Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Investigation of a Biosensor for DNA Detection

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Engineering

in

Electronic Engineering

at

Massey University,

School of Engineering and Advanced Technology (SEAT)

Auckland, New Zealand

Massoud Alipour

January 2011
To my wife

Laya

My daughters

Elena & Erica
Acknowledgements

I would like to thank my supervisor: Dr. S.M. Razaul Hasan for his support throughout the duration of the project. Without his guidance and persistent help, this thesis would not have been possible. Thanks for his suggestions, patience and encouragement, which makes me finally brave enough to start this academic journey from a very beginning level.

I would also like to thank my family for their unconditional support.
Abstract

The aim of this project was to design a fully electronic sensor to detect hybridized DNA. In this study an integrated circuit for measuring capacitance of the sensor has been designed, which uses DNA as dielectric between the fingers of the sensor.

Nowadays, bio-sensors are widely used in electrical sensing where, most of these sensors use the conversion of capacitance for sensing. Some of the benefits of capacitive sensors are: high resolution, high sensitivity, low power dissipation, the ability to be integrated with other circuits, good stability and near zero thermal factors in heat exposure. Capacitive sensors are not affected by magnetic disturbances from electrical fields.

The first challenge in this study was bonding Single-strand DNA (ssDNA) to the sensor, which has been explained in chapter 2. After bonding ssDNA, the sample ssDNA will connect to their pairs on the sensor in the process called hybridization and the bonded addition then changes the capacitance of the sensor. To measure the change of the sensor’s capacitance it is necessary to use interface circuits called “readout circuits”. These circuits convert every change in the capacitive value to electrical changes such as current, voltage, frequency or pulse bandwidth to make the processing easier. Changes in the signal are very small, making factors such as noise and offset very important.

There are different methods available in measuring the changes in capacitance, which are discussed in this thesis and their advantages and disadvantages are described. After considering the best choice in DNA sensor, a suitable circuit for measuring the capacitance changes has been designed and simulated. Considerations for reducing noise and offset is also built in to the design of the circuit, Correlated Double Sampling (CDS) and Chopper Stabilisation (CHS) methods are used. Also, to achieve optimum results, these two methods are combined in this thesis. From the results of simulations, it is concluded that CDS and CDS&CHS methods are best suited for our design.

In chapter four, at first, two methods for detection of the capacitance in the sensors are demonstrated in the form of block diagrams, and then the advantages and disadvantages of these methods are discussed. After choosing the better method, every part of that method was implemented separately, as an integrated circuit. After linking the different parts, an analogue integrated circuit was designed that turned the capacitive variations to time period variations. Then a digital circuit was designed in order to turn the period time variations to a digital output. The analogue part of the circuit was simulated using 0.25µm technology parameters
in Tanner software and the digital part was simulated with VHDL software. The results of these simulations are presented in chapter five. This study succeeded in reaching an accuracy of $0.7fF$ (Femto Farad, 10^{-15}) capacitor variations. In the summary some suggestions for further research in this field were given.
Table of Contents

Abstract .. I
List of figures .. VI
List of tables ... IX
Glossary .. X

Chapter 1: Introduction to DNA Sensing .. 1
1.1 DNA construction .. 1
1.2 Vocabulary of genomics ... 2
1.3 Simple and effective: the principle of PCR ... 4
1.4 The Sensor .. 4
1.5 Principles in Method of Sensing ... 6
1.5.1 Using an oscillator ... 6
1.5.2 Using switched-capacitor ... 6
1.5.3 Using a Microprocessor ... 7

Chapter 2: Methods ... 8
2.1 Bonding ssDNA to the electrode ... 8
2.1.1 Option 1: Carbodiimide ... 8
2.1.2 Secondary option: Bonding DNA molecules to a thin gold layer .. 10
2.1.2.1 Nano Sciences ... 10
2.1.2.2 Surfaces and the common denominator in nano science .. 11
2.2 Methods of reading capacitance changes in capacitive sensors .. 13
2.2.1 Methods of circuits in continuous-time ... 13
2.2.1.1 Transducer impedance amplifiers ... 13
2.2.1.2 Charge sense amplifiers .. 14
2.2.2 Discrete-time methods ... 15
2.2.2.1 Capacitive switching technique .. 15
2.2.3 Relaxation oscillator method ... 17
2.3 Comparison between methods listed ... 20

Chapter 3: Literature review .. 23
3.1 Biosensors ... 23
3.1.1 Optical transducer ... 24
3.1.1.1 Fluorescence ... 24
3.1.1.2 Surface Plasmon Resonance (SPR) ... 24
Investigation of biosensor for DNA detection

3.1.1.3 Direct optical method

3.1.2 Mass transducer

3.1.3 Electrochemical identification

3.1.3.1 Direct electrochemical of DNA detection methods
 A: DNA detection based on passing electric current in DNA
 B: Using internal signals of DNA to detect hybridisation
 C: Using electrochemical impedance to detect DNA hybridisation
 D: Field effect sensors in DNA hybridisation detection

3.1.3.2 Indirect electrochemical of DNA detection methods
 A: DNA as an intermediate transfer of charge in electrochemistry
 B: Electro-static probe molecules
 C: Intercalative Molecules

3.1.4 Identifying proteins and small molecules attached to DNA

3.1.5 Detection of DNA by bonding the probe to an enzyme

3.1.6 Detecting electrochemistry of DNA by using metal nanoparticles
 3.1.6.1 Nanoparticles
 3.1.6.2 Gold Nanoparticles
 3.1.6.3 Optical readout
 3.1.6.4 Electrical detection of biological molecules using gold nanoparticles

3.2 Methods for noise reduction and offset in readout circuit of capacitive sensors

3.2.1 Noise sources in sensor circuits
 3.2.1.1 Noise sources in MOSFET transistors
 3.2.1.1.1 Thermal noise in MOS transistors
 3.2.1.1.2 Noise 1/f (Flicker) in MOS transistors
 3.2.1.2 DC offset in MOSFET transistors

3.3 Noise reduction methods
 3.3.1 CDS method (Correlated Double Sampling)
 3.3.1.1 Elimination of noise by using the CDS technique
 3.3.2 CHS method
 3.3.2.1 Noise removal by using CHS technique
 3.3.2.2 CHS effects on noise amplifier

3.4 Comparison CDS and CHS methods

Chapter 4: Design of capacitance detector circuit

4.1 Methods of designing the capacitance detection circuit
Investigation of biosensor for DNA detection

4.1.1 Method 1 for a capacitance detector ... 50
4.1.2 Method 2 for a capacitance detector ... 51
4.2 Triangular and square wave period .. 52
4.3 Disclosure period changes with changes in capacitance .. 53
4.4 Design of current sources ... 55
4.5 Implement the block diagrams presented in circuit ... 57
 4.5.1 Implement the current sources and switches .. 57
 4.5.2 Schmitt trigger design ... 58
4.6 Implement an integrated Schmitt trigger using an Op-Amp 59
 4.6.1 Using Op-Amp circuits with external feedback resistance 59
 4.6.2 Using Op-Amp circuits with internal feedback ... 61
 4.6.2.1 How the circuit works ... 61
 4.6.2.2 The method to design a comparator with hysteresis 63
4.7 Effect of voltage supply in output period of the Schmitt Trigger 66
4.8 Effect of voltage change in the capacitance of the sensor 69
4.9 Effect change of temperature on capacitance in the sensor 70
4.10 Supply voltage in the circuit ... 70
4.11 Power consumption in the circuit ... 70
4.12 Effect of noise on wave period Schmitt Trigger Output 70
4.13 The Digital section of the DNA detector .. 71

Chapter 5: Simulation results and recommendations .. 74
 5.1 The simulation results ... 74
 5.2 The Results of change in the power supplies .. 86
 5.3 Power consumption of the analogue circuit section .. 87
 5.4 Noise in the analogue section of the DNA detector ... 87
 5.4.1 GBM, PM, The noise referred to the input and DC gain of the designed OpAmp 88
 5.5 Comparison of other works ... 90
 5.6 Recommendations for future works ... 90
References ... 91
List of Figures

Figure 1.1 DNA (U.S National Library of Medicine) ... 1
Figure 1.2 Nucleic acid .. 2
Figure 1.3 Nucleotide .. 3
Figure 1.4 Hybridization ... 3
Figure 1.5 Phosphodiester bond ... 4
Figure 1.6 The basic design of the sensor .. 5
Figure 1.7 Charge and discharge ... 6
Figure 2.1 Ethyl-dimethylaminopropyl-carbodiimide .. 8
Figure 2.2 methylimidasole activated DNA ... 9
Figure 2.3 Covalently coupled DNA ... 9
Figure 2.4 Simplified block diagram of amplifier circuit impedance converter 13
Figure 2.5 Schematic of charge sense amplifier circuit ... 14
Figure 2.6 Switched capacitor amplifier circuit schematic ... 16
Figure 2.7 Capacitive switching circuit schematic used in capacitive sensors 16
Figure 2.8 Switched capacitor circuit with noise reduction kT/C .. 17
Figure 2.9 Work based of a resistance relaxation oscillator .. 18
Figure 2.10 Using a multiplexer to calculate an unknown capacitance according to the time period 18
Figure 2.11 Circuit by relaxation oscillator which capacitors are charged with constant current source ... 19
Figure 2.12 Capacitor detector with the continuous-time voltage with the capacitor feedback structure 20
Figure 2.13 Resolution of readout circuit capacitance compare to parasitic input capacitors 22
Figure 2.14 Min. capacitance can reveal changes in the parasitic capacitance and sensor capacitance bias ... 22
Figure 2.15 Scheme of SRP techniques to identify target molecules absorbed on the surface 23
Figure 2.16 Scheme the process of target molecule detection technique using QCM 25
Figure 2.17 Poly pyridyl complexes of Ru^2+ and Os^2+ ions .. 28
Figure 2.18 Using label molecules for detecting of mutations in the target sequence 29
Figure 2.19 Detection by way of a biocatalyst .. 31
Figure 2.20 Optical characteristics of gold nanoparticles, separate and aggregated 32
Figure 2.21 SNPs detection using nano-gold-DNA probes ... 33
Figure 2.22 Detecting DNA by Scanometric method ... 33
Figure 2.23 DNA by Scanometric method ... 33
Figure 3.1 Protein detection in cerebrospinal fluid (CSF), based on the Bio-Barcode 34
Figure 3.11 DNA detection based on Bio-Barcode ... 35
Figure 3.12 DNA hybridisation detection ... 36
Figure 3.13 Structure of NMOS transistor in saturation mode .. 38
Figure 3.14 Dangling bonds at the oxide-silicon interface ... 39
Investigation of biosensor for DNA detection

Figure 3.15 One simple differential pair to show offset ... 40
Figure 3.16 A capacitance detector circuit using switches capacitor method 42
Figure 3.17 The circuit shows how performance CDS ... 43
Figure 3.18 Performance of circuit in Fig. 3-17 in reset phase .. 43
Figure 3.19 Performance of circuit in Fig. 3-17 in error detection phase .. 43
Figure 3.20 Performance of the circuit 3-17 in sense phase signal of Φ_{SN2} 44
Figure 3.21 The chopper amplification principle .. 45
Figure 3.22 Conversion of Fourier ideal low-noise output signal .. 46
Figure 3.23 Effect of limited bandwidth of amplifier on the dc input signal 47
Figure 4.1 The first method of DNA detector .. 51
Figure 4.2 The second method of DNA detector ... 52
Figure 4.3 Mirror circuit diagram block of DNA detector for capacitors one side ground 54
Figure 4.4 Mirror circuit block diagram of DNA detector for floating capacitors 55
Figure 4.5 Implements of block diagrams of Fig. 4-1 ... 57
Figure 4.6 Implements of block diagrams of Fig. 4-2 ... 58
Figure 4.7 Standard Schmitt trigger ... 59
Figure 4.8 Schmitt trigger circuit with Op-Amp ... 59
Figure 4.9 Schmitt trigger Op-Amp with two inputs, differential inputs and output 60
Figure 4.10 Op-Amp differential input – differential output ... 61
Figure 4.11 Hysteresis comparator circuit .. 62
Figure 4.12 Stabilizing current of M_5 for stabilising the threshold voltages of the Schmitt trigger 66
Figure 4.13 Stabilising bias voltage in the Fig. 4-11 to stabilise Schmitt trigger threshold voltages 67
Figure 4.14 The final analogue circuit ... 69
Figure 4.15 Digital circuit for a capacitance meter option .. 72
Figure 4.16 Digital circuit for changing capacitance detector ... 73
Figure 5.1 Response of current sources and switches ... 74
Figure 5.2 The curve of the Schmitt trigger characteristic .. 74
Figure 5.3 Curve of S.R. in the Schmitt trigger .. 74
Figure 5.4 The plot for period and upper part of the period for $I=100nA$.. 75
Figure 5.5 The plot for period and upper part of the period for $I=100nA$.. 76
Figure 5.6 The plot for period and upper part of the period for $I=10nA$... 77
Figure 5.7 The plot for period and upper part of the period for $I=10nA$... 78
Figure 5.8 The plot for period and upper part of the period for $I=1nA$... 79
Figure 5.9 The plot for period and upper part of the period for $I=1nA$... 80
Figure 5.10 Plots obtained for period and upper part of the period signal when $C_s=2.5pF$ 82
Figure 5.11 Plots obtained for period and upper part of the period signal when $C_s=25pF$ 84
Figure 5.12 The plot of output of DNA detector circuit for $I=10nA$, $f=5.649MHz$ 86
Figure 5.13 output period of the Schmitt trigger circuit for two different voltages $V_{cc}=V_{ss}=2.5V$ and $V_{cc}=V_{ss}=3V$... 87

Figure 5.14 Noise in the analogue section of the DNA detector when capacitance of the sensor is $2.5pF$ and charge and discharge current is $10nA$... 88

Figure 5.15 GBW, PM and DC gain of the OpAmp .. 88

Figure 5.16 Noise observed in the OpAmp input... 89
List of Tables

Table 2.1 Numbers of headgroups ... 12
Table 4.1 Surface size of the transistors in Fig 4-14 68
Table 5.1 The results for period and upper part of the period for $I=100nA$ 75
Table 5.2 The results for period and upper part of the period for $I=100nA$ 76
Table 5.3 The results for period and upper part of the period for $I=10nA$ 77
Table 5.4 The results for period and upper part of the period for $I=10nA$ 78
Table 5.5 The results for period and upper part of the period for $I=1nA$ 79
Table 5.6 The results for period and upper part of the period for $I=1nA$ 80
Table 5.7 Results obtained for period and upper part of the period signal when $C_s=2.5pF$ 81
Table 5.8 Results obtained for period and high part of period signal when $C_s=25pF$ 83
Table 5.9 Output of DNA detector circuit for $I=10nA, f=5.649MHz$ 85
Table 5.10 Comparison with results of some other articles 90
Glossary:

A/D: Analogue to digital
ASV: Anodic Stripping Voltammetry
C/F: Capacitor-to-Frequency
CDS: Correlated Double Sampling
CHS: Chopper Stabilisation
CMOS: Complementary metal–oxide–semiconductor
CSA: Charge Sensitive Amplifier
DNA: Deoxyribonucleic acid
DIAPOPS: Detection of Immobilized Amplified Products in a One Phase System
EDC: Ethyl-dimethylaminopropyl-carbodiimide
GBM: Gain Bandwidth
HPR: Horseradish Peroxidase
LPF: Low Pass Filter
LSI: Large Scale Integration
MEMS: Micro Electromechanical System
MOSFET: Metal–oxide–semiconductor field-effect transistor
OLEDs: Organic light emitting diodes
OpAmp: Operational amplifier
PCR: Polymerase chain reaction
PLL: Phase Locked Loop
PSD: power spectral density
PM: Phase-Margins
QCM: Quartz Crystal Microbalances
RNA: Ribonucleic acid
SAM: Self-Assembled Monolayer
SC: switched capacitors
SNP: Single Nucleotide Polymorphism
SNR: Signal-to-Noise Ratio
SPR: Surface Plasmon Resonance
ssDNA: Single strand of denatured DNA
TIA: Transimpedance Amplifier
TLC: Thin-layer chromatography