Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Studies on Proteins Involved in Retinoid and Alcohol Metabolism

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University

Treena Jayne Blythe
Department of Biochemistry
December 1997
Abstract

The primary biological role of the aldehyde dehydrogenase enzymes has long been a contentious issue. It was initially thought that the main function of these enzymes could be acetaldehyde metabolism; however, it seems unlikely that a large family of proteins evolved for this purpose. It has been suggested that an important function of aldehyde dehydrogenase enzymes may be in the metabolism of the vitamin A derivative, retinal. This thesis describes an investigation into the ability of human and sheep cytosolic aldehyde dehydrogenases to oxidise all-trans retinal, 9-cis retinal and CRBP-bound retinal under physiologically relevant conditions. A fluorescence-based assay following the production of NADH was employed, allowing the accurate measurement of low K_m data.

Firstly the ability of AlDH1 to oxidise its putative biological ligands, free all-trans and 9-cis retinal, was demonstrated. It has been proposed that retinoids occur naturally as a 1:1 complex with the lipocalins cellular retinol binding protein (CRBP) and cellular retinoic acid binding protein (CRABP). If the sheep and human class 1 enzymes play a role in retinoid metabolism in vivo, it is likely that they will accept CRBP-bound retinal as a substrate. To investigate this possibility, recombinant CRBP was produced using an E.coli expression system. Using a spectrophotometric method, the purified recombinant CRBP was shown to bind all-trans but not 9-cis retinal, and using the same fluorescence-based assay as mentioned above, it was shown that both sheep and human AlDH1 could accept CRBP-bound retinal as a substrate at physiologically relevant levels. In vivo studies into retinal oxidation were initiated using the retinoid-responsive human neuroblastoma cell-line SH-SY5Y. It was shown that AlDH1 was expressed in this cell line by Western blotting, and that the cells were responsive to retinal in addition to retinoic acid, indicating that retinal was being converted to retinoic acid.

In addition, a novel, putative alcohol dehydrogenase was isolated, purified and partially characterised. The protein was purified using the techniques of subcellular fractionation by centrifugation, PEG precipitation, ion-exchange chromatography, preparative isoelectric focusing, hydrophobic interaction chromatography and gel purification. Elucidated characteristics of this protein include: subunit molecular weight 42-45 kDa, native molecular weight 42-45 kDa, isoelectric point 8.3-8.5, and activity with ethanol and other longer chain alcohols, but not with glucose, sorbitol or methanol. The protein
was blocked at the N-terminus, and cleavage and internal sequencing attempts yielded some sequence information. However, this information did not appear to match closely with any known protein sequence when submitted to a protein database, suggesting that the protein is novel.

From all available information, we propose that in sheep and humans, the enzyme responsible for retinal oxidation is the major cytosolic class 1 aldehyde dehydrogenase, as opposed to the situation in rats and mice, where specific retinal-oxidising aldehyde dehydrogenases exist and the major class 1 enzymes play a more important role in acetaldehyde metabolism.
Table of Contents

Chapter 1: Introduction .. 1-1
 1.1 The Retinoids .. 1-1
 1.1.1 Functions of Retinoids .. 1-1
 1.1.2 The Visual Cascade .. 1-3
 1.1.3 The Role of Retinoic Acid in Development .. 1-3
 1.1.4 The Absorption, Storage, and Mobilisation of Dietary Retinoids 1-5
 1.1.4.1 Plasma Retinoic Acid Circulation .. 1-8
 1.2 Intracellular Retinol Metabolism .. 1-9
 1.2.1 The Conversion of Retinol to Retinal ... 1-11
 1.2.1.1 The Alcohol Dehydrogenase Enzymes ... 1-12
 1.2.1.2 The Short Chain Reductase/Dehydrogenase Enzymes 1-13
 1.2.1.3 Other Retinol-Oxidising Enzymes ... 1-16
 1.2.1.4 Summary .. 1-16
 1.2.2 The Conversion of Retinal to Retinoic Acid ... 1-16
 1.2.2.1 The Cytochrome P450 Enzymes .. 1-16
 1.2.2.2 The Aldehyde Dehydrogenase Enzymes .. 1-17
 1.2.2.3 The Retinal Dehydrogenase Enzymes .. 1-19
 1.2.2.4 Other Retinal-Oxidising Enzymes ... 1-23
 1.3 Cellular Retinoid-Binding Proteins .. 1-24
 1.3.1 CRBP I .. 1-25
 1.3.1.1 Ligands ... 1-26
 1.3.1.2 Structure of CRBP I ... 1-28
 1.3.1.3 Ligand Binding ... 1-28
Chapter 2: Materials and Methods... 2-50

2.1 Materials .. 2-50
 2.1.1 Retinoids .. 2-50
 2.1.2 Molecular Biological Materials 2-50
 2.1.3 Cell Culture Materials ... 2-51
 2.1.4 CRBP Purification ... 2-51
 2.1.5 Sheep Liver ... 2-51
 2.1.6 Recombinant Human ALDH 1 2-51
 2.1.7 Gels and Electrophoretic Transfer 2-51
 2.1.8 Column Chromatography .. 2-52
 2.1.9 General Protein Purification Materials 2-52
 2.1.10 Protein Digestion ... 2-52
 2.1.11 General Chemicals and Commonly Used Solutions 2-52

2.2 Methods ... 2-55
 2.2.1 Maintenance of Retinoids ... 2-55
 2.2.2 Spectrophotometry ... 2-55
2.2.3 Fluorimetry ... 2-56
 2.2.3.1 Assays with CRBP ... 2-56
2.2.4 HPLC Based Assay - Extraction and Quantification 2-57
2.2.5 Recombinant DNA Techniques for CRBP Production 2-57
 2.2.5.1 Transformation of E. coli 2-57
 2.2.5.2 Large-Scale Preparation of Plasmid DNA 2-57
 2.2.5.3 Digestion of Plasmid DNA with Cla I 2-57
 2.2.5.4 TAE-Agarose Gel Electrophoresis of DNA 2-58
 2.2.5.5 DNA Sequencing .. 2-58
2.2.6 Cytosolic Aldehyde Dehydrogenase Purification and
 Analysis .. 2-58
 2.2.6.1 Purification of Sheep Liver AlDH 1 2-58
 2.2.6.2 Protein and Activity Assays for Protein
 Purification.. 2-59
2.2.7 Isoelectric Focusing (IEF) Activity Assay 2-59
 2.2.7.1 Transferral of Proteins Separated by IEF to
 Nitrocellulose .. 2-60
2.2.8 SDS-PAGE ... 2-60
2.2.9 Electroblotting .. 2-61
2.2.10 Electroelution of Proteins From Acrylamide Gels 2-62
2.2.11 Protein Cleavage .. 2-62
 2.2.11.1 Cyanogen Bromide (Methionine-X) 2-63
 2.2.11.2 Dilute Acid Cleavage (Aspartate-X) 2-63
 2.2.11.3 Trypsin (Lysine-X and Arginine-X) 2-63
 2.2.11.4 Thermolysin (X-Hydrophobic) 2-63
 2.2.11.5 Leucine Aminopeptidase (N-Terminal Amino
 Acids) .. 2-63
 2.2.11.6 Separation of Peptides Generated by Cleavage 2-64
2.2.12 Protein Sequencing .. 2-64
2.2.13 Amino Acid Analysis of Proteins 2-64
2.2.14 N-Terminal Deacylation .. 2-64
2.2.15 Western Blotting .. 2-65
2.2.16 Cell Culture .. 2-66
 2.2.16.1 Preparation of Cultured Cells for Western
 Blotting .. 2-66
 2.2.16.2 Differentiation of Cultured Cells 2-66
Chapter 3: Purification of, and Kinetic Studies Using, Cytosolic Aldehyde Dehydrogenase

3.1 Introduction and Aims ... 3-68
3.2 Results and Discussion ... 3-69
 3.2.1 Purification of sAlDH ... 3-69
 3.2.2 Method development for Kinetic Characterisation of Purified sAlDH 3-70
 3.2.2.1 Development of an HPLC-Based Kinetic Assay 3-70
 3.2.2.2 Reversed-Phase HPLC Retinoid Separation and Detection 3-73
 3.2.2.3 Incubation of Enzyme Reaction Mixtures 3-73
 3.2.2.4 The Extraction of Retinoids from Extraction Medium 3-75
 3.2.2.5 Development of an Absorbance Spectroscopy Kinetic assay 3-80
 3.2.2.6 Development of a Fluorescence Spectroscopy Kinetic assay 3-82
 3.2.3 Kinetic Characterisation of sAlDH and hAlDH 3-84
 3.2.3.1 NAD⁺-Dependent Oxidation of All-trans and 9-cis Retinal by sAlDH and hAlDH ... 3-84
 3.2.3.2 Inhibition of the Esterase Activity of sAlDH by Citral and Retinal ... 3-90
 3.2.4 pH Optimum of NAD⁺-Dependent Retinal Oxidation 3-91

Chapter 4: Expression and Purification of CRBP and use of CRBP-Retinal as a Substrate for AIDH 1

4.1 Introduction and Aims ... 4-96
4.2 Results .. 4-96
 4.2.1 Expression and Purification of CRBP ... 4-96
 4.2.2 The Binding of CRBP to Retinal ... 4-101
 4.2.3 CRBP-Retinal as a Substrate for Human and Sheep AIDH 1 4-102
Chapter 5: A Comparison of the Major Aldehyde Dehydrogenases by Multiple Sequence Alignment

- **5.1 Introduction** .. 5-112
- **5.2 Methods** .. 5-112
- **5.3 Results** ... 5-122
 - **5.3.1 Substrate Specificities of Class 1 and Class 2 AlDH** ... 5-126
- **5.4 Conclusions** ... 5-126

Chapter 6: In Vivo Studies on Retinal Dehydrogenation

- **6.1 Introduction and Aims** ... 6-128
- **6.2 Results** ... 6-128
 - **6.2.1 Initial Characterisation of SH-SY5Y Cells** ... 6-128
 - **6.2.2 Effects of Retinal and Retinoic Acid on Cell Morphology** 6-130
 - **6.2.2.1 Introduction and Aims** .. 6-130
 - **6.2.2.2 Methods** .. 6-130
 - **6.2.2.3 Results and Discussion** .. 6-132
- **6.3 Conclusion** .. 6-147

Chapter 7: Purification of a Novel Protein with Alcohol Dehydrogenase Activity

- **7.1 Introduction and Aims** ... 7-148
- **7.2 Methods and Results** ... 7-148
 - **7.2.1 Initial Protein Purification** .. 7-153
 - **7.2.2 Ion-Exchange Chromatography** .. 7-153
 - **7.2.3 Dye-Ligand Chromatography** .. 7-158
 - **7.2.4 Affinity Chromatography** .. 7-159
 - **7.2.5 Preparative Isoelectric Focusing** ... 7-160
 - **7.2.6 FPLC Hydrophobic Interaction Chromatography** .. 7-162
 - **7.2.7 HPLC Size Exclusion Chromatography** .. 7-170
 - **7.2.8 Hydroxyapatite Chromatography** .. 7-172
 - **7.2.9 Gel Purification** ... 7-179
List of Tables

Table 1.1: A Summary of the Characteristics of Four Major Retinol-
Oxidising Enzymes ... 1-15
Table 1.2: A Summary of the Major Characteristics of Six Aldehyde
Dehydrogenases Involved in Retinal Oxidation 1-22
Table 1.3: Genes Containing Retinoid Response Elements 1-42

Table 2.1: Company Details .. 2-50
Table 2.2: Light Absorbances of Selected Retinoids 2-55

Table 3.1: Typical Purification of Sheep Liver Aldehyde Dehydrogenase 3-71
Table 3.2: Relative Extraction of Retinol Acetate and Retinoic Acid 3-76
Table 3.3: Retention Times for HPLC Separation of Retinoids 3-80
Table 3.4: A Summary of Kinetic Parameters Determined for hAlDH1
and sAlDH1 .. 3-89
Table 3.5: The Inhibition of the Hydrolysis of \(p \)-Nitrophenyl Pivalate by
Retinal and Citral .. 3-91

Table 4.1: N-terminal Sequencing of Expressed and Purified CRBP 4-101
Table 4.2: A Summary of Kinetic Parameters of sAlDH and hAlDH
for CRBP-Retinal and Free All-trans Retinal 4-108

Table 5.1: Identification of Proteins Used in Multiple Sequence Alignment 5-113
Table 5.2: Secondary Structure Elements of Sheep AlDH1 5-121

Table 6.1: Quantification of SH-SY5Y Cell Morphology 6-138
Table 6.2: Quantification of SH-SY5Y Cell Morphology with Added
Effectors ... 6-141

Table 7.1: Amino Acid Analysis of Unknown Protein 7-181
Table 7.2: Sequence Obtained From Tryptic Digest of Unknown Protein 7-184
Table 7.3: Summary of Enzyme Activity ... 7-186
List of Figures

Figure 1.1: Structural Formula of β-Carotene and Naturally Occurring Retinoids ... 1-2
Figure 1.2: The Absorption and Storage of Dietary Retinoids .. 1-7
Figure 1.3: An Overview of Intracellular Retinoid Homeostasis .. 1-10
Figure 1.4: Dendrogram Showing Clustering Relationships Between Aldehyde Dehydrogenase Enzymes ... 1-21
Figure 1.5: Ribbon Diagram of CRBP I .. 1-27
Figure 1.6: Schematic Diagram Showing Structural Basis for Observed Binding Constants of CRBP and CRBP II for Retinol and Retinal 1-30
Figure 1.7: Overview of Mechanism of Retinoid Action ... 1-41
Figure 1.8: Ribbon Diagram of Sheep Aldehyde Dehydrogenase 1 ... 1-48

Figure 2.1: Transferral of Proteins Separated by IEF to Nitrocellulose .. 2-60

Figure 3.1: SDS-PAGE and IEF Gel of Pure sAlDH1 .. 3-72
Figure 3.2: HPLC Trace of Authentic Retinoids .. 3-74
Figure 3.3: Standard Curve for Retinoic Acid ... 3-78
Figure 3.4: Standard Curve for Retinol Acetate .. 3-79
Figure 3.5: Single Reaction Progress Curve of sAlDH-Catalysed Retinal Oxidation 3-81
Figure 3.6: The Conversion of Retinal to Retinoic Acid .. 3-84
Figure 3.7: V vs [S] Plot and Lineweaver-Burk Plot of hAlDH1 Catalysed All-trans Retinal Oxidation ... 3-85
Figure 3.8: V vs [S] Plot and Lineweaver-Burk Plot of hAlDH1 Catalysed 9-cis Retinal Oxidation ... 3-86
Figure 3.9: V vs [S] Plot and Lineweaver-Burk Plot of sAlDH1 Catalysed All-trans Retinal Oxidation ... 3-87
Figure 3.10: V vs [S] Plot and Lineweaver-Burk Plot of sAlDH1 Catalysed 9-cis Retinal Oxidation ... 3-88
Figure 3.11: Structural Formulae for All-trans Citral and All-trans Retinal .. 3-92
Figure 3.12: Inverse Plot of the Inhibition of sAlDH1 Esterase Activity by Citral 3-93
Figure 3.13: Inverse Plot of the Inhibition of sAlDH1 Esterase Activity by All-trans Retinal 3-94
Figure 3.14: pH Dependence of NAD+-Dependent Oxidation of All-trans Retinal by sAlDH1

Figure 4.1: Plasmid Map of pT7-7-CRBP

Figure 4.2: SDS-PAGE of Soluble E.coli Protein

Figure 4.3: SDS-PAGE of CRBP Purification

Figure 4.4: Absorbance Spectra of All-trans Retinal and CRBP-All-trans Retinal

Figure 4.5: Absorbance Spectra of 9-cis Retinal and CRBP-9-cis Retinal

Figure 4.6: V vs [S] Plot and Lineweaver-Burk Plot of hAlDH1 Catalysed CRBP-Retinal Oxidation

Figure 4.7: V vs [S] Plot and Lineweaver-Burk Plot of sAlDH1 Catalysed CRBP-Retinal Oxidation

Figure 4.8: V vs [S] Plot and Lineweaver-Burk Plot of sAlDH1 Catalysed CRBP-Retinal Oxidation

Figure 5.1: Multiple Sequence Alignment of 32 Aldehyde Dehydrogenase Sequences

Figure 5.2: Dendrogram Showing Clustering Relationships Used by Pileup to Create Multiple Sequence Alignment

Figure 5.3: Plot Similarity Output of Aldehyde Dehydrogenase Sequence Alignment

Figure 6.1: Western Blot of SH-SY5Y Cells

Figure 6.2: Outline of Treatment of SH-SY5Y Cells with Retinoids

Figure 6.3: SH-SY5Y Cells from Control Plate

Figure 6.4: SH-SY5Y Cells from Control + DMF Plate

Figure 6.5: SH-SY5Y Cells from All-trans Retinal Treated Plate

Figure 6.6: SH-SY5Y Cells from All-trans Retinoic Acid Treated Plate

Figure 6.7: Fluorescence Microscopy of SH-SY5Y Cells

Figure 6.8: Quantification of SH-SY5Y Cell Morphology

Figure 6.9: Outline of Treatment of SH-SY5Y Cells with Retinoids and Additional Effectors

Figure 6.10: Quantification of SH-SY5Y Cell Morphology with Added Effectors
Figure 6.11: Two Possible Mechanisms for the Manifestation of Fetal Alcohol Syndrome

Figure 7.1: IEF Gel of Crude Liver Extract

Figure 7.1C: IEF Gel of Crude Liver Extract

Figure 7.2: IEF Gel of Crude Liver Extract Using Different Substrates

Figure 7.3: Initial Purification of Novel Protein

Figure 7.4: Ion-exchange Resins

Figure 7.5: Preparative Isoelectric Focusing

Figure 7.6: IEF Gel of Preparative Isoelectric Focusing Fractions

Figure 7.7: IEF Gel of FPLC Hydrophobic Interaction Chromatography Fractions

Figure 7.8: IEF Gel of FPLC Hydrophobic Interaction Chromatography Fractions (Protein Stain)

Figure 7.9: SDS-PAGE of Purified Protein

Figure 7.10: Western Blot of Pure Novel Protein and AldH1

Figure 7.11: Developed Purification Scheme for Putative Alcohol Dehydrogenase

Figure 7.12: HPLC Size Exclusion Chromatography of Partially Purified Protein (Superose-12 Column)

Figure 7.13: SDS-PAGE of HPLC Size Exclusion Chromatography Fractions (Superose-12)

Figure 7.14: HPLC Size Exclusion Chromatography of Partially Purified Protein (Superdex-75 Column)

Figure 7.15: SDS-PAGE of HPLC Size Exclusion Chromatography Fractions (Superdex-75)

Figure 7.16: Elution Profile of Size Exclusion Standards (Superdex-75 Column)

Figure 7.17: Calibration Curve Constructed From Superdex-75 Elution Profile

Figure 7.18: Schematic Diagram of Gel Purification

Figure 7.19: SDS-PAGE of Gel Purification of Novel Protein

Figure 7.20: IEF Gel of Crude Extracts From Different Tissues
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A<sub>280</sub></td>
<td>Absorbance at 280 nm</td>
</tr>
<tr>
<td>ALDH</td>
<td>Aldehyde dehydrogenase</td>
</tr>
<tr>
<td>ADH</td>
<td>Alcohol dehydrogenase</td>
</tr>
<tr>
<td>AMP</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>1,8-ANS</td>
<td>1-Anilinonaphthalene 8-sulfonic acid</td>
</tr>
<tr>
<td>ARAT</td>
<td>AcylCoA-retinol acyltransferase</td>
</tr>
<tr>
<td>Bis-Tris</td>
<td>Bis[2-hydroxyethyl]iminotris[hydroxymethyl]methane</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CAPS</td>
<td>3-[Cyclohexylamino]-1-propane sulfonic acid</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>CNBr</td>
<td>Cyanogen Bromide</td>
</tr>
<tr>
<td>CRABP</td>
<td>Cellular retinoic acid-binding protein</td>
</tr>
<tr>
<td>CRBP</td>
<td>Cellular retinol-binding protein</td>
</tr>
<tr>
<td>C-terminal</td>
<td>Carboxy-terminal</td>
</tr>
<tr>
<td>DEAE</td>
<td>Diethylaminoethyl</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNA-BD</td>
<td>DNA-binding domain</td>
</tr>
<tr>
<td>DR</td>
<td>Direct repeat</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine tetra-acetic acid</td>
</tr>
<tr>
<td>FAE</td>
<td>Fetal alcohol effects</td>
</tr>
<tr>
<td>FAS</td>
<td>Fetal alcohol syndrome</td>
</tr>
<tr>
<td>FPLC</td>
<td>Fast protein liquid chromatography</td>
</tr>
<tr>
<td>HEPES</td>
<td>N-2-hydroxyethylpiperazine-N'-ethanesulphonic acid</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>IEF</td>
<td>Isoelectric focusing</td>
</tr>
<tr>
<td>iLBP</td>
<td>Intracellular lipid binding protein family</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-γ-D-thiogalactopyranoside</td>
</tr>
<tr>
<td>kDa</td>
<td>kiloDalton</td>
</tr>
<tr>
<td>K<sub>m</sub></td>
<td>Substrate concentration at half maximum reaction rate</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Broth</td>
</tr>
</tbody>
</table>
LBD Ligand-binding domain
LRAT Lecithin-retinol acyltransferase
λmax Wavelength of maximum absorbance
mRNA Messenger RNA
NAD* Nicotinamide adenine dinucleotide
NADH Nicotinamide adenine dinucleotide (reduced form)
N-terminal Amino-terminal
PBS Phosphate buffered saline
PEG Polyethylene glycol
pI Isoelectric point
PMSF Phenylmethylsulphonyl fluoride
PPAR Peroxisome proliferator-activated receptor
PVDF Polyvinylidifluoride
RA Retinoic acid
RALDH (or RalDH) Retinal-specific aldehyde dehydrogenase
RAR Retinoic acid receptor
RARE Retinoic acid response element
RBP Retinol-binding protein
RoDH Retinol-specific alcohol dehydrogenase
RXR Retinoid X receptor
RXRE Retinoid X response element
[S] Substrate concentration
SDR Short-chain dehydrogenase-reductase family
SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis
TR Thyroid hormone receptor
Tris Tris(hydroxymethyl)aminoethane
UV-vis Ultraviolet-visible
VDR Vitamin D receptor
V Rate of reaction
Vmax Maximum rate of reaction
v/v volume/volume
w/v weight/volume
w/w weight/weight
Amino Acid Abbreviations

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Abbreviation</th>
<th>One-letter Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>Ala</td>
<td>A</td>
</tr>
<tr>
<td>Asparagine or aspartic acid</td>
<td>Asx</td>
<td>B</td>
</tr>
<tr>
<td>Cysteine</td>
<td>Cys</td>
<td>C</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>Asp</td>
<td>D</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>Glu</td>
<td>E</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>Phe</td>
<td>F</td>
</tr>
<tr>
<td>Glycine</td>
<td>Gly</td>
<td>G</td>
</tr>
<tr>
<td>Histidine</td>
<td>His</td>
<td>H</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>Ile</td>
<td>I</td>
</tr>
<tr>
<td>Lysine</td>
<td>Lys</td>
<td>K</td>
</tr>
<tr>
<td>Leucine</td>
<td>Leu</td>
<td>L</td>
</tr>
<tr>
<td>Methionine</td>
<td>Met</td>
<td>M</td>
</tr>
<tr>
<td>Asparagine</td>
<td>Asn</td>
<td>N</td>
</tr>
<tr>
<td>Proline</td>
<td>Pro</td>
<td>P</td>
</tr>
<tr>
<td>Glutamine</td>
<td>Gln</td>
<td>Q</td>
</tr>
<tr>
<td>Arginine</td>
<td>Arg</td>
<td>R</td>
</tr>
<tr>
<td>Serine</td>
<td>Ser</td>
<td>S</td>
</tr>
<tr>
<td>Threonine</td>
<td>Thr</td>
<td>T</td>
</tr>
<tr>
<td>Valine</td>
<td>Val</td>
<td>V</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>Trp</td>
<td>W</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>Tyr</td>
<td>Y</td>
</tr>
<tr>
<td>Glutamine or glutamic acid</td>
<td>Glx</td>
<td>Z</td>
</tr>
</tbody>
</table>
Acknowledgements

I would really like to thank my supervisor Assoc. Prof. (!!!) Kathy Kitson for her support throughout the last 4 years. I have really appreciated the many times she was able to help me financially and practically, and for giving me freedom to pursue many different avenues. I would also like to thank my other supervisors Assoc. Prof. Mike Hardman, Dr. Mark Grimes, and Assoc. Prof. Trevor Kitson for their advice and guidance. For travel and scholarship funding I am grateful to the Neurological Foundation, The Royal Society and the Massy Doctoral Committee. I would like to thank PNMRF and the Neurological Foundation for running costs, and finally Lottery Health and Lottery Science for equipment grants. I have really appreciated the help of many other members of the former Department of Biochemistry for their help. Thanks to Dr. Shaun Lott for help with molecular biology and sequence analysis, Dr. Gill Norris for help with protein work, Dr. Gretchen McCaffery for help with cell studies, Dr. Stan Moore for help with structural work, Jo Mudford for protein sequencing, Debbie Frumau for amino acid analysis, and Dr. Mark Patchett and Carole Flyger for heaps of stuff. I would also like to thank Rochelle Ramsay, Dick Poll, Prof. Ted Baker and Heather Baker, and Dr. Dave Harding for allowing me to use their equipment.

Personal Thanks:

Without a doubt I would never have made it through the last 4 years without some of the great people I have met. Most of all to Shaun, who has been so helpful at work, and without who the most successful part of my project would not have been possible. I will also be always grateful to Shaun for helping me through 1997 when I was ill for so long, grumpy and had no money. Thanks also to my friends Rose, Isobel, Rich, Andrew, Stan, Jakki, Wendy, Rick, Kath and Megan, Jeroen, Michelle, Rochelle, Catherine, Neil, Ross, Max and Ruth, Rish, Mish, Bec, Matt, Scott, Brendon - choice mates, maaaate. I would also like to say go you good things Hannah, Katharine, Sian, Clare, Caroline, Serena, Joanne, Joanna, Michelle, Rachel and Zoë, I hope you all had as much fun as I did! Thanks to my surrogate family Rex and Fran (thanks for the critiques Rex), Warren and Barb, Karen, Chris and Mike. Thanks also to Katrina and Leigh, the best friends a girl could have, Jo, Titi, Paul, Matal, Matt and the boys. Finally and mostly, I would like to thank my excellent family especially Mum and Dad for financial support and love and being such fun and cool parents. Also to Todd, Nan, Pop, Nana, Grandad (I hope you see this), Jenny, Phil, Tony and Kris for being the best family ever.