Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Copper and zinc dynamics and bioavailability in soils amended with biosolids

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Soil Science at Massey University, Palmerston North, New Zealand

Paramsothy Jeyakumar 2010

Abstract

Global sewage sludge (biosolids) production is increasing as a result of rapidly growing human population and ensuing industrial activities. Land application of this waste is becoming a serious environmental issue because the high levels of heavy metals in biosolids can upset soil microbial activity and nutrient balance when the waste is added to forest or agricultural lands. It is widely accepted that bioavailability, rather than total soil concentration, is more important when assessing the risk associated with metal contamination. The bioavailability of a heavy metal is dependent on the chemical nature of the metal, the chemical, physical and biological properties of biosolids that contain the metal and of soil that receives the biosolids. It also depends on the interaction of the biosolids with soil, plants and soil microorganisms. The overall aim of this thesis was to assess the bioavailability of biosolids–derived Cu and Zn and the comparative effects of these metals on plant and soil microbial activity, with special attention to mycorrhiza, and the effects of application of lime and Al dross as ameliorants for the reduction of bioavailability of these two metals.

Biosolids were collected from the Palmerston North City Council Waste Water Treatment Plant (PNCCWTP) sludge lagoon in Palmerston North, New Zealand. Because the metal concentrations were low, for research purposes these biosolids were spiked separately with three levels of Cu (to give final concentrations of 50, 150 and 250 mg/kg soil) and Zn (to give final concentrations of 150, 450 and 750 mg/kg soil) added as metal sulphate salts. The biosolids were anaerobically incubated, and it was found that a shorter period of equilibration (2 months) than the previously used 6–9 months was sufficient for Cu and Zn to be fully incorporated into the biosolids matrix. As biosolids in New Zealand are currently applied to forest lands, two important forest plants, poplar and pine, were considered for the study in this thesis. The effects of elevated concentrations of Cu and Zn in a soil amended with metal spiked biosolids on poplar plants were investigated in a 147 day glasshouse pot trial. The findings of this trial showed that at the same total soil metal concentration, biosolids–derived Cu was more toxic than Zn to soil microorganisms, whereas Zn was more toxic to poplar and ECM fungi. In a similar glasshouse study lasting 312 days with pine, Cu did not show a phytotoxic effect, but Zn was phytotoxic to pine. However, both metals were toxic to microorganisms and neither metal influenced ECM fungi colony development. The currently recommended maximum metal concentration limits for New Zealand soils of 100 mg/kg for Cu and 300 mg/kg for Zn appear to be high for both metals with respect to soil microbial activity, but low for Cu and high for Zn with respect to poplar and pine growth.

A laboratory incubation trial with Cu– and Zn– spiked biosolids added to eight soils representing the major Soil Groups collected from across the North Island of New Zealand (biosolids added to give final soil concentrations of 150 mg/kg for Zn or 450 mg/kg for Cu), showed that crystalline Fe oxide was the dominant factor explaining 90% of the variability in exchangeable Cu. For Zn, clay content and pH were the controlling soil factors that together explained 73% of the variability in exchangeable Zn. An increased content of crystalline Fe oxide increased the soil exchangeable Cu concentration. Decreasing pH and increasing clay content increased the soil exchangeable Zn concentration.

The effect of lime (0.1 and 0.5%), Al dross (2 and 6%) and a combination of lime and Al dross (0.1% lime+2% Al dross) as soil amendments for the amelioration of the toxic effect of biosolids–derived Cu (144 mg/kg in soil) and Zn (417 mg/kg in soil) on microorganisms and poplar were also studied. Results revealed that application of lime and Al dross (pH 10) as a mixture (0.1% lime+2% Al dross) was able to ameliorate Cu and Zn phytotoxicity, and significantly increase the DM yield of poplar, ECM fungi population and microbial activity in the Cu and Zn contaminated soils.

The findings of the studies in this thesis are applicable to environmental regulations with respect to heavy metal limits that seek to protect agricultural and forest land, human and animal health, and soil and drinking water quality, in scenarios where biosolids are applied to soil.

Acknowledgements

Mere words cannot be conveyed to express my worship to my God, for providing me with the strength, knowledge, wisdom, courage and love. I would like to acknowledge this land of the long white cloud, the traditional land of the Mãori and Pakeha people for giving me this valuable opportunity.

It is indisputably my proud privilege to express my deepest sense of gratitude to Associate Professor P. Loganathan, my chief supervisor for his tremendous support during my times of hardship, his enthusiasm, deep scientific insights and expert discussions, wisdom and guidance, motivation and inspiration, service mind, and for having faith in me.

I am sincerely grateful to my co-supervisor Dr. Christopher W. N. Anderson, an insightful friend, a pillar of practical work and laboratory support and source of wisdom and enthusiasm. I would like to thank my co-supervisor Professor Ron G. McLaren for his valuable scientific inputs and advices throughout the entire period of my doctoral study.

It is my pleasure to express my heartfelt gratitude to Dr S. Sivakumaran for his excellent support in microbiology experiments, patience and critical eye, and continuous support.

I am grateful to New Zealand Soil Science Society for selecting me for prestigious best PhD student award (Summit–Quinphos) in 2009. Many thanks also to World Bank aided IRQUE project, Eastern University of Sri Lanka, Massey University Doctoral Scholarship for providing me the financial assistance during the three years of my research. I wish to thank Education New Zealand for providing New Zealand Postgraduate Study Abroad Award for attending overseas international conference. I also wish to thank Institute of Natural Resources for funding this study, Helen E Akers PhD scholarship as well as providing travel grant to attend national and overseas conferences.

I am indeed thankful to staff of the Soil and Earth Sciences Group especially to Professor Mike Hedley, Mr Lance Currie, Ms Ann West, Mr Ian Furkert, Mr Bob Toes, Mr Ross Wallace, Ms Glenys Wallace, Mr Mike Bretherton, Ms Moira Hubbard and Ms Liza Haarhoff for their priceless support, and encouragement at each step of research period have been the driving force of this work. I would especially like to thank Dr Brent Clothier and staff of climate lab, Plant and Food for hosting me for my microbial experimental work. Many thanks for Palmerston North City Council Waste Water Treatment Plant and staff member for giving permission to collect biosolids and for their worthwhile information. My sincere thanks to RST Environmental Solutions Ltd, Palmerston North, New Zealand for providing poplar cuttings, and Stéphanie Caille for measuring ECM mycorrhizae colonized roots infection.

I owe a big thanks to my dear friend Erwin Wisnubroto for always being kind, extremely helpful and supportive during my difficult stages of PhD. My sincere thanks to Peter Bishop, Janice Asing, Raza Khan and Saleem Bhatti and other research fellows in the Soil and Earth Group for their invaluable assistance in research work.

I am indeed thankful to Jeevi Ponniah, Jayanthy Ramaneeswaran, Luxmy Thiyagalingam, Sylvia Fransis and Valarmathi Jeyamohan for their extreme support to keep me balance between academic and family life.

Words are not enough to express my love and thanks to my father, sister, brother–in–law, brothers, sister–in– laws and kids for all their love, understanding, help and encouragement. My heartfelt respect to my dearest mother who always up and, loved me, was so proud of me, believed in me, supported me and was there for me.

My son – Ganan and little princess – Vibu, your love, your life and your future was my inspiration and motivation!!! Finally, rest of all my energy goes to a wonderful woman – Vaithehi. A person, who believes in me, always supports me, who loves me, cares for me, no matter what. A true inspiration to my life!!!

Table of contents

Abs	tract	ii
Ack	nowledgements	iv
Tab	le of contents	v
List	of figures	xi
List	of tables	xiv
Cha	pter 1: Literature review and research objective	s 1
1.1	Introduction	1
	1.1.1 Biosolids, definition, disposal and use	1
	1.1.2 Biosolids production in New Zealand and the wor	ld-wide 2
1.2	Heavy metals in biosolids	2
1.3	Biosolids disposal methods	6
	1.3.1 Incineration	7
	1.3.2 Landfill Disposal	7
	1.3.3 Land application	8
1.4	Soil limits for biosolids derived heavy metals	9
1.5	Chemical forms of heavy metals in biosolids and soils	10
	1.5.1 Solid phase	11
	1.5.1.1 Soluble and exchangeable metal ions	12
	1.5.1.2 Specifically sorbed	13
	1.5.1.3 Iron and manganese oxides	13
	1.5.1.4 Organic matter	13
	1.5.1.5 Residual fraction	14
	1.5.2 Liquid phase	15
	1.5.2.1. Measurements	16
	1.5.2.2. Model predictions	16
1.6	Fate of biosolids-derived heavy metals in soil	17
	1.6.1 Soil properties that influence the availability of Cu	and Zn
	in soil	20
1.7	Soil Cu and Zn availability to plants	22

	1.7.1	Cu and Zn deficiency	23
	1.7.2	Cu and Zn toxicity	23
	1.7.3	Soil tests for bioavailability	26
	1.7.4	Zn and Cu availability to pine and poplar	30
		1.7.4.1 Pine	30
		1.7.4.2 Poplar	32
	1.7.5	Rhizosphere	34
	1.7.6	Mycorrhizae	35
1.8	Coppe	er and zinc toxicity to microorganisms	38
	1.8.1	Comparative effect of metal toxicity in plants,	
		microorganisms and mycorrhiza	40
1.9	Metho	ods to reduce soil heavy metal toxicity	42
	1.9.1	Zeolite, iron oxide and lime as amendments to	
		immobilise metals in soil	43
		1.9.1.1 Zeolites	44
		1.9.1.2 Iron and aluminium oxides, fly ash and by-products	45
		1.9.1.3 Lime	46
1.10	Resea	rch justification	47
1.11	Objec	tive of the study	49

Cha	pter 2:	Copper and zinc spiking of biosolids: Effect of	
incu	bation	period on changes in metal chemical forms and	
bioa	vailabi	lity	50
2.1	Introd	uction	50
2.2	Mater	ials and methods	52
	2.2.1	Sampling and experimental setup	52
	2.2.2	Chemical analysis	53
	2.2.3	Dehydrogenase activity	56
	2.2.4	Estimation of microbial population	56
	2.2.5	Quality control measures	57
	2.2.6	Data analysis	58
2.3	Resul	ts and Discussion	59
	2.3.1	pH, Eh and BOD	59

	2.3.2	Metal fractionation in biosolids solid phase	61
	2.3.3	Metal speciation in the biosolids liquid phase	65
	2.3.4	Total microbial population	67
	2.3.5	Dehydrogenase activity	68
2.4	Concl	usions	72

Cha	pter 3:	Comparative tolerance of poplar, mycorrhiza	
and	microl	bial activity to copper and zinc toxicity in a	
bios	olids–a	mended soil	73
3.1	Introd	luction	73
3.2	Mater	ials and methods	75
	3.2.1	Trial treatments and design	75
	3.2.2	Plant harvest and soil sampling	76
	3.2.3	Chemical analysis	76
	3.2.4	Dehydrogenase activity	77
	3.2.5	Mycorrhiza counting	78
	3.2.6	Quality control measures	78
	3.2.7	Data analysis	79
3.3	Results and discussion		79
	3.3.1	Poplar yield and metal accumulation	79
	3.3.2	Metal concentration in soil solution	82
	3.3.3	Metal fractions in soil solid phase	85
	3.3.4	Mycorrhizal colonization	88
	3.3.5	Dehydrogenase activity	89
3.4	Concl	usions	94

Cha	pter 4: Response of <i>Pinus radiata</i> and soil microbial	
activ	vity to increasing copper and zinc contamination in a soil	
trea	ted with metal–amended biosolids	96
4.1	Introduction	96
4.2	Materials and methods	98
4.3	Results and discussion	99
	4.3.1 Dry matter yield and metal availability to the plants	99

	4.3.2	Metal speciation in soil solution phase	104
	4.3.3	Metal fractions in the soil solid phase	106
	4.3.4	Mycorrhiza colonization	109
	4.3.5	Dehydrogenase activity	111
	4.3.6	Comparative effect of biosolids-derived Cu and Zn	
		on poplar and pine	114
4.4	Concl	usion	116

Chapter 5: Effect of soil properties on the bioavailability

of coj	pper a	nd zinc in eight soils treated	
with	metal-	-amended biosolids	119
5.1	Introd	uction	119
5.2	Materi	als and methods	121
	5.2.1	Laboratory incubation setup	122
	5.2.2	Particle size distribution	122
	5.2.3	Chemical analysis	122
	5.2.5	Data analysis	123
5.3	Result	s and discussion	125
	5.3.1	Solid phase fractionation	125
	5.3.2.	Correlation study	130
5.4	Conclu	isions	134

Chapter 6: Effect of lime and Al waste on poplar yield, and Cu

		and Zn uptake from a biosolids-amended soil	136
6.1	Introd	uction	136
6.2	Mater	ials and methods	139
	6.2.1	Soils	139
	6.2.2	Amendments	139
	6.2.3	Glasshouse trial	140
	6.2.4	Microbial biomass carbon (MBC)	141
6.3	Result	s and discussion	142
	6.3.1	Poplar yield and metal accumulations	142
	6.3.2	Al phytotoxicity in Al dross treatments	146

	6.3.3	Beneficial effect of combined application of lime	
		and Al dross	147
	6.3.4	Bioconcentration factor	148
	6.3.5	Available soil metal concentrations	149
	6.3.6	Mycorrhizal colonization	151
	6.3.7	Dehydrogenase activity and microbial biomass carbon	152
6.4	Concl	usions	156

Chapter 7: Overall conclusions and recommendations for

		future work	157
7.1	Need for the study		157
7.2	Resea	rch outline	158
7.3	Impor	tant findings of this study	159
	7.3.1	A short period of equilibration (2 months) than the previously	
		used 6–9 months may be sufficient for Cu and Zn	
		to be fully incorporated into the biosolids matrix (Chapter 2)	159
	7.3.2	Biosolids-derived Cu was more toxic to microorganisms than	
		Zn, but Zn was more toxic to poplar and mycorrhiza (Chapter 3)	160
	7.3.3	Ectomycorrhiza fungi symbiosis with pine was well	
		developed and not affected by Cu and Zn. As for poplar, both	
		Cu and Zn were toxic to microorganisms, but Zn was more toxic	
		than Cu. Only Zn reduced pine growth (Chapter 4)	160
	7.3.4	The total solution-phase (mg/L) and solid-phase exchangeable	
		(mg/kg) Cu and Zn concentrations for 50% microbial	
		activity (dehydrogenase activity) reduction (EC ₅₀) were	
		as follows; (Chapter 2, 3 and 4)	161
	7.3.5	Crystalline Fe oxide was found to be the main soil property	
		controlling the exchangeable soil Cu concentration.	
		Whereas for exchangeable Zn, the dominant soil properties	
		were soil clay content and pH (Chapter 5)	161

Appe	ndix .	•••••••••••••••••••••••••••••••••••••••	210
Refer	ences		165
7.4	Recon	nmendations for future work	162
		colony development (Chapter 6)	162
		and Zn in poplar, improved microbial activity and mycorrhiza	
		mixture ameliorated the toxic effect of biosolids-derived Cu	
	7.3.6	Application of 0.1% lime and 2% alkaline Al dross as a	

List of figures

Figure 1.1	Origin and fate of metals during treatment of wastewater	
-	(ADEME 1995)	3
Figure 1.2	Dynamics of Cu and Zn reactions in soil (Adriano 2001;	
-	Kabata-Pendias and Pendias 2001; Loganathan et al. 2008)	18
Figure 2.1	(a,c) Palmerston North City Council Waste Water	
	Treatment Plant and (b) biosolids lagoon where samples	
	were collected and (d) stored after metal spiking	53
Figure 2.2	Percentage distribution of Cu fractions (a) and Zn fractions	
	(b) in the solid phase of biosolids (SE=standard error for	
	individual fractions, n=3)	63
Figure 2.3	Relationship between the sum of all metal fraction	
	concentrations and the total metal concentration	
	determined by acid digestion	64
Figure 2.4	Bacteria counts in metal spiked biosolids (Solution + Solid	
	phases)	67
Figure 2.5	Dehydrogenase activity in biosolids spiked at different	
	levels of Cu (a) and Zn (b) for different time intervals.	
	Means Bars with different letters are significantly different	
	(<i>P</i> ≤0.05)	69
Figure 2.6	Relationship of dehydrogenase activity (TPF) with liquid	
	phase Cu (a), exchangeable Cu (b), liquid phase Zn (c) and	
	exchangeable Zn (d)	71
Figure 3.1	Relationship of poplar leaf DM with Zn^{2+} (µM) in soil	
	solution	85
Figure 3.2	Percentage distribution of Cu and Zn fractions in	
	rhizosphere and bulk soils amended with biosolids under	
	poplar	87
Figure 3.3	Mycorrhiza hyphae count in poplar roots at different levels	
	of Cu and Zn. Bars with different letters are significantly	
	different ($P \le 0.05$)	88
Figure 3.4	Dehydrogenase activity (TPF) in bulk and rhizosphere	

xi

	soils at different levels of Cu and Zn. Bars with different	
	letters are significantly different ($P \le 0.05$). Simple letters	
	indicate the variance among the bulk soils and capital	
	letters for the rhizosphere soils	90
Figure 3.5	Relationship of dehydrogenase activity (TPF) with (a) soil	
	solution Cu, (b) exchangeable Cu, (c) soil solution Zn and	
	(d) exchangeable Zn. Equation 1 in Materials and method	
	section was used for (a) and (b); Equation 2 was used for	
	(c) and (d)	92
Figure 4.1	Effect of Cu and Zn on growth in pine (312 days after	
	planting): Figure shows no toxic effect of Cu on plant	
	growth, but an increasing phytotoxic effect of Zn with	
	increasing concentration of Zn in soil.	101
Figure 4.2	Relationship of pine needle DM with the Zn^{2+}	
	concentration (µM) in soil solution	106
Figure 4.3	Percentage distribution of Cu and Zn fractionation in	
	rhizosphere and bulk soils amended with biosolids under	
	pine	108
Figure 4.4	Mycorrhiza hyphae counts on pine roots as a function of	
	Cu and Zn treatments of the soil. No significant difference	
	$(P \le 0.05)$ between treatments	110
Figure 4.5	Dehydrogenase activity (TPF) in bulk and rhizosphere	
	soils at different levels of Cu and Zn. Bars with different	
	letters are significantly different ($P \le 0.05$). Simple letters	
	indicate the variance among the bulk soils and capital	
	letters are the rhizosphere soils	111
Figure 4.6	Relationship of dehydrogenase activity (TPF) with (a) soil	
	solution Cu, (b) exchangeable Cu, (c) soil solution Zn and	
	(d) exchangeable Zn. Equation 1 in section 4.2 was used	
	for (a) and (b); Equation 2 was used for (c) and (d)	113
Figure 5.1	Distribution of Cu in various soil fractions in the eight	
	soils amended with biosolids. (a) Control and (b) added Cu	
	after 0, 147 and 257 days of incubation (s.e.=standard	

xii

error, n=2). Added Cu = Cu treatment minus Control

- Figure 5.2 Distribution of Zn in various soil fractions in eight soils amended with biosolids. (a) Control and (b) added Zn after 0, 147 and 257 days of incubation (s.e.=standard error, n=2). Added Zn = Zn treatment minus Control
- Figure 6.1. Leaf chlorosis and browning in poplar treated with ZnA2
- Figure 6.2 Ectomycorrhiza hyphae count in roots of poplar grown in lime and Al dross treated soils contaminated with Cu and Zn derived from biosolids. Bars with different letters are significantly different ($P \le 0.05$). Simple letters indicate the variance among the Cu contaminated soils and capital letters for the Zn contaminated soils
- Figure 6.3 Dehydrogenase activity (TPF) and MBC for lime and Al dross treated rhizosphere soils in Cu and Zn contaminated soils. Bars with different letters are significantly different ($P \le 0.05$). Simple letters indicate the variance among the Cu contaminated soils and capital letters for the Zn contaminated soils

152

128

129

145

155

List of tables

Annual production of biosolids (NZWWA 2003)	2
Heavy metal concentrations (mg/kg dry weight) in biosolids	
(*and soils) from selected studies in different countries	5
Methods of disposal of biosolids in selected countries	6
Restrictions on biosolids handling methods (Fytili and	
Zabaniotou 2008)	8
Soil limits and biosolids classification by contaminant	
levels (mg/kg dry weight) in New Zealand (NZWWA 2003)	10
Sequential Extraction procedure (McLaren and Clucas	
2001; Tessier et al. 1979)	12
Soil properties influencing the dynamics of biosolids	
derived Cu and Zn	19
Approximate concentrations of Cu and Zn in mature leaf	
tissue generalized for various plant species (mg/kg dry	
weight)	24
Relative phytoavailability of different species of metals in	
soils (Kabata-Pendias and Pendias 2001)	26
Lower critical concentrations in soil extracts (mg/kg DM)	
(Alloway 2008a; Brennan et al. 1993; Srivastava and Gupta	
1996)	29
Upper critical concentrations in soil extracts (mg/kg DM)	29
Selected studies on metal influence on forest plants	31
Critical concentrations of Cu and Zn (mg/kg DM) in pine at	
different growth stages (Boardman et al. 1997)	32
Proposed thresholds of soil Cu concentrations for tolerance	
by poplar (Stobrawa and Lorenc-Plucinska 2008)	33
Zn^{2+} concentration at EC ₅₀ for ECM isolates (Hartley <i>et al.</i>	
1997a)	37
Critical Cu and Zn concentrations affecting microbial	
activities (conc. unit mg/kg; exception (mg/L) indicated in	
table)	39
	Annual production of biosolids (NZWWA 2003) Heavy metal concentrations (mg/kg dry weight) in biosolids (*and soils) from selected studies in different countries Methods of disposal of biosolids in selected countries Restrictions on biosolids handling methods (Fytili and Zabaniotou 2008) Soil limits and biosolids classification by contaminant levels (mg/kg dry weight) in New Zealand (NZWWA 2003) Sequential Extraction procedure (McLaren and Clucas 2001; Tessier <i>et al.</i> 1979) Soil properties influencing the dynamics of biosolids derived Cu and Zn Approximate concentrations of Cu and Zn in mature leaf tissue generalized for various plant species (mg/kg dry weight) Relative phytoavailability of different species of metals in soils (Kabata-Pendias and Pendias 2001) Lower critical concentrations in soil extracts (mg/kg DM) (Alloway 2008a; Brennan <i>et al.</i> 1993; Srivastava and Gupta 1996) Upper critical concentrations in soil extracts (mg/kg DM) Selected studies on metal influence on forest plants Critical concentrations of Cu and Zn (mg/kg DM) in pine at different growth stages (Boardman <i>et al.</i> 1997) Proposed thresholds of soil Cu concentrations for tolerance by poplar (Stobrawa and Lorenc-Plucinska 2008) Zn ²⁺ concentration at EC ₅₀ for ECM isolates (Hartley <i>et al.</i> 1997a) Critical Cu and Zn concentrations affecting microbial activities (conc. unit mg/kg; exception (mg/L) indicated in table)

Table 2.1	pH, Eh and BOD (mean±s.e., n=3) of the biosolids	60
Table 2.2	Metal concentrations (mean±s.e., n=3) in solid biosolids	61
Table 2.3	Metals in liquid phase (0.45 μ m) as a percentage of total	
	metals (mean±s.e., n=3) in biosolids suspension	65
Table 2.4	Percentage of metal species in the liquid phase of biosolids	
	at different times after metal spiking	66
Table 3.1	Effect of Cu and Zn on soil pH, soil solution metal	
	concentration, poplar metal concentration and DM yield	81
Table 3.2	Percentage of metal species in soil solution	83
Table 4.1	Effect of Cu and Zn on total soil metal concentration, soil	
	pH, pine needle metal concentration and DM yield	103
Table 4.2	Percentage of metal species in soil solution	105
Table 4.3	Comparative effects of Cu and Zn in poplar (Chapter 3) and	
	pine (Chapter 4) trials	114
Table 5.1	Physical and chemical properties of biosolids amended soils	124
Table 5.2	Total and exchangeable metal concentrations (mg/kg) of	
	biosolids amended soils (control) at various incubation	
	periods	125
Table 5.3	Simple linear correlation coefficients (r) for exchangeable	
	metals versus properties of eight soils	133
Table 5.4	Simple linear correlation coefficients between the properties	
	of eight soils	134
Table 6.1	The average concentrations (mg/kg) of chemical elements	
	in the Al dross sample	140
Table 6.2	Effect of lime (L) and Al dross (A) applications on poplar	
	DM yield and metal concentration	144
Table 6.3	CaCl ₂ (0.01M) extractable and exchangeable (1M KCl)	
	Aluminium (mg/kg) in soils	146
Table 6.4	Effect of lime and Al dross applications on soil pH	148
Table 6.5	Effect of lime and Al dross applications on soil metal	
	fractions (mg/kg)	150