Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
ETHYLENE BIOSYNTHESIS DURING LEAF MATURATION AND SENESCENCE IN WHITE CLOVER

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

at

Massey University

STEPHEN MARK BUTCHER

1997
Aspects of leaf senescence in relation to ethylene biosynthesis in the plagiotropic herbaceous plant white clover (Trifolium repens L.) have been studied. Two stolons growing from clonally propagated plants were trained over a dry substratum that inhibits nodal root growth, and all axillary stolons and flowers were removed. White clover plants grown using this method produce leaves at all stages of development along a single stolon from initiation at the apex, through expansion, maturity, senescence and then necrosis. The study shows that modification of the stolon growth habit of white clover by the suppression of nodal roots provides a suitable system for the study of leaf development and senescence in relation to ethylene metabolism.

The pattern of leaf development (the number of leaves at each stage of development present on the stolon) and senescence (as measured by changes in leaf chlorophyll content) along the white clover stolon is consistent between plants of the same genotype growing under the same environment, but varied greatly between the different cultivars and genotypes examined. The rate of change between the different stages of leaf development and senescence within the one genotype used in this study, AgResearch Grassland genotype 10F, differed when grown under two different environments.

On mature stolons (stolons with 6 or more nodes with senesced leaves) of genotype 10F grown using the modified stolon system, the number of green leaves was maintained at a constant number as the leaf appearance rate was balanced by the senescence rate. However, the number of leaves maintained on the stolons differed between the two growing environments used in this study, from 9.85 +/- 0.23 for plants grown at Levin, to 14.57 +/- 1.99 for plants grown at Palmerston North.

The total chlorophyll concentration in the leaves from plants grown at Levin increased from leaf one (the youngest opened leaf; 740 μg/g.fw) to a maximum in leaf five (mature green leaf; 2240 μg/g.fw), declined rapidly from leaf five to leaf seven (senescing leaves; 1500 μg/g.fw), and then remained constant from leaf seven to leaf ten. A similar pattern of change in chlorophyll concentration was measured in leaves from plants grown at Palmerston North, but the maximum concentration was found in leaf 4 (1750 μg/g.fw), remained relatively constant to leaf 8, before decreasing in leaf 9 (750 μg/g.fw) and declining to a minimum in leaf 15 (250 μg/g.fw). The chlorophyll a:b ratio in mature green leaves from plants grown at Palmerston North (1.46:1 to 2.63:1) was lower than the ratio in leaves from plants grown at Levin (3.72:1 to 4.98:1).

Leaves of white clover produce ethylene. Ethylene evolution from attached...
leaves varied from 1 nL/g.fw/h (mature green leaves) to 3 nL/g.fw/h (senescing leaves). Ethylene evolution from detached leaves was initially high (12.6 nL/g.fw/h at 15 min) but declined to 3.8 nL/g.fw/h by 45 min before increasing again.

Detached mature green leaves (leaves four to six) of white clover are sensitive (as measured by chlorophyll loss) to low concentrations (<1 ppm) of exogenous ethylene. The chlorophyll concentration in these leaves after four days of ethylene treatment (1, 10 or 100 ppm ethylene) was significantly lower than the chlorophyll concentration in freshly harvested leaves. However, the chlorophyll concentration in leaves two and three (early mature green) treated with ethylene was not significantly different from the concentration in freshly harvested leaves.

1-aminocyclopropane-1-carboxylic acid (ACC) concentration was low in leaves one to four (<1 nmoles/g.dw), increased to reach a maximum concentration of 11.4 nmoles/g.dw in leaf seven and declined to 2 nmoles/g.dw in leaf ten. 1-aminocyclopropane-1-carboxylic acid (MACC) concentration was highest in leaf one (11.3 nmoles/g.dw), declined to 6 nmoles/g.dw in leaf two, and remained constant for all other leaves.

ACC synthase activity could not be determined in protein extracts from white clover leaf tissue. ACC oxidase activity in protein extracts varied in the different leaves examined. The activity versus substrate concentration curve for leaves one, three, five and six displayed saturation kinetics with respect to the substrate, ACC, whereas the data for leaves eight and ten did not show saturation kinetics over the range of ACC concentrations used. The ACC oxidase activity varied from 0.81 nL/mg.protein/h in extracts from leaf six, to 1.64 nL/mg.protein/h for leaf five. The apparent Km varied from 61 μM for leaf six to 138 μM for leaf five, while the Vmax varied from 0.92 for leaf six to 2.06 for leaf five.

Degenerate oligonucleotide primers corresponding to conserved regions found among diverse ACC synthases were used for reverse transcriptase-polymerase chain reaction (RT-PCR) to amplify DNA fragments from RNA extracted from white clover leaf tissue. A DNA clone, ACS7, showed 88% homology at the nucleotide level to ACC synthase from *Glycine max*. The ACS7 sequence contained the three conserved domains (including the reaction centre, and the three residues known to bind the pyridoxal phosphate coenzyme) identified in published ACC synthase sequences. The derived amino acid sequence for the conserved domains is identical with other published sequences. Southern analysis indicates ACC synthase is represented by a multigene family in white clover. Northern analysis of the expression of ACC synthase using ACS7 as a hybridisation probe was unsuccessful.

Preliminary screening of a white clover leaf cDNA library produced a clone with 72.5% homology to a putative cysteine proteinase from *Pisum sativum*, and 63.4% homology to a cysteine proteinase from *Vicia sativa*.
This thesis would not have been possible without the assistance, advice and encouragement from many people. I would like to thank my supervisors Drs. Mike McManus, David Fountain from the Plant Biotechnology Department at Massey University, and Dr. Derek White from AgResearch Grasslands, for their advice, support and encouragement. In particular, I would like to thank Dr. Mike McManus for his openness, the close working relationship, the excellent advice throughout, and the friendship he has given. I would also like to thank my fellow students in the laboratory for their help, friendship and fun they provided.

I would like to thank Dr. Ross Lill (Crop and Food Research, Levin) and Dr. Mike Hay (AgResearch Grasslands) for their willingness to read the draft manuscript and provide feedback.

I would like to thank AgResearch Grasslands for the opportunity to use the laboratories and other facilities at Palmerston North, and the excellent and friendly support and advice I received from the staff. I would like to thank the British Council and Massey University for the financial support received for travel to the United Kingdom. I would also like to thank the New Zealand Crop and Food Research Institute for the generous financial support received.
For Gail, Nathaniel, Matthew and Hannah

who give me so much love and joy.

For my parents who have supported and
encouraged me in everything.
CHAPTER 2:
MATERIALS AND METHODS...31
 2.1 Propagation and growth of white clover plants..31
 2.1.1 Propagation and potting mix...31
 2.1.2 Growth of white clover plants..31
 2.1.3 Harvesting white clover leaves...32
 2.2 Biochemical and physiological methods..35
 2.2.1 Preparation of commonly used reagents..35
 2.2.2 Measurement of chlorophyll concentration...35
 2.2.3 Treatment of detached leaves with exogenous ethylene......................36
 2.2.4 Determination of ethylene evolution from white clover leaves............36
 2.2.4.1 Measurement of ethylene production...36
 2.2.4.2 Measurement of ethylene evolution from detached leaves.............37
 2.2.4.3 Measurement of ethylene evolution from attached leaves.............37
 2.2.5 Measurement of ACC and MACC concentration in white clover leaves.37
 2.2.6 Measurement of enzyme activity...39
 2.2.6.1 ACC-synthase...39
 2.2.6.2 ACC-oxidase..40
 2.2.6.3 Desalting protein solutions in spin columns.................................42
 2.2.6.4 Measurement of protein concentration..43
 2.3 Molecular biology methods..44
 2.3.1 Preparation of commonly used reagents..44
 2.3.2 Transformation of Esherichia coli..46
 2.3.2.1 Preparation of competent cells..46
 2.3.2.2 Plasmid transformation of E. coli..47
 2.3.3 Extraction and purification of plasmid DNA from cultures of E. coli....47
 2.3.4 Precipitation of nucleic acids in aqueous solution..............................48
 2.3.4.1 Precipitation of nucleic acids with ethanol....................................49
 2.3.4.2 Precipitation of DNA with isopropanol...50
 2.3.5 Restriction endonuclease digestion of DNA...50
 2.3.6 Agarose gel electrophoresis of DNA..51
 2.3.7 Recovery and purification of DNA from agarose gels..........................52
 2.3.8 Preparation of plasmid cloning vectors for the insertion
 of DNA fragments...53
 2.3.9 Ligation of insert DNA to plasmid vectors...54
 2.3.10 Extraction of genomic DNA from leaf tissue of white clover..............55
2.3.17.10 Amplifying and storing the lambda library ... 86
2.3.17.11 Excising pZL1 from positive λ.Ziplox clones .. 87

CHAPTER 3:
PHYSIOLOGICAL AND BIOCHEMICAL CHARACTERISATION OF ETHYLENE
BIOSYNTHESIS IN LEAVES OF WHITE CLOVER ... 89
3.1 Stolon growth and plant selection ... 89
 3.1.1 Introduction ... 89
 3.1.2 Stolon growth of white clover ... 91
 3.1.3 Genotype evaluation ... 91
 3.1.4 Genotype selection ... 102
 3.1.5 Growth of 10F at Levin ... 102
 3.1.6 Growth of 10F at Palmerston North .. 106
3.2 Measurement of ethylene evolution from leaves of white clover 118
 3.2.1 Introduction ... 118
 3.2.2 Ethylene evolution from detached leaves of white clover 118
 3.2.3 Ethylene evolution from attached leaves of white clover 120
 3.2.3.1 Introduction .. 120
 3.2.3.2 Ethylene evolution from attached leaves ... 120
3.3 ACC and MACC concentration in leaves of white clover 125
 3.3.1 Introduction ... 125
 3.3.2 Measurement of ACC and MACC concentration in leaves of white clover ... 125
3.4 Measurement of enzyme activity in leaves of white clover 129
 3.4.1 Introduction ... 129
 3.4.2 Measurement of ACC synthase activity .. 129
 3.4.3 Measurement of ACC oxidase activity ... 131
 3.4.3.1 Introduction .. 131
 3.4.3.2 Measurement of ACC oxidase activity ... 131
3.5 Induction of senescence in leaves of white clover by exogenously applied
 ethylene .. 143
 3.5.1 Introduction ... 143
 3.5.2 Ethylene application to detached leaves .. 143
 3.5.3 Chlorophyll concentration in leaves exposed to ethylene 148
CHAPTER 4:
MOLECULAR CHARACTERISATION OF ETHYLENE BIOSYNTHESIS DURING
LEAF MATURATION AND SENESCENCE IN WHITE CLOVER 160

4.1 Introduction ... 160

4.2 Southern hybridisation of white clover genomic DNA with heterologous
 ACC oxidase DNA sequences .. 162
 4.2.1 Introduction ... 162
 4.2.2 Preparation of pTOM13 for use as a molecular probe 162
 4.2.3 Extraction and Southern blotting of white clover genomic DNA 165
 4.2.4 Hybridisation of genomic DNA with 32P-labelled pTOM13 DNA 169

4.3 PCR amplification of ACC synthase and ACC oxidase DNA sequences 171
 4.3.1 Introduction ... 171
 4.3.2 Extraction of total RNA from leaves of white clover using Trizol 171
 4.3.3 Extraction of total RNA from leaves of white clover using hot
 phenol and lithium chloride .. 174
 4.3.4 Amplifying ACC synthase and ACC oxidase DNA fragments
 using PCR ... 174
 4.3.5 Southern hybridisation of white clover genomic DNA with PCR
 generated DNA fragments .. 177

4.4 Molecular characterisation of ACC synthase .. 182
 4.4.1 Introduction ... 182
 4.4.2 Preparation of PCR amplified ACS clones for sequencing 182
 4.4.3 Sequencing ACS7 and ACS8 ... 183

4.5 Northern analysis of white clover RNA for sequences homologous to ACC
 synthase .. 192
 4.5.1 Introduction ... 192
 4.5.2 Preparation of total RNA northern blot ... 192
 4.5.3 Extraction of poly (A)$^+$ RNA ... 192
 4.5.4 Analysis of poly (A)$^+$ RNA by PCR .. 194
 4.5.5 Preparation of poly (A)$^+$ RNA northern blot .. 197

4.6 Preparation and screening of a cDNA library prepared from senescing
 white clover leaves ... 200
 4.6.1 Introduction ... 200
 4.6.2 Total RNA extraction ... 200
 4.6.3 Poly (A)$^+$ RNA extraction ... 201
 4.6.4 cDNA synthesis ... 204
4.6.5 Southern analysis of the PCR products .. 206
4.7 Preparation, screening and analysis of the cDNA library 208
 4.7.1 Preparation and screening .. 208
 4.7.2 Sequencing cDNA library clones ... 210

CHAPTER 5:
DISCUSSION .. 219
 5.1 Stolon growth of white clover ... 219
 5.2 Ethylene evolution from leaves of white clover 225
 5.3 Ethylene biosynthesis ... 227
 5.4 The timing of ethylene biosynthesis and perception 232
 5.5 PCR amplification of ACC oxidase and ACC synthase 237
 5.6 Screening a cDNA library for ACC synthase 243
 5.7 Conclusions .. 245
 5.8 Future directions .. 247
 5.8.1 Further investigations on ACC synthase 247
 5.8.2 Further investigations on ACC oxidase 247
 5.8.3 Sensitivity of white clover leaves to ethylene 248

BIBLIOGRAPHY ... 249
LIST OF TABLES

Table 2.1 Nutrient additions to the propagation and potting mixes used for the propagation and growth of white clover plants .. 33
Table 2.2: Molecular size of DNA fragments efficiently separated by agarose gels 56
Table 2.3: Reaction components used to amplify specific DNA sequences homologous to ACC synthase and ACC oxidase from white clover by PCR. .. 74
Table 2.4: Primer sequences used to generate DNA fragments homologous to ACC synthase and ACC oxidase from white clover by PCR. .. 75
Table 3.1: White clover cultivars assessed at Levin ... 93
Table 3.2: Average stolon lengths for cultivars grown at Levin. 95
Table 3.3: Average internode lengths for cultivars grown at Levin 96
Table 3.4: Average number of nodes for cultivars grown at Levin 97
Table 3.5: Comparison of growth of genotype 10F compared with the average growth of all genotypes at harvest .. 101
Table 3.6: Leaf colour, fresh weight and dry weight for genotype 10F grown at Levin ... 103
Table 3.7: Ratio of chlorophyll b to total chlorophylls, and the chlorophyll a:b ratios in leaves of white clover from plants grown at Levin and Palmerston North. ... 110
Table 3.8: Leaf colour and fresh weight for genotype 10F grown at Palmerston North .. 112
Table 3.9: ACC synthase activity in white clover leaf protein extracts, and apple cortical tissue protein extracts ... 130
Table 3.10: Apparent Km and Vmax for ACC oxidase ... 142
Table 3.11A: Ethylene concentration in control containers 144
Table 3.11B: Ethylene concentration measured in containers with leaves after day one ... 144
Table 3.11C: Ethylene concentration measured in containers with leaves after day two ... 146
Table 3.11D: Ethylene concentration measured in containers with leaves after day four .. 147
Table 4.1: Absorbance ratio and quantity of DNA extracted from leaves of white clover and tomato for Southern analysis. ...167
Table 4.2: Total RNA extracted using Trizol from leaves of white clover grown at Levin ..172
Table 4.3: Total RNA extracted as described in section 4.3.3 from leaves of white clover grown at Palmerston North ...175
Table 4.4: Classification of putative ACC synthase clones generated by PCR from cDNA s prepared from leaves of white clover..........................184
Table 4.5: Amino acid sequence of the conserved domains of ACC synthase compared with the derived amino acid sequences from the consensus DNA sequence of pACS7 and pACS8 ...189
Table 4.6: Poly (A)* RNA extracted from leaves of white clover grown at Palmerston North ...195
Table 4.7: Total RNA extracted from leaf six from white clover grown at Levin ..202
Figure 1.1: Diagram showing the ethylene biosynthesis pathway in relation to the methionine cycle and polyamine synthesis ... 6
Figure 1.2: Ethylene biosynthesis pathway in higher plants showing some factors which affect the production of ethylene .. 9
Figure 2.1: Stolons of white clover genotype 10F growing under controlled conditions at Levin ... 34
Figure 2.2: Arrangement of apparatus used to transfer DNA or RNA samples to Hybond N* membrane ... 58
Figure 3.1: Drawing of a clover plant modified from Thomas (1987) 90
Figure 3.2: Pattern of leaf development obtained when growing white clover stolons of genotype 10F using the method described in section 2.1.2. ... 92
Figure 3.3: Mean stolon length for all genotypes grown at Levin 98
Figure 3.4: Mean internode length for all genotypes grown at Levin 99
Figure 3.5: Mean number of nodes for all genotypes grown at Levin 100
Figure 3.6: Mean internode length for genotype 10F grown at Levin 104
Figure 3.7: Mean petiole length for genotype 10F grown at Levin 105
Figure 3.8: Mean total chlorophyll concentration in leaves of genotype 10F grown at Levin ... 107
Figure 3.9: Mean chlorophyll a concentration in leaves of genotype 10F grown at Levin .. 108
Figure 3.10: Mean chlorophyll b concentration in leaves of genotype 10F grown at Levin ... 109
Figure 3.11: Mean total chlorophyll concentration in leaves of genotype 10F grown at Palmerston North ... 113
Figure 3.12: Mean chlorophyll a concentration in leaves of genotype 10F grown at Palmerston North ... 114
Figure 3.13: Mean chlorophyll b concentration in leaves of genotype 10F grown at Palmerston North ... 115
Figure 3.14: Ethylene evolution immediately after harvest from mature green leaves of white clover genotype 10F grown at Levin 119
Figure 3.15: Ethylene evolution from detached leaves of white clover,
versus time from detachment. ... 121

Figure 3.16: Mean ethylene evolution from attached leaves of genotype 10F
grown at Levin. ... 122

Figure 3.17: Mean ethylene evolution from attached leaves of genotype 10F
grown at Palmerston North. .. 124

Figure 3.18: Mean ACC concentration in leaves of genotype 10F
grown at Levin. ... 126

Figure 3.19: Mean MACC concentration in leaves of genotype 10F
grown at Levin. ... 128

Figure 3.20A: ACC oxidase activity at 1 mM ACC for different concentrations
of leaf protein extracts. ... 132

Figure 3.20B: ACC oxidase activity at different added ACC concentrations
in protein extracts from mature green leaves from genotype 10F
plants grown at Palmerston North. .. 133

Figure 3.21: ACC oxidase activity in protein extracts from leaf one and
mature green leaves from white clover genotype 10F plants
grown at Palmerston North. .. 135

Figure 3.22A: ACC oxidase activity in protein extracts from leaf one of
genotype 10F plants grown at Levin.. 136

Figure 3.22B: Lineweaver-Burk plot for ACC oxidase in protein extracts
from leaf one of genotype 10F plants grown at Levin................. 136

Figure 3.23A: ACC oxidase activity in protein extracts from leaf three of
genotype 10F plants grown at Levin.. 137

Figure 3.23B: Lineweaver-Burk plot for ACC oxidase in protein extracts
from leaf three of genotype 10F plants grown at Levin.............. 137

Figure 3.24A: ACC oxidase activity in protein extracts from leaf five of
genotype 10F plants grown at Levin.. 138

Figure 3.24B: Lineweaver-Burk plot for ACC oxidase in protein extracts
from leaf five of genotype 10F plants grown at Levin.............. 138

Figure 3.25A: ACC oxidase activity in protein extracts from leaf six of
genotype 10F plants grown at Levin.. 139

Figure 3.25B: Lineweaver-Burk plot for ACC oxidase in protein extracts
from leaf six of genotype 10F plants grown at Levin.............. 139
Figure 3.26A: ACC oxidase activity in protein extracts from leaf eight of genotype 10F plants grown at Levin.

Figure 3.26B: Lineweaver-Burk plot for ACC oxidase in protein extracts from leaf eight of genotype 10F plants grown at Levin.

Figure 3.27A: ACC oxidase activity in protein extracts from leaf ten of genotype 10F plants grown at Levin.

Figure 3.27B: Lineweaver-Burk plot for ACC oxidase in protein extracts from leaf ten of genotype 10F plants grown at Levin.

Figure 3.28A: Mean total chlorophyll concentration in detached leaves exposed to ethylene for four days.

Figure 3.28B: Mean chlorophyll a concentration in detached leaves exposed to ethylene for four days.

Figure 3.28C: Mean chlorophyll b concentration in detached leaves exposed to ethylene for four days.

Figure 3.29A: Mean total chlorophyll concentration in detached leaves exposed to ethylene for ten days.

Figure 3.29B: Mean chlorophyll a concentration in detached leaves exposed to ethylene for ten days.

Figure 3.29C: Mean chlorophyll b concentration in detached leaves exposed to ethylene for ten days.

Figure 3.30A: Mean total chlorophyll concentration in detached leaves of white clover exposed to ethylene for all treatments combined.

Figure 3.30B: Mean chlorophyll a concentration in detached leaves of white clover exposed to ethylene for all treatments combined.

Figure 3.30C: Mean chlorophyll b concentration in detached leaves of white clover exposed to ethylene for all treatments combined.

Figure 4.1: Plasmid pBR322 showing the position of the inserted DNA.

Figure 4.2: Vectors pBR322 and pBluescript digested with Pst 1 and separated by electrophoresis in a 1% (w/v) agarose gel.

Figure 4.3: Plasmids pSB(1-6) digested with Pst 1 and separated by electrophoresis in a 1% (w/v) agarose gel.

Figure 4.4: White clover genomic DNA restriction enzyme digests separated by electrophoresis in a 1% (w/v) agarose gel.

Figure 4.5: Southern analysis of white clover and tomato DNA probed with [32P]-labelled DNA prepared using pTOM13 as a template.

LIST OF FIGURES xvi
Figure 4.6: Total RNA extracted from leaves of white clover using Trizol and separated by electrophoresis in a 1% (w/v) agarose gel under denaturing conditions.

Figure 4.7: Total RNA extracted from white clover leaf tissue grown at Palmerston North and separated by electrophoresis in a 1% (w/v) agarose gel under denaturing conditions.

Figure 4.8: Plasmid pPCR-II used for A/T cloning of PCR products generated from white clover leaf RNA extracts.

Figure 4.9: Southern analysis of white clover DNA probed with a [32P]-labelled DNA fragment generated by PCR using primers specific for ACC oxidase.

Figure 4.10: Southern analysis of white clover DNA probed with a [32P]-labelled DNA fragment generated by PCR using primers specific for ACC synthase.

Figure 4.11: Restriction enzyme digests of pPCR-II plasmid DNA containing putative ACC synthase DNA fragments generated by PCR from cDNA's prepared from leaves of white clover.

Figure 4.12a: Consensus DNA sequence for ACS-7 and ACS-8.

Figure 4.12B: Diagram of an ACC synthase gene from Arabidopsis thaliana.

Figure 4.13: Alignment of the DNA sequence of ACS-7 with an ACC synthase DNA sequence from soybean located on the GenBank database.

Figure 4.14: Northern analysis of total RNA probed with [32P]-labelled DNA prepared using ACS-7 as a template.

Figure 4.15: Detection of ACC synthase DNA sequence in leaf tissue of white clover by RT-PCR using poly (A) * RNA as a template.

Figure 4.16: Poly (A) * RNA extracted from leaves of white clover grown at Palmerston North, separated by electrophoresis under denaturing conditions in a 1% (w/v) agarose gel.

Figure 4.17: Northern analysis of poly (A) * RNA probed with 32P-labelled DNA prepared using ACS-7 as a template.

Figure 4.18: Total RNA extracted from leaves of white clover plants grown at Levin and separated by electrophoresis under denaturing conditions in a 1% (w/v) agarose gel.

Figure 4.19: DNA fragments prepared by RT-PCR, PCR, and cDNA.
synthesis from RNA extracted from leaves of white clover, separated by electrophoresis in a 1% (w/v) agarose gel

Figure 4.20: Southern analysis of products from RT-PCR, PCR, and cDNA synthesis probed with 32P-labelled DNA prepared using ACS-7 as a template

Figure 4.21: PCR generated DNA fragments prepared using aliquots of the amplified cDNA sub-libraries 6/1 and 10/1 as templates

Figure 4.22: Diagram of the plasmid pZL 1 used for the in vivo excision of DNA inserts from the λ-cDNA library prepared from leaves of white clover

Figure 4.23: Restriction enzyme digests of pZL 1 plasmids excised in vivo in E.coli DH10B(ZIP), obtained from a cDNA library prepared from leaves of white clover

Figure 4.24: Southern analysis of restriction enzyme digests of pZL 1 plasmids excised in vivo in E.coli DH10B(ZIP), obtained from a cDNA library prepared from leaves of white clover

Figure 4.25: Sequence of cDNA 10-1-10

Figure 4.26: White clover cDNA 10-1-10 sequence aligned with cDNA 15a sequence from Pisum sativum

Figure 4.27: White clover cDNA 10-1-10 aligned with cysteine proteinase from Vicia sativa.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>1-aminocyclopropane-1-carboxylic acid</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>AdoMet</td>
<td>s-adenosylmethionine</td>
</tr>
<tr>
<td>a.i.</td>
<td>active ingredient</td>
</tr>
<tr>
<td>AOA</td>
<td>aminoxyacetic acid</td>
</tr>
<tr>
<td>AVG</td>
<td>aminoethoxyvinylglycine</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>CAP</td>
<td>calf alkaline phosphatase</td>
</tr>
<tr>
<td>CTP</td>
<td>cytosine triphosphate</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>CoA</td>
<td>coenzyme A</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>E.coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EFE</td>
<td>ethylene-forming enzyme</td>
</tr>
<tr>
<td>HOAc</td>
<td>acetic acid</td>
</tr>
<tr>
<td>IAA</td>
<td>indole-3-acetic acid</td>
</tr>
<tr>
<td>KOAc</td>
<td>potassium acetate</td>
</tr>
<tr>
<td>MACC</td>
<td>1-aminocyclopropane-1-carboxylic acid</td>
</tr>
<tr>
<td>PAGs</td>
<td>photosynthesis-associated genes</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>pfu</td>
<td>plaque forming units</td>
</tr>
<tr>
<td>ppm</td>
<td>part per million</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>reverse transcriptase-polymerase chain reaction</td>
</tr>
<tr>
<td>SAGs</td>
<td>senescence-associated genes</td>
</tr>
<tr>
<td>SA-PMP's</td>
<td>strepavidin para-magnetic particals</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N',N'-tetramethylethylenediamine</td>
</tr>
<tr>
<td>Tris</td>
<td>tris(hydroxymethyl)aminomethane</td>
</tr>
</tbody>
</table>