction..................................................................................................50
3.2. Materials and methods.................................................................................51
  3.2.1. Animals.......................................................................................................51
  3.2.2. Sample collection.......................................................................................51
  3.2.3. Processing of samples and DNA extraction from tissues and blood.............51
  3.2.4. Polymerase Chain Reaction.......................................................................52
  3.2.5. Histology....................................................................................................54
3.2.6. Serology ............................................................................. 54
3.3. Results ................................................................................. 55
  3.3.1. Histology ..................................................................... 55
  3.3.2. Polymerase Chain Reaction ........................................... 56
  3.3.3. Serology ..................................................................... 59
3.4. Discussion............................................................................. 59

CHAPTER 4
Development of experimental model of paratuberculosis in sheep...................... 63
  4.1. Introduction ..................................................................... 63
  4.2. Materials and methods .................................................... 64
    4.2.1. Preparation of inoculum .............................................. 64
    4.2.2. Animals and husbandry conditions ............................ 64
    4.2.3. Necropsy and sample collection for histology ................ 65
    4.2.4. Collection and processing of samples for serology and PCR . 66
    4.2.5. Polymerase Chain Reaction ........................................ 66
    4.2.6. Histology .................................................................. 68
    4.2.7. Serological testing ...................................................... 68
    4.2.8. Microscopic examination of faeces for AFO's .................. 69
    4.2.9. Statistical analysis ...................................................... 69
  4.3. Results ............................................................................. 69
    4.3.1. Clinical signs and results of microscopic examination of faeces for AFO's . 69
    4.3.2. Gross pathology .......................................................... 71
    4.3.3. Histology .................................................................. 73
    4.3.4. Polymerase Chain Reaction ........................................ 80
    4.3.4. Serological testing ...................................................... 83
  4.4. Discussion............................................................................. 84

CHAPTER 5
Vaccination against paratuberculosis of lambs already infected experimentally with Mycobacterium paratuberculosis ................................................................. 89
  5.1. Introduction ..................................................................... 89
  5.2. Materials and methods .................................................... 90
    5.2.1. Animals and husbandry conditions ............................ 90
    5.2.2. Inoculum .................................................................. 91
CHAPTER 6
Application of the polymerase chain reaction assay for the detection of *Mycobacterium paratuberculosis* to blood and liver biopsy specimens from sheep experimentally infected with the organism ........................................................................................................................................ 121

6.1. Introduction ........................................................................................................................................ 121
6.2. Materials and methods ......................................................................................................................... 121
  6.2.1. Animals and handling ...................................................................................................................... 121
  6.2.2. Infection status of animals ............................................................................................................ 122
  6.2.3. Sample collection and processing ................................................................................................. 122
  6.2.4. DNA extraction ............................................................................................................................. 123
  6.2.5. Polymerase Chain Reaction ......................................................................................................... 123
  6.2.6. Statistical analysis ......................................................................................................................... 124
6.3. Results .............................................................................................................................................. 124
  6.3.1. PCR on samples of ileum and ileocaecal lymph node ................................................................. 125
  6.3.2. Liver biopsy PCR ........................................................................................................................... 128
  6.3.3. Blood PCR ..................................................................................................................................... 129
6.4. Discussion ......................................................................................................................................... 130
CHAPTER 7
Comparison of a complement fixation test, gel immunodiffusion test, enzyme-linked immunoassay and interferon-γ assay for the diagnosis of paratuberculosis in sheep infected experimentally with Mycobacterium paratuberculosis ........................................ 134

7.1. Introduction .................................................................................................................................. 134
7.2. Materials and methods ................................................................................................................. 135
  7.2.1. Animals and collection of samples for immunological testing .................................................. 135
     7.2.1.1. Trial 1 .................................................................................................................................. 135
     7.2.1.2. Trial 2 ................................................................................................................................ 136
  7.2.2. Animals infection status ............................................................................................................ 137
  7.2.3. Sample processing and immunological tests ............................................................................. 137
     7.2.3. Statistical analysis .................................................................................................................. 138
7.3. Results .......................................................................................................................................... 138
  7.3.1. Trial 1 ....................................................................................................................................... 138
  7.3.2. Trial 2 ....................................................................................................................................... 140
  7.3.3. Validation of specificity of immunological tests ....................................................................... 142
7.4. Discussion ..................................................................................................................................... 144

CHAPTER 8
Antigen-induced production of interferon-γ in samples of peripheral lymph nodes from sheep infected experimentally with Mycobacterium paratuberculosis ........................................ 148

8.1. Introduction ..................................................................................................................................... 148
8.2. Materials and methods .................................................................................................................. 149
  8.2.1. Source and infection status of animals ...................................................................................... 149
  8.2.2. Collection of samples for immunological tests ........................................................................ 149
  8.2.3. Processing of samples for immunological tests .................................................................... 150
  8.2.4 Immunological testing ............................................................................................................... 151
  8.2.5. Statistical analysis .................................................................................................................... 152
8.3. Results .......................................................................................................................................... 153
  8.3.1. Infection status of animals ....................................................................................................... 153
  8.3.2. Comparison of numbers of sheep detected by immunological tests ........................................ 153
  8.3.3. Comparison of production of IFN-γ in samples of blood and prescapular lymph nodes at various times of incubation .................................................................................. 155
8.4. Discussion ..................................................................................................................................... 158
CHAPTER 9

General discussion ........................................................................................................................................ 161

9.1. Development and evaluation of a PCR assay for the detection of *Mycobacterium paratuberculosis* in tissue samples ...................................................................................................................... 161

9.2. Comparison of immunological tests for the diagnosis of paratuberculosis in sheep ................................................. 165

9.3. Vaccination against paratuberculosis of lambs already infected experimentally with *Mycobacterium paratuberculosis* .................................................................................................................. 169

9.4. Experimental model of paratuberculosis in sheep ............................................................................................... 170

9.5. Perineural lesions .................................................................................................................................................. 170

9.6. Conclusions .............................................................................................................................................................. 171

Appendix A.1 ......................................................................................................................................................... 172

Appendix A.2 ......................................................................................................................................................... 172

Appendix B.1 ......................................................................................................................................................... 173

Appendix B.2 ......................................................................................................................................................... 173

Appendix B.3 ......................................................................................................................................................... 174

Appendix B.4 ......................................................................................................................................................... 183

Appendix B.5 ......................................................................................................................................................... 184

Appendix C.1 ......................................................................................................................................................... 185

Appendix C.2 ......................................................................................................................................................... 186

Appendix D ......................................................................................................................................................... 187

Bibliography ......................................................................................................................................................... 188
List of Tables

Table 1.1. Published specificities and sensitivities of serological tests for the diagnosis of paratuberculosis in cattle ................................................................. 17

Table 1.2. Published specificities and sensitivities of serological tests for the diagnosis of paratuberculosis in sheep ................................................................. 18

Table 1.3. Published specificities and sensitivities of serological tests for the diagnosis of paratuberculosis in goats ................................................................. 19

Table 2.1. Bacterial species and source of isolates or their DNA used in the assessment of the PCR specificity and sensitivity .................................................... 33

Table 2.2. Amplification conditions evaluated during the process of optimisation of the PCR with the 90 and 91 primers ................................................................. 41

Table 3.1. Results of single PCR tests on 4, 8 and 12 mg samples of liver, ileocaecal lymph node and ileum, and on 0.5 and 1.0 ml blood samples from 20 sheep suspected of having clinical paratuberculosis and 10 clinically normal control sheep compared with results obtained by histology and serology .................................................... 58

Table 4.1. Results of microscopic examination of faeces for acid-fast organisms in 30 sheep infected experimentally with M. paratuberculosis compared with histology results .................................. 71

Table 4.2. Necropsy findings compared with results of histological examination in 29 sheep infected experimentally with M. paratuberculosis and in 12 sheep with naturally occurring paratuberculosis ................................................................. 72

Table 4.3. Results of histological examination of sections of ileum and mesenteric lymph node from 28 sheep infected experimentally with M. paratuberculosis and 12 sheep with naturally occurring paratuberculosis ................................................................. 74
Table 4.4. Results of the PCR on duplicate samples of ileum and ileocaecal lymph node from 30 sheep infected experimentally with *M. paratuberculosis* compared with results obtained by histology and by 3 different serological tests.................................................................81

Table 5.1. Scoring system of numbers of microgranulomas and acid-fast organisms.........................92

Table 5.2. Gross pathology findings in 14 sheep vaccinated against paratuberculosis 2 weeks after oral infection with *M. paratuberculosis*, 14 infected but unvaccinated sheep and 11 uninfected and unvaccinated control sheep.................................................................98

Table 5.3. Results of microscopic examination of faeces for acid-fast organism in 14 sheep vaccinated against paratuberculosis 2 weeks after oral infection with *M. paratuberculosis*, 14 infected but unvaccinated sheep and 13 uninfected and unvaccinated control sheep compared with histology results. .................................................................107

Table 6.1. Results of the PCR assay on duplicate samples of hepatic (liver biopsy) DNA, single samples of peripheral blood leukocyte DNA and duplicate samples of ileal and ileocaecal lymph node DNA compared with results obtained by histology. The DNA samples were obtained from 14 sheep infected experimentally with *M. paratuberculosis*, 14 sheep vaccinated against paratuberculosis 2 weeks after infection and 13 uninfected and unvaccinated controls.................................................................126

Table 7.1. Specificities of immunological tests at various sampling points.................................143

Table 8.1. Numbers of sheep tested positive by the AGID, CFT, ELISA and the blood-based and prescapular lymph node -based IFN-γ assay .................................................................154

Table 8.2. The effect of lowering of cut-off values on numbers of sheep tested positive by the blood-based and prescapular lymph node -based IFN-γ assay.................................155
List of Figures

Figure 2.1. Diagrammatic representation of the regions of *M. paratuberculosis* insertion sequence IS900 where primers 90/91, JG1/JG2, TDB3/TDB4 and AM935/AM936 are located.

Figure 2.2. Optimisation of concentrations of magnesium and primers JG1 and JG2 with the Taq DNA polymerase system.

Figure 2.3. Optimisation of concentrations of magnesium and primers 90 and 91 with the Taq DNA polymerase system.

Figure 2.4.1. Sensitivity of the PCR with the Taq DNA polymerase system in a one-phase PCR (constant 1-minute cycling conditions) at 35 and 40 cycles.

Figure 2.4.2. Sensitivity of the PCR in a two-phase, 45-cycle PCR (Taq DNA polymerase system) in which 1-minute times of denaturation, annealing and extension were reduced by half (30 seconds) after the first 5 cycles.

Figure 2.4.3. Sensitivity of the PCR on samples of ovine DNA spiked with *M. paratuberculosis* DNA in a two-phase, 45-cycle PCR (Taq DNA polymerase system) in which 1-minute times of denaturation, annealing and extension were reduced by half after the first 5 cycles.

Figure 2.5. Specificity of the PCR.

Figure 2.6. Comparison of PCR yields achieved in samples of ovine DNA extracted by boiling and by the Proteinase K digestion/CTAB-phenol-chloroform extraction method.

Figure 2.7. Comparison of the Taq DNA polymerase system with the Expand Long Template system.

Figure 3.1. Results of the PCR on selected samples of hepatic, ileal and ileocaecal lymph node DNA from 20 sheep suspected of having clinical paratuberculosis.

Figure 3.2. Results of PCR on selected samples of blood DNA from sheep suspected of having clinical paratuberculosis.
Figure 4.1. Death rate of 30 sheep infected orally with *M. paratuberculosis* as lambs .......... 70

Figure 4.2. Small intestine from a sheep with naturally occurring paratuberculosis. The lamina propria shows diffuse infiltration with macrophages ................................................................. 75

Figure 4.3. Small intestine from a sheep infected experimentally with *M. paratuberculosis*. The lamina propria shows diffuse infiltration with macrophages ..................................................... 75

Figure 4.4. Small intestine from a sheep infected experimentally with *M. paratuberculosis*. Aggregates of macrophages in the lamina propria. ................................................................. 76

Figure 4.5. Small intestine from a sheep infected experimentally with *M. paratuberculosis*. Small aggregates of macrophages in the ileal Peyer's patch. .......................................................... 76

Figure 4.6.a & b. Small intestine from a sheep with naturally occurring paratuberculosis. Accumulation of mononuclear cells around the submucosal nerve .............................................. 78

Figure 4.7.a & b. Small intestine from a sheep with naturally occurring paratuberculosis. Accumulation of mononuclear cells around a nerve in the muscular layer. .............................. 79

Figure 4.7.c. Singular acid-fast organisms within some of the mononuclear cells surrounding the nerve in the muscular layer. ................................................................................. 79

Figure 4.8. Results of the PCR on selected samples of ileal and ileocaecal lymph node DNA from sheep infected experimentally with *M. paratuberculosis* as lambs. ......................... 82

Figure 4.9. Antibody indices in serum samples of 14 experimental sheep that had infection with *M. paratuberculosis* confirmed by histology and the PCR and 9 experimental sheep that were clinically normal throughout the duration of the study. The 9 clinically normal sheep showed no evidence infection with *M. paratuberculosis*, as determined by the PCR and histology at the time of necropsy, 108 weeks after oral inoculation ................................................................. 83

Figure 5.1. Death rate of 14 sheep vaccinated against paratuberculosis 2 weeks after oral infection with *M. paratuberculosis*, 14 infected but unvaccinated sheep and 13 uninfected-uvaccinated control sheep. ......................................................................................... 97

Figure 5.2. Score of granulomas in the jejunal and ileal lamina propria, caudal mesenteric lymph node, ileocaecal lymph node and liver of 14 sheep vaccinated against paratuberculosis 2 weeks after oral infection with *M. paratuberculosis* and 14 infected but unvaccinated sheep... 99
Figure 5.3. Small intestine (ileum) from a sheep infected orally with *M. paratuberculosis*. Numerous macrophages in the lamina propria.................................................................100

Figure 5.4. Small intestine (ileum) from a sheep infected orally with *M. paratuberculosis*. Aggregates of macrophages predominantly located in the tips of ileal villi. .....................101

Figure 5.5. Small intestine (ileum) from a sheep vaccinated against paratuberculosis 2 weeks after oral infection with *M. paratuberculosis*. A small aggregate of macrophages in the lamina propria..................................................................................................................101

Figure 5.6. Mesenteric lymph node from a sheep vaccinated against paratuberculosis 2 weeks after oral infection with *M. paratuberculosis*. Multinucleate giant cells in the cortex ..........104

Figure 5.7. Prescapular lymph node, draining the vaccination site, from a sheep vaccinated against paratuberculosis 2 weeks after oral infection with *M. paratuberculosis*. Multinucleate giant cells in the cortex .................................................................104

Figure 5.8. Small intestine from a sheep vaccinated against paratuberculosis 2 weeks after oral infection with *M. paratuberculosis*. Necrotic focus surrounded by neutrophils, macrophages and fibroblasts in the lamina propria.................................................................105

Figure 5.9. Prescapular lymph node, draining the vaccination sites, from a sheep vaccinated against paratuberculosis 2 weeks after oral infection with *M. paratuberculosis*. Necrotic focus surrounded by neutrophils, macrophages and fibroblasts in the cortex .......................105

Figure 5.10. IFN-γ production in response to Johnin PPD in blood samples and antibody indices in serum samples of 14 sheep vaccinated against paratuberculosis 2 weeks after oral infection with *M. paratuberculosis*, 14 infected but unvaccinated sheep and 13 uninfected-unvaccinated control sheep. .................................................................................................109

Figure 5.11. IFN-γ production in response to Johnin PPD in blood samples and antibody indices in serum samples of 14 sheep infected orally with *M. paratuberculosis*: In 7 experimentally infected sheep acid-fast organisms were detected microscopically in sections of tissues examined, while in the remaining 7 sheep AFO's were not detected. .........................110

Figure 5.12. Weight gain and growth rate in 14 sheep vaccinated against paratuberculosis 2 weeks after oral infection with *M. paratuberculosis*, 14 infected but unvaccinated sheep and 13 uninfected-unvaccinated control sheep...............................................................111
Figure 5.13. Nematode egg count in faecal samples of 14 sheep vaccinated against paratuberculosis 2 weeks after oral infection with *M. paratuberculosis*, 14 infected but unvaccinated sheep and 13 uninfected-unvaccinated control sheep. .................................................................112

Figure 5.14. Erythrocyte count, haemoglobin concentration and total leukocyte count in blood samples of 14 sheep vaccinated against paratuberculosis 2 weeks after oral infection with *M. paratuberculosis*, 14 infected but unvaccinated sheep and 13 uninfected-unvaccinated control sheep. ..........................................................................................................................113

Figure 5.15. Erythrocyte count, haemoglobin concentration and total leukocyte count in blood samples of 14 sheep infected orally with *M. paratuberculosis*. In 7 experimentally infected sheep acid-fast organisms were detected microscopically in sections of tissues examined, while in the remaining 7 sheep AFO's were not detected. ..................................................................................................................114

Figure 6.1. Results of single PCR tests on selected samples of ileal and ileocaecal lymph node DNA from 14 sheep infected with *M. paratuberculosis*, 14 sheep vaccinated against paratuberculosis 2 weeks after infection and 11 uninfected-unvaccinated control sheep. ......127

Figure 6.2. Results of single PCR tests on selected samples of hepatic (liver biopsy) DNA from 13 sheep infected with *M. paratuberculosis*, 14 sheep vaccinated against paratuberculosis 2 weeks after infection and 11 uninfected-unvaccinated control sheep. ..........................................................................................................................128

Figure 6.3. Results of the PCR on selected samples of peripheral blood leukocyte DNA from 14 sheep infected with *M. paratuberculosis*, 14 sheep vaccinated against paratuberculosis 2 weeks after infection, and 11 uninfected-unvaccinated control sheep. ..........................................................................................................................130

Figure 7.1. Results of the CFT, AGID, ELISA 0.1 cut-off and ELISA 0.05 cut-off in samples of serum sequentially collected from 30 sheep inoculated orally with *M. paratuberculosis* in the first month of life (Trial 1). ..........................................................................................................................139

Figure 7.2. Detection curves of the CFT, AGID, ELISA 0.1 cut-off and ELISA 0.05 cut-off in a group of 30 sheep inoculated orally with *M. paratuberculosis* in the first month of life (Trial 1). ..........................................................................................................................140

Figure 7.3. Results of the CFT, AGID, ELISA 0.1 cut-off, ELISA 0.05 cut-off and IFN-γ assay in serum and plasma samples sequentially collected from 14 sheep inoculated orally with *M. paratuberculosis* in the second month of life (Trial 2). ..........................................................................................................................141
Figure 7.4. Detection curves of the CFT, AGID, ELISA 0.1 cut-off, ELISA 0.05 cut-off and IFN-γ assay in a group of 14 sheep inoculated orally with *M. paratuberculosis* in the second month of life (Trial 2). ................................................................. 142

Figure 7.5. Results of the CFT, AGID, ELISA with 0.1 cut-off, ELISA with 0.05 cut-off and IFN-γ assay in serum and plasma samples sequentially collected from 13 uninfected control sheep. ................................................................. 143

Figure 8.1. IFN-γ indices in samples of blood and prescapular lymph node from 19 sheep infected experimentally with *M. paratuberculosis* and 10 uninfected control sheep. .................. 156

Figure 8.2. Adjusted OD values of the IFN-γ assay in samples of blood and prescapular lymph node from 19 sheep infected experimentally with *M. paratuberculosis* and 10 uninfected control sheep. ................................................................. 157