Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A STUDY OF
SEED PRODUCTION IN DESMANTHUS
(Desmanthus virgatus L.)

A thesis
presented in partial fulfilment
of the requirements
for the degree of
Doctor of Philosophy
in Plant Science
at Massey University

Kendrick Gwilym Cox

1998
Desmanthus (*Desmanthus virgatus* (L.)) is a tropical forage legume of potential use in cattle rangeland. Currently this potential is not realised because of unreliable seed supply. The effect of plant density, chemical weed control, pre-harvest and harvest techniques on plant vigour, seed yield and seed yield components (SYC) were studied in field trials (1994/1995 and 1995/1996) in South-East Queensland on an early (‘Marc’) and a late (‘Bayamo’) flowering cultivar.

Potential seed yield per plant of both cultivars was most influenced by inflorescence number. High levels of floret abortion (>50% regardless of pollinator presence) occurred prior to pod expansion. Cultivar differences in flowering pattern and pod dehiscence resulted in differences in presentation seed yield.

Plant density effects on vegetative growth, flowering pattern, SYC and seed yield of ‘Marc’ were investigated using a Nelder 4.5° radial spacing trial (3 to 160 plants/m²). Increasing plant population decreased branching, inflorescences per plant and flowering duration. However increasing plant density over the tested range caused a linear increase in potential seed yield (to 200 g/m²) at peak flowering although actual seed yields (120 g/m²) did not respond similarly to plant density changes probably because of masking effects caused by insect (psyllid) damage after peak flowering and problems with sampling fallen seed.

Three different pre-harvest treatments were examined to try to improve subsequent seed harvesting efficiency. These included application of pre-harvest (polyvinylacetate (glue), diquat (desiccant) and paclobutrazol (plant growth regulator)) treatments. None of these increased combine harvested seed yields in either cultivar. However desiccation did increase both seed germination percentage and the proportion hard seeds but decreased seed weight. The effects of paclobutrazol on SYC in this trial were inconclusive. However, a further study on the effects of paclobutrazol revealed that it increased branching and inflorescences per plant when applied at the onset of flowering but had no obvious effect when application was delayed until peak flowering.
Combine and keyhole stripper harvesting systems both resulted in poor (12%) recovery of presentation yield in cv. 'Marc'. Combine harvesting decreased seed germination and the proportion of hard seeds, while unthreshed pods recovered by keyhole harvesting required additional threshing to remove seed. ‘Marc’ plants recovered poorly after harvest while frost caused premature abscission of ‘Bayamo’ pods and reduced harvest yields. This suggests ‘Marc’ may be economically viable as a commercial seed crop only in the first year and that satisfactory yields of ‘Bayamo’ will only be obtained in crops sown early or grown in delayed frost onset areas.

One pot trial and four field trials assessed the suitability of 28 pre-emergence and 44 post-emergence herbicides for use in desmanthus seed crops. Several new weed control options were identified though legume weeds remain difficult to kill selectively.

Results are discussed with reference to commercial desmanthus seed production practices.
ACKNOWLEDGEMENTS

I wish to sincerely thank my supervisors, Prof. Murray Hill, Mr James Millner, Dr Kerry Harrington (Plant Science Department, Massey University) and Dr Don Loch (Queensland Department of Primary Industries) for their invaluable advice, encouragement and constructive criticism during this study. I would also like to thank Dr Don Loch for assistance with locating trial sites in Queensland.

I also wish to show my appreciation to:

- Mr Warwick Green (Wrightson Seeds Ltd.) for proposal of the study and ongoing support during the programme

- Wrightson Seeds Ltd. and the Massey University Technology for Business Growth programme for financial support

- Mr Tony Moxey (Kilkivan) for providing a trial site on his farm and assistance with cultivation

- Mr Paul Murat and Dr John Hopkinson for showing me commercial desmanthus seed production sites in Queensland and providing useful comments

- Mr Greg Arnold (Mathematics and Statistics Department) for advice on statistical analysis

- all the staff of the Queensland Department of Primary Industries at Gympie for assistance and advice

- all the staff at Brian Pastures Research Station, Gayndah, for assistance and technical support
- staff of the Entomology and Agricultural Chemistry branches of the Queensland Department of Primary Industries for the identification of insects and soil tests respectively

- all of the staff of the Plant Science Department who provided advice and assistance

- Massey University for accepting me as a PhD candidate and provision of facilities

- my fiance, Bronwyn, for her support, humour and tolerance during the study.
TABLE OF CONTENTS

Title Page ... i
Abstract .. iii
Acknowledgements ... v
Table of Contents .. vii
List of Tables .. xviii
List of Figures .. xxi
List of Plates ... xxv

Chapter One General Introduction ... 1

Chapter Two Review of Literature ... 5

2.1 General Description of Desmanthus ... 5
2.1.1 Origin and taxonomy ... 5
2.1.2 Legume based pastoralism ... 7
2.1.2.1 Benefits to tropical pastoralism ... 7
2.1.2.2 Pasture development in Queensland ... 8
2.1.2.3 The need for forage legumes adapted to low rainfall / clay soil areas of Queensland ... 10
2.1.3 Desmanthus as a forage plant ... 11
2.1.3.1 Feed quality and animal performance .. 11
2.1.3.2 Forage yield and persistence .. 13
2.1.4 Screening and commercial release of desmanthus in Queensland 14
2.1.4.1 Screening of desmanthus in Queensland ... 14
2.1.4.2 Cultivar release of desmanthus .. 15
2.1.4.3 Commercial production of desmanthus seed 16

2.2 Plant Morphology .. 17
2.2.1 Vegetative .. 17
2.2.1.1 Stems and leaves .. 17
2.2.1.2 Roots .. 18
2.2.1.3 Nodulation .. 18
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.2</td>
<td>Reproductive</td>
<td>20</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>Flower structure</td>
<td>20</td>
</tr>
<tr>
<td>2.2.2.2</td>
<td>Pollen</td>
<td>22</td>
</tr>
<tr>
<td>2.2.2.3</td>
<td>Fruit</td>
<td>22</td>
</tr>
<tr>
<td>2.2.2.4</td>
<td>Seed</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>Plant Development</td>
<td>24</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Vegetative growth and development</td>
<td>24</td>
</tr>
<tr>
<td>2.3.1.1</td>
<td>Germination and emergence</td>
<td>24</td>
</tr>
<tr>
<td>2.3.1.2</td>
<td>Seedling growth and survival</td>
<td>25</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Reproductive growth and development</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>Expression of Seed Yield</td>
<td>28</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Seed yield components</td>
<td>28</td>
</tr>
<tr>
<td>2.4.1.1</td>
<td>Introduction</td>
<td>28</td>
</tr>
<tr>
<td>2.4.1.2</td>
<td>Contribution of seed yield components (SYC) to seed yield</td>
<td>31</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Flowering spread</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Environmental Effects on Seed Production</td>
<td>38</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Introduction</td>
<td>38</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Temperature and photoperiod</td>
<td>38</td>
</tr>
<tr>
<td>2.5.2.1</td>
<td>Latitude</td>
<td>38</td>
</tr>
<tr>
<td>2.5.2.2</td>
<td>Temperature</td>
<td>39</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Soil moisture</td>
<td>41</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Soil</td>
<td>42</td>
</tr>
<tr>
<td>2.5.4.1</td>
<td>Nitrogen</td>
<td>43</td>
</tr>
<tr>
<td>2.5.4.2</td>
<td>Phosphorous</td>
<td>44</td>
</tr>
<tr>
<td>2.5.4.3</td>
<td>Sulphur</td>
<td>45</td>
</tr>
<tr>
<td>2.5.4.4</td>
<td>Potassium</td>
<td>45</td>
</tr>
<tr>
<td>2.5.4.5</td>
<td>Calcium</td>
<td>46</td>
</tr>
<tr>
<td>2.5.4.6</td>
<td>Trace elements</td>
<td>46</td>
</tr>
</tbody>
</table>
3.2.3.3 Reproductive development .. 77
3.2.3.4 Seed quality indices over the season 78
3.2.3.5 Harvested seed .. 78
3.2.3.6 Climate data ... 80
3.2.4 Statistical analysis .. 80

3.3 Results ... 81
3.3.1 Plant development .. 81
 3.3.1.1 Vegetative .. 81
 3.3.1.2 Reproductive ... 81
 3.3.1.3 Effects of psyllid infestation on plant development 83
3.3.2 The effect of population density on plant structure 84
 3.3.2.1 Plant size .. 84
 3.3.2.2 Branching .. 90
3.3.3 The effect of population density on flowering pattern 90
3.3.4 The effect of population density on ovule number 92
3.3.5 The effect of population density on ovule abortion 92
3.3.6 The effect of population density on abortion of reproductive sites ... 94
3.3.7 The effect of population density on abortion of reproductive components ... 95
3.3.8 Density effects on seed quality 95
 3.3.8.1 Seed collected off the ground 95
 3.3.8.2 Seed collected off plants over the season 96
3.3.9 Harvested seed yields ... 98
3.3.10 Contribution of peak flowering to seed yield 98
 3.3.10.1 Vegetative structure ... 98
 3.3.10.2 Reproductive structures .. 99
3.3.11 Potential seed yield .. 102
 3.3.11.1 Calculation of potential seed yield 102
Contributions of branching tiers to potential seed yield

3.3.11.2 Contributions of branching tiers to potential seed yield ... 104

Discussion

3.4 Discussion... 108

- **3.4.1** Seed crop development.. 108
- **3.4.2** Implications of psyllid damage for commercial desmanthus seed production... 110
- **3.4.3** Annual versus perennial seed cropping.. 111
- **3.4.4** Effects of population density on plant development .. 112
 - **3.4.4.1** Vegetative development.. 112
 - **3.4.4.2** Reproductive development.. 112
- **3.4.5** Density effects on collected seed yield... 113
- **3.4.6** Density effects on potential seed yield (PSY).. 115
- **3.4.7** Comparison of collected and potential seed yields.. 117
- **3.4.8** Recommended sowing rates... 118
- **3.4.9** Further research... 118

Conclusion

3.5 Conclusion.. 120

Chapter Four Chemical Control of Weeds in Desmanthus Seed Crops in South-East Queensland

4.1 Introduction.. 123

- **4.1.1** Desmanthus spp... 124
- **4.1.2** Herbicide tolerance of leucaena.. 125
- **4.1.3** Herbicide tolerance of other tropical legume species of economic importance... 126
- **4.1.4** Herbicide tolerance of lucerne and other temperate legume species of economic importance.................................. 127
- **4.1.5** Approach to the identification of suitable chemical weed control strategies in desmanthus 127
4.2 Preliminary Herbicide Screening of *Desmanthus virgatus* cv. ‘Marc’ During Establishment

4.2.1 Introduction

4.2.2 Materials and methods

4.2.2.1 Pre-spray preparation

4.2.2.2 Pre-emergence herbicide application

4.2.2.3 Post-emergence herbicide application

4.2.2.4 Data collected

4.2.2.5 Statistical analysis

4.2.3 Results and discussion

4.2.3.1 Herbicide performance indicators

4.2.3.2 Pre-emergence herbicides

4.2.3.3 Pre-sowing herbicides

4.2.3.4 Post-emergence herbicides

4.3 Herbicide Screening of *Desmanthus virgatus* cv. ‘Marc’ in South-East Queensland

4.3.1 Introduction

4.3.2 Materials and methods

4.3.2.1 Pre-treatment preparation

4.3.2.2 Pre-emergence herbicide application

4.3.2.3 Post-emergence herbicide application

4.3.2.4 Management after herbicide application

4.3.2.5 Data collection

4.3.2.6 Statistical analysis

4.3.3 Results and discussion

4.3.3.1 Crop growth

4.3.3.2 Pre-emergence herbicides

4.3.3.3 Post-emergence herbicides

4.4 Herbicide Screening of *Desmanthus virgatus* cv. ‘Marc’ in South-East Queensland

4.4.1 Introduction
4.4.2 Materials and methods... 161
 4.4.2.1 Pre-treatment preparation.. 161
 4.4.2.2 Herbicide application... 162
 4.4.2.3 Data collection... 164
 4.4.2.4 Statistical analysis.. 165
4.4.3 Results and discussion... 166
 4.4.3.1 Plant growth... 166
 4.4.3.2 Effects of weeds on desmanthus... 166
 4.4.3.3 Herbicide effects on desmanthus population and
 vigour.. 167
 4.4.3.4 Herbicide effects on weeds.. 176
 4.4.3.5 Herbicide effects on desmanthus flowering............................ 179
 4.4.3.6 Herbicide recommendations.. 184

4.5 Herbicide Screening of *Desmanthus virgatus* cv. ‘Marc’ in South-East
 Queensland. 3. Established Plants... 186
 4.5.1 Introduction... 186
 4.5.2 Materials and methods.. 188
 4.5.2.1 Pre-treatment preparation... 188
 4.5.2.2 Herbicide application... 188
 4.5.2.3 Data collection... 189
 4.5.2.4 Statistical analysis.. 190
 4.5.3 Results and discussion.. 191
 4.5.3.1 Plant growth... 191
 4.5.3.2 Effects of weeds on desmanthus....................................... 191
 4.5.3.3 Herbicide effects on desmanthus..................................... 193
 4.5.3.4 Herbicide effects on weeds... 198
 4.5.3.5 Recommendations.. 199

4.6 Discussion... 200
 4.6.1 Introduction... 200
 4.6.2 Herbicide recommendations for weed control in desmanthus seed
 crops... 201
5.2.3 General trial information ... 242
5.2.5 Statistical analysis .. 243

5.3 Results .. 244
5.3.1 Introduction ... 244
5.3.2 Flowering pattern ... 244
 5.3.2.1 Flowering of untreated plants 244
 5.3.2.2 Effect of pre-harvest treatments on flowering........... 246
 5.3.2.3 Effect of harvest treatments on flowering 248
5.3.3 Harvested seed yields ... 250
 5.3.3.1 Cultivar ‘Marc’ .. 252
 5.3.3.2 Cultivar ‘Bayamo’ .. 252
5.3.4 Seed yield components ... 254
 5.3.4.1 Changes in SYC of untreated plants over the season.... 254
 5.3.4.2 Changes in SYC of paclobutrazol treated plants over the season .. 258
 5.3.4.3 SYC arising from peak flowering 258
5.3.5 Yields of dehisced seed ... 260
 5.3.5.1 Seasonal pattern of pod dehiscence in untreated plots... 260
 5.3.5.2 Effects of PCB on pod dehiscence 262
5.3.6 Efficiency of harvest ... 264
5.3.7 Seed quality of dehisced seed 264
 5.3.7.1 Cultivar ‘Marc’ .. 264
 5.3.7.2 Cultivar ‘Bayamo’ .. 266
5.3.8 Seed quality of harvested seed 266
 5.3.8.1 Cultivar ‘Marc’ .. 266
 5.3.8.2 Cultivar ‘Bayamo’ .. 269

5.4 Discussion .. 271
5.4.1 Development of seed yield ... 271
 5.4.1.1 Flowering pattern ... 271
 5.4.1.2 Development of seed yield components 272
 5.4.1.3 Pod dehiscence .. 273

TABLE OF CONTENTS
Chapter Six: The Effects of Paclobutrazol on Reproductive Development of Early and Late Flowering Desmanthus Cultivars

6.1 Introduction

6.2 Materials and Methods

- **6.2.1 Design**
- **6.2.2 Management**
- **6.2.3 Measurements**
- **6.2.4 Statistics**

6.3 Results and Discussion

- **6.3.1 Flowering**
 - **6.3.1.1 Untreated plants**
 - **6.3.1.2 Treated plants**
- **6.3.2 Effects of paclobutrazol on seed yield components**
 - **6.3.2.1 Numbers of reproductive structures**
 - **6.3.2.2 Rate of pod development**
- **6.3.3 Effects of paclobutrazol on plant structure at trial completion**
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Geographical and edaphic distribution of D. virgatus subspecies</td>
<td>6</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Allocation of density groups and specifications of the radial trial</td>
<td>72</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Seed quality indices of Desmanthus virgatus cv. ‘Marc’ seed collected off the ground at the end of the season and from plants during the season</td>
<td>96</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Effect of population density on the vegetative structure at peak flowering (96 days after germination) of Desmanthus virgatus cv. ‘Marc’</td>
<td>100</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Effect of population density on mean inflorescence number per plant at peak flowering and inflorescence number at peak flowering of Desmanthus virgatus cv. ‘Marc’ as a percentage of total inflorescences</td>
<td>100</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Effect of population density on inflorescence number per unit area over the entire season and at peak flowering of Desmanthus virgatus cv. ‘Marc’</td>
<td>101</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Effect of population density on mean immature umbel (IU) number per plant and per m² at peak pod presence and IU number at peak flowering as a percentage of total IU number of Desmanthus virgatus cv. ‘Marc’</td>
<td>102</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Tolerance of 3 to 4 week old Desmanthus virgatus seedlings to eight post-emergence herbicides in a pot trial, Gympie, Queensland</td>
<td>125</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Pre-emergence herbicide treatments applied on 4 July 1994 to pots sown with Desmanthus virgatus cv. ‘Marc’ seeds</td>
<td>132</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Soil incorporated herbicide treatments applied on 4 July 1994 to pots which were subsequently sown with Desmanthus virgatus cv. ‘Marc’ seeds</td>
<td>132</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Post-emergence herbicide treatments applied on 28 July 1994 to pots sown with Desmanthus virgatus cv. ‘Marc’ seeds</td>
<td>133</td>
</tr>
</tbody>
</table>
Table 4.5 Effects of pre-emergence herbicides on germinating
Desmanthus virgatus cv. ‘Marc’ seedlings grown in pots.............. 137

Table 4.6 Effects of soil incorporated herbicides on germinating
Desmanthus virgatus cv. ‘Marc’ seedlings grown in pots.............. 139

Table 4.7 Effects of post-emergence herbicides on germinating
Desmanthus virgatus cv. ‘Marc’ seedlings grown in pots.............. 140

Table 4.8 Pre-emergence herbicide treatments applied on 30
November 1994 to plots sown with *Desmanthus virgatus*
cv. ‘Marc’ in South-East Queensland... 146

Table 4.9 Post-emergence herbicide treatments applied on 22
December 1994 to plots of seedling (four to six true
leaves) *Desmanthus virgatus* cv. ‘Marc’ in South-East
Queensland.. 146

Table 4.10 Weed species present in the herbicide screening plots,
Kilkivan, South-East Queensland (11 November 1994 to 5
January 1995).. 148

Table 4.11 Effects of pre-emergence herbicides on germinating
Desmanthus virgatus cv. ‘Marc’ seedlings................................. 151

Table 4.12 Effect of pre-emergence herbicides on vigour scores (40
days after application) of weed species in plots of
germinating *Desmanthus virgatus* cv. ‘Marc’ seedlings............. 151

Table 4.13 Effect of pre-emergence herbicides on vigour scores (56
days after application) of weed species in plots of
germinating *Desmanthus virgatus* cv. ‘Marc’ seedlings............. 152

Table 4.14 Effects of post-emergence herbicides on *Desmanthus*
virgatus cv. ‘Marc’ seedlings following application at the
six true leaf stage... 154

Table 4.15 Effects of post-emergence herbicides on scores (18 days
after application) of weed species in plots of *Desmanthus*
virgatus cv. ‘Marc’ seedlings after application at the six
true leaf stage.. 154
Table 4.16 Effect of post-emergence herbicides on vigour scores (34 days after application) of weed species in plots of germinating Desmanthus virgatus cv. ‘Marc’ seedlings.......................... 155

Table 4.17 Formulation and rate of herbicides applied in the herbicide combination trial to plots containing Desmanthus virgatus cv. ‘Marc’ seedlings in South-East Queensland... 163

Table 4.18 Combinations of herbicides applied to Desmanthus virgatus cv. ‘Marc’ seedlings at Kilkivan, South-East Queensland.. 163

Table 4.19 Weed species present in the herbicide combination screening plots, Kilkivan, South-East Queensland (7 December 1995).. 165

Table 4.20 Effects of herbicide combinations on population and vigour score of Desmanthus virgatus cv. ‘Marc’ seedlings.......................... 168

Table 4.21 Effects of herbicide combinations on population score (Popn) and vigour score (V.S.) of bladder ketmia (Hibiscus trionum) in Desmanthus virgatus plots.. 168

Table 4.22 Effects of herbicide combinations on population score (Popn) and vigour score (V.S.) of Noogoora burr (Xanthium pungens) in Desmanthus virgatus plots.. 169

Table 4.23 Effects of herbicide combinations on population score (Popn) and vigour score (V.S.) of bellvine (Ipomoea plebeia) in Desmanthus virgatus plots.. 169

Table 4.24 Effects of herbicide combinations on population score (Popn) and vigour score (V.S.) of sida (Sida rotundifolia) in Desmanthus virgatus plots.. 170

Table 4.25 Effects of herbicide combinations on population score (Popn) and vigour score (V.S.) of rhyncosia (Rhynchosia minima) in Desmanthus virgatus plots.. 170

Table 4.26 Effects of herbicide combinations on population score (Popn) and vigour score (V.S.) of phyllanthus (Phyllanthus tenellus) in Desmanthus virgatus plots.. 171
Table 4.27 Effects of herbicide combinations on population score (Popn) and vigour score (V.S.) of euphorbia (*Euphorbia prostrata*) in *Desmanthus virgatus* plots

Table 4.28 Herbicide treatments applied on 15 December 1995 to plots containing one year old plants of *Desmanthus virgatus* cv. 'Marc' in South-East Queensland

Table 4.29 Effects of herbicides applied 15 December 1995 on vigour score of mature *Desmanthus virgatus* cv. 'Marc' plants

Table 4.30 Effects of herbicides applied 15 December 1995 on population (plants/m²) of mature *Desmanthus virgatus* cv. 'Marc' plants

Table 4.31 Populations of bladder ketmia (bk), Noogoora burr (nb), bellvine (bell), sida, rhyncosia (ryhn), phyllanthus (phyll), euphorbia (euph) and verbena (verb) in plots of mature *Desmanthus virgatus* cv. 'Marc'. 1. Eight days prior to herbicide application

Table 4.32 Populations of bladder ketmia (bk), Noogoora burr (nb), bellvine (bell), sida, rhyncosia (ryhn), phyllanthus (phyll), euphorbia (euph) and verbena (verb) in plots of mature *Desmanthus virgatus* cv. 'Marc'. 2. Thirty-nine days after herbicide application

Table 4.33 Effects of herbicides applied 15 December 1995 on vigour score of bellvine (*Ipomoea plebeia*) and sida (*Sida rhombifolia*) plants in plots of mature *Desmanthus virgatus* cv. 'Marc'

Table 4.34 Geographical and climatic features of the Gympie and Mareeba seed growing districts, Queensland

Table 4.35 Types and weed status of weeds found in northern Queensland crops

Table 5.1 Application details of pre-harvest and harvest treatments on *Desmanthus virgatus* cvs. 'Marc' and 'Bayamo' grown at Gayndah, South-East Queensland, 1995/1996
Table 5.2 Analysis of variance (ANOVA) table of total harvest yield of *Desmanthus virgatus* cvs. ‘Marc’ and ‘Bayamo’ .. 250

Table 5.3 Harvested seed yields (g/m²) of *Desmanthus virgatus* cvs. ‘Marc’ and ‘Bayamo’ under differing pre-harvest and harvest treatments .. 253

Table 5.4 Seed yield components of inflorescences tagged at peak flowering of *Desmanthus virgatus* cvs. ‘Marc’ and ‘Bayamo’ ... 260

Table 5.5 Comparison of the amount of fallen seed prior to harvest and actual harvested seed yields (kg/ha) of *Desmanthus virgatus* cvs. ‘Marc’ and ‘Bayamo’ under differing pre-harvest and harvest treatments .. 263

Table 5.6 Seed quality indices of harvested seed of *Desmanthus virgatus* cvs. ‘Marc’ and ‘Bayamo’ under different pre-harvest and harvest treatments (TM) .. 270

Table 6.1 Date and rate of paclobutrazol application to *Desmanthus virgatus* cvs. ‘Marc’ and ‘Bayamo’ .. 289

Table 6.2 Effects of paclobutrazol application on mean inflorescence number per plant at peak flowering and total inflorescences presented over the season of *Desmanthus virgatus* cvs. ‘Marc’ and ‘Bayamo’ grown in a glasshouse .. 294

Table 6.3 Effects of paclobutrazol treatments on plant structural components at final harvest of *Desmanthus virgatus* cvs. ‘Marc’ and ‘Bayamo’ grown in glasshouse conditions .. 296

Table 6.4 Effects of paclobutrazol treatments on selected seed yield components of *Desmanthus virgatus* cvs. ‘Marc’ and ‘Bayamo’ grown in glasshouse conditions .. 298

Table 6.5 Effects of paclobutrazol treatments on mean number of umbels and mean number of pods per umbel of *Desmanthus virgatus* cvs. ‘Marc’ and ‘Bayamo’ .. 301
LIST OF FIGURES

Figure 2.1	Flowering branch and seed pod of *Desmanthus virgatus* L.	19
Figure 3.1	Layout of the radial trial (after Nelder, 1962)	73
Figure 3.2	Effect of population density on mean leaf number per plant of *Desmanthus virgatus* cv. ‘Marc’	85
Figure 3.3	Schematic diagram of *Desmanthus virgatus* cv. ‘Marc’ 156 days after germination grown in a population of 160 plants/m²	86
Figure 3.4	Schematic diagram of *Desmanthus virgatus* cv. ‘Marc’ 156 days after germination grown in a population of 3 plants/m²	87
Figure 3.5	Schematic diagram of *Desmanthus virgatus* cv. ‘Marc’ at peak flowering (96 days after germination) grown in a population of 160 plants/m²	88
Figure 3.6	Schematic diagram of *Desmanthus virgatus* cv. ‘Marc’ at peak flowering (96 days after germination) grown in a population of 3 plants/m²	89
Figure 3.7	Effect of population density on mean inflorescence number per plant of *Desmanthus virgatus* cv. ‘Marc’	91
Figure 3.8	Effect of population density on mean ovule number per floret of *Desmanthus virgatus* cv. ‘Marc’	93
Figure 3.9	Mean thousand seed weight of *Desmanthus virgatus* cv. ‘Marc’ seed collected over the season and pooled across densities	97
Figure 3.10	Effect of population density on seed yield of *Desmanthus virgatus* cv. ‘Marc’ collected 20 June 1995	99
Figure 3.11	Effect of population density on mean inflorescence number per m² of *Desmanthus virgatus* cv. ‘Marc’	103
Figure 3.12	Effect of population density on potential seed yield per plant of *Desmanthus virgatus* cv. ‘Marc’	105
Figure 3.13	Effect of population density on potential seed yield per m² of *Desmanthus virgatus* cv. ‘Marc’	107
Figure 4.1	Flowering pattern of *Desmanthus virgatus* cv. ‘Marc’ plants treated with trifluralin and bentazone (Treatment 1)	181
Figure 4.2 Effects of herbicide combinations on flowering pattern of
Desmanthus virgatus cv. ‘Marc’ plants.. 183
Figure 5.1 Pre-harvest, harvest and cleaning procedures used in
tropical forage seed crops.. 229
Figure 5.2 Harvest trial layout at Brian Pastures Research Station,
near Gayndah, South-East Queensland, 1995/1996............................ 233
Figure 5.3 Seasonal flowering pattern of untreated (Treatment 0)
plants of Desmanthus virgatus cv. ‘Marc’... 245
Figure 5.4 Seasonal flowering distribution of untreated (Treatment 6)
plants of Desmanthus virgatus cv. ‘Bayamo’.. 247
Figure 5.5 Seasonal distribution of selected seed yield components of
untreated plants of Desmanthus virgatus cvs. ‘Marc’ and
‘Bayamo’... 255
Figure 5.6 Seasonal distribution of rates of inflorescence and pod
development of untreated plants of Desmanthus virgatus
cvs. ‘Marc’ and ‘Bayamo’.. 257
Figure 5.7 Seasonal distribution of selected seed yield components of
paclobutrazol treated plants of Desmanthus virgatus cvs.
‘Marc’ and ‘Bayamo’... 259
Figure 5.8 Seasonal distribution of rates of inflorescence and pod
development of paclobutrazol treated plants of
Desmanthus virgatus cvs. ‘Marc’ and ‘Bayamo’.......................... 261
Figure 5.9 Seasonal pattern of fallen seed collected in untreated plots
of Desmanthus virgatus cvs. ‘Marc’ and ‘Bayamo’........................ 263
Figure 5.10 Seasonal pattern of seed quality indices of fallen seed of
Desmanthus virgatus cv. ‘Marc’.. 265
Figure 5.11 Seasonal pattern of seed quality indices of fallen seed of
Desmanthus virgatus cv. ‘Bayamo’.. 267
Figure 6.1 Flowering patterns in Desmanthus virgatus cvs. ‘Marc’
and ‘Bayamo’ averaged over all paclobutrazol treatments 293

LIST OF FIGURES
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>Commercial desmanthus seed production site, Atherton Tableland, 1995</td>
</tr>
<tr>
<td>Plate 3.1</td>
<td>Radial trial at Kilkivan, South-East Queensland, 11 January 1995. The population density of prostrate plants (foreground) is between 6 and 24 plants/m² whereas erect plants (mid-ground) are planted at rates up to 217 plants/m² (central border arc)</td>
</tr>
<tr>
<td>Plate 3.2</td>
<td>Pod development sequences of Desmanthus virgatus cvs. ‘Bayamo’, ‘Marc’ and ‘Uman’ shortly after anthesis until pod dehiscence (left to right by row). Immature pods as classified in this study are represented by the fourth umbel in cvs. ‘Bayamo’ and ‘Uman’ and the fifth umbel in cv. ‘Marc’. Mature pods are represented by the fifth umbels in cvs. ‘Bayamo’ and ‘Uman’ and seventh umbel in cv. ‘Marc’</td>
</tr>
<tr>
<td>Plate 4.1</td>
<td>Plant vigour ratings used in the preliminary herbicide screening on Desmanthus virgatus cv. ‘Marc’. Tags on pots denote vigour scores at harvest (53 days after sowing) of pots in pre-emergence herbicide treatments</td>
</tr>
<tr>
<td>Plate 4.2</td>
<td>Typical plots of Desmanthus virgatus cv. ‘Marc’ on 28 February 1996 receiving no weed control (left) or treated with imazaquin (200 g ai/ha, 29 November 1995) and bentazone (960 g ai/ha, 15 January 1996) (right)</td>
</tr>
<tr>
<td>Plate 4.3</td>
<td>A typical plant of Desmanthus virgatus cv. ‘Marc’ treated with trifluralin (840 g ai/ha, 29 November 1995) and bentazone (960 g ai/ha, 15 January and 21 February 1996) on 28 February 1996</td>
</tr>
<tr>
<td>Plate 5.1</td>
<td>Plots of Desmanthus virgatus cvs. ‘Marc’ (left) and ‘Bayamo’ (right) during active reproductive and vegetative growth respectively (10 March 1996)</td>
</tr>
</tbody>
</table>
Plate 5.2 Harvesting of Desmanthus virgatus cv. 'Marc' plots by combine harvester (top) and keyhole harvester (bottom), 29 April 1996 ... 239

Plate 5.3 Residue of Desmanthus virgatus cv. 'Marc' after keyhole harvest (left) and combine harvest (right), 29 April 1996 .. 241

Plate 5.4 Regeneration of Desmanthus virgatus cv. 'Marc' after harvest on 29 April 1996: (Top) Fallen seed immediately prior to harvest. (Bottom) Regeneration of 'Marc' plants from harvested plants (large plants in rows) and from seed (small plants between rows) 28 days after harvest .. 249

Plate 5.5 Condition of Desmanthus virgatus cvs. 'Marc' (top) and 'Bayamo' (bottom) plots immediately before combine harvest on 29 April 1996 and 1 August 1996 respectively 251