The role of the vagal innervation of the stomach (abomasum and pylorus) and intestine (duodenum) in insulin and oxytocin release in sheep

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Animal Science at Massey University, Palmerston North, New Zealand

Chandana B Herath

1998
ABSTRACT

Although mechanisms regulating nutrient partitioning and milk synthesis are not fully understood in ruminants, recent studies in lactating monogastric animals have shown that the vagus nerve modulates secretion of various hormones that are implicated in the short- and long-term control of nutrient partitioning. Therefore, the overall aim of this study was to examine the role of the vagal innervation of the GI tract on insulin and oxytocin release and milk yield in sheep. In a series of experiments described in this thesis, the effect of vagotomy was studied in ewes and wethers by comparing the responses of vagotomized animals (i.e. abomasal, pyloric, duodenal and hepatic branches sectioned) with control (sham-operated) animals.

Insulin release in response to a bolus injection of glucose was studied in lactating ewes (Chapters 2 and 4) or wethers (Chapters 3 and 5). The differences in responses were not significant in the experiments described in Chapters 3 and 4. However, the release of insulin from the pancreas in response to glucose injection was significantly ($P < 0.05$) suppressed in the vagotomized animals used in the experiments described in Chapters 2 and 5. Moreover in the experiments with wethers (Chapter 5), insulin secretion in response to glucose bolus injection was significantly ($P < 0.05$) higher when administered 2 h (i.e. fed state) following feeding than 22 h (i.e. fasting state). In addition, postprandial insulin concentrations were significantly ($P < 0.05$) lower in the vagotomized wethers than in the sham-operated wethers, but insulin secretion in the vagotomized wethers was apparently unaffected by plane of nutrition, despite significantly ($P < 0.05$) higher blood glucose levels in wethers on the HP intake. The insulin concentrations were, however, higher ($P < 0.05$) in the control group of wethers fed on the high plane (HP) of nutrition than those fed on the low plane (LP) of nutrition (Chapter 5).

Insulin was released in response to the sight and/or ingestion of food, cephalic phase insulin release (CPIR), without any significant changes in blood glucose concentrations. However, the increase in insulin concentration was significantly ($P <
0.05) suppressed in both vagotomized wethers and ewes in comparison with control animals (Chapters 5 and 6).

Suckling increased plasma insulin concentrations in the sham-operated ewes but not in the vagotomized ewes (Chapter 6), although the difference in the concentrations between the two groups was not statistically significant (P < 0.09).

Milk and fat yields were significantly (P < 0.05) reduced for one day and two days, respectively, in the vagotomized ewes compared with those of sham-operated controls, but was restored over the next 2-3 days (Chapter 2). Milk yield was not different between the two treatment groups in the second study (Chapter 4).

Suckling-associated plasma oxytocin concentrations were significantly (P < 0.01) lower in the vagotomized ewes than in the sham-operated control ewes, although the difference was not statistically significant when corrected for baseline values (Chapter 4). In the next experiment (Chapter 6), oxytocin concentrations between the two treatment groups of ewes were not significantly different. However, in this experiment, suckling caused a significant (P < 0.05) increase in oxytocin concentrations from the baseline values in the sham-operated ewes fed and suckled simultaneously but not in the vagotomized ewes fed and suckled simultaneously.

Vagotomy significantly (P < 0.05) increased digestibility of dry matter and nitrogen in wethers, although food intake was not different between the two treatment groups (Chapter 3).

In conclusion, the findings in wethers (Chapter 5) agree with those in lactating ewes (Chapters 2 and 4) and, indicated that the effect of vagotomy on insulin release in response to glucose injection is more apparent over a short period (i.e. 2-4 h; Chapters 2 and 5) following feeding than after a longer period (i.e. 6-22 h; Chapters 4 and 5). This suggested that the pancreatic β-cells are more sensitive soon after feeding, because the vagal inputs reaching the β-cells from the GI tract are higher due to the recent consumption of food. The finding that post-prandial insulin concentrations in the
vagotomized animals of HP group were significantly reduced, despite their significantly higher blood glucose levels, provide further evidence that the vagus nerve is a major determinant for sensitizing pancreatic β-cells. Furthermore the vagal innervation of the GI tract plays a major role in CPIR, and also appears to play an important role in insulin release during suckling in sheep. The concentrations of oxytocin measured in these experiments suggest that vagotomy interferes with oxytocin secretion although differences between vagotomized and sham operated ewes were often non significant. However, the data suggest that feeding stimulates OT secretion. It is possible that the failure to achieve consistent differences in milk ejection and hence removal in these studies may have been partly masked because of the anatomical features of the mammary gland of the ewe. Finally the activity of the vagus nerve influences the digestibility of dry matter and nitrogen in sheep.
ACKNOWLEDGEMENTS

My sincere gratitude is expressed to my supervisors, Drs Duncan Mackenzie, Tricia Harris, Gordon Reynolds and Steve Davis for their commitment, critical guidance, wise counsel and encouragement throughout the study.

I would also like to thank Assistant Vice Chancellor Professor Stuart N McCutcheon and Pro Vice Chancellor Professor Robert D Anderson for giving me an opportunity to undertake this study in the then Department of Animal Science, Massey University, and specially Professor McCutcheon for his support during my transition from the Masters study to PhD study.

The support and encouragement of the postgraduate students and staff in the Department of Animal Science at Massey University and also my friends Ken, Nalaka, Penny, Reddy, Priya, Shankar, Jeya and Arturo for helping my experimental work, is gratefully acknowledged.

My sincere gratitude is also extended to Dr Phillip Pearce, Ms Yvette Cottam, Ms Margaret Scott, Mr Brett Guthrie, Mr Barry Parlane, Mr Guy Hessell and Mr Bruce Sinclair for their excellent technical assistance, and Dr Patrick Morel for his advice on matters statistical. I would also express my thanks to Ms Kathy Morton for helping in the radioimmunoassays. The commitment of Tricia and Bruce for supplying anything and everything at anytime for my experiments is gratefully acknowledged.

Special thanks are also due to Ms Margaret Scott and Dr Vernon Choy for their valuable advice to develop and setting up an oxytocin radioimmunoassay, and Dr Vernon Choy also for supplying oxytocin antibody.

I would also express my sincere thanks to the Scholarships Committee, for awarding me a Massey University PhD Scholarship (1995 to 1998) and G. O. Anstiss Scholarship (1998).
The support of the staff of the Massey University Library, and the Foundation of Research, Science and Technology for providing me research funds is also gratefully acknowledged.

Special thanks are due to my mother and brothers for their love, support and encouragement. A very special thank is due to my late father for always believing in me and teaching me that I can do anything by believing in myself. Equal gratitude is extended to my father-in-law and mother-in-law for their love, unfailing support and encouragement.

Finally, I am indebted to my wife, Ayoni, and my sons, Ishan and Vimukthi, for their unconditional love and endless patience without which I could not have achieved so far.
TABLE OF CONTENTS

ABSTRACT...i

ACKNOWLEDGEMENTS ... iv

LIST OF ABBREVIATIONS .. xiii

LIST OF FIGURES .. xv

LIST OF TABLES ... xix

CHAPTER 1: INTRODUCTION

1.1 Preamble .. 1

1.2 The vagal innervation of the gastrointestinal (GI) tract.......................... 5

1.2.1 Introduction .. 5

1.2.2 Nucleus Tractus Solitarius (NTS) .. 5

1.2.3 Dorsal Motor Nucleus of the vagus (DMN) ... 6

1.2.4 Interconnections between the NTS and DMN of the vagus 6

1.2.5 Peripheral pathways of the vagus nerve in ruminants 6

1.2.5.1 Ventral vagus nerve .. 7

1.2.5.2 Dorsal vagus nerve ... 7

1.2.5.3 Comparison of the vagal innervation of the GI tract of the
ruminant and the rat. ... 10

1.2.6 Neural relationship between the hypothalamus, mammary gland, GI tract
and the pancreas .. 10

1.2.7 Summary .. 12

1.3 Nutrient supply and metabolism in lactating ruminants 13

1.3.1 Introduction ... 13

1.3.2 Effect of lactation on voluntary food intake ... 14

1.3.3 Changes in GI tract associated with lactation 14
CHAPTER 2 THE VAGAL CONTROL OF INSULIN RELEASE AND MILK YIELD IN LACTATING EWES

2.1 Abstract ... 51
2.2 Introduction .. 52
2.3 Materials and methods 54
2.3.1 Animals, housing and acclimatization .. 54
2.3.2 Surgical procedures ... 54
 2.3.2.1 Vagotomy of the abomasum, pylorus and duodenum 54
 2.3.2.2 Catheterisation of the jugular veins ... 55
2.3.3 Experimental design .. 56
 2.3.3.1 Feeding .. 56
 2.3.3.2 Milking ... 56
 2.3.3.3 Milking-associated release of hormones and metabolites 56
 2.3.3.4 Digestibility and nitrogen balance ... 57
 2.3.3.5 Glucose challenge ... 57
2.3.4 Blood processing and sample analyses .. 57
2.3.5 Statistics ... 58

2.4 Results ... 59
 2.4.1 General effects of vagotomy ... 59
 2.4.2 Feed intake ... 59
 2.4.3 Milk yield ... 61
 2.4.4 Milking-associated release of hormones and metabolites 61
 2.4.5 Digestibility ... 64
 2.4.6 Glucose challenge .. 64
 2.4.6.1 Plasma glucose ... 64
 2.4.6.2 Plasma insulin response ... 64
2.5 Discussion .. 68

CHAPTER 3 THE VAGAL CONTROL OF INSULIN
RELEASE AND DIGESTION IN WETHERS

3.1 Abstract .. 73
3.2 Introduction ... 74
3.3 Materials and methods .. 75
 3.3.1 Animals, housing and acclimatization ... 75
 3.3.2 Surgical procedures ... 75
CHAPTER 4 THE VAGAL CONTROL OF INSULIN RELEASE AND MILK YIELD IN LACTATING EWES: SUCKLING-ASSOCIATED OXYTOCIN RELEASE

4.1 Abstract ... 92
4.2 Introduction ... 93
4.3 Materials and methods .. 95
 4.3.1 Animals, housing and acclimatisation .. 95
 4.3.2 Surgical procedures ... 96
 4.3.3 Experimental design .. 96
 4.3.3.1 Feeding ... 96
 4.3.3.2 Milk yield and composition ... 97
 4.3.3.3 Baseline plasma hormones and metabolites .. 97
CHAPTER 5 THE VAGAL CONTROL OF INSULIN RELEASE IN FED AND FASTED WETHERS

5.1 Abstract ... 124
5.2 Introduction .. 125
5.3 Materials and methods .. 127
 5.3.1 Animals, housing and acclimatisation 127
 5.3.2 Surgical procedures ... 128
 5.3.3 Experimental design ... 128
 5.3.3.1 Glucose challenge ... 129
 5.3.3.2 Postprandial pattern of plasma glucose and insulin 129
 5.3.3.3 Cephalic phase insulin release (CPIR) 130
 5.3.3.4 Physiological confirmation of vagotomy 130
 5.3.4 Blood processing and sample analyses 130
CHAPTER 6 THE VAGAL CONTROL OF SUCKLING-ASSOCIATED OXYTOCIN AND INSULIN RELEASE IN LACTATING EWES

6.1 Abstract

6.2 Introduction ... 152

6.3 Materials and methods

6.3.1 Animals, housing and acclimatisation 153
6.3.2 Surgical procedures .. 153
6.3.3 Experimental design 154
 6.3.3.1 Suckling-associated OT release 154
 6.3.3.2 CPIR .. 155
6.3.4 Blood processing and sample analyses 155
6.3.5 Statistics .. 155

6.4 Results .. 156
6.4.1 General effects of vagotomy ... 156
6.4.2 Suckling-associated insulin release ... 156
6.4.3 Suckling-associated OT release ... 156
6.4.4 CPIR .. 156
 6.4.4.1 Plasma glucose ... 156
 6.4.4.2 Plasma insulin ... 157
6.5 Discussion .. 161

CHAPTER 7: GENERAL DISCUSSION AND CONCLUSIONS 164
APPENDIX 1: RADIOIMMUNOASSAY OF OVINE SERUM/PLASMA
 OXYTOCIN .. 173
APPENDIX 2: PUBLICATIONS .. 190
REFERENCES ... 191
LIST OF ABBREVIATIONS

ADV Abomasal and duodenal vagotomy
ANOVA Analysis of variance
ATP Adenosine triphosphate
BL Balance
bw Body weight
CB 154 2-Br-Ergocriptine
CCK Cholecystokinin
CNS Central nervous system
CPIR Cephalic phase insulin release
CT-HRP Cholera toxin horseradish peroxidase
DM Dry matter
DMH Dorsomedial hypothalamus
DMN Dorsal motor nucleus
EDTA Ethylenediaminetetraacetic acid
g Gram
GH Growth hormone
GHRH Growth hormone releasing hormone
GI Gastrointestinal
GLP-1 Glucagon-like peptide-1
h Hour(s)
HADV Hepatic, abomasal and duodenal vagotomy
HP High plane of nutrition
ID Internal diameter
i.c.v. Intracerebrovascular
i.m. Intramuscular
i.p. Intraperitoneal
i.v. Intravenous
K The glucose clearance constant
kg Kilogram
LP Low plane of nutrition
ME Metabolizable energy
min Minutes
MJ Megajoules
mmol Millimole
MSG Monosodium glutamate
N Nitrogen
NEFA Non-esterified fatty acids
ng Nanogram
NTS Nucleus tractus solitarius
OD Outer diameter
OT Oxytocin
PF Post-feeding
pg Picogram
PO Post-operation
PRL Prolactin
PVN Paraventricular nucleus
RIA Radioimmunoassay
s.c. Subcutaneous
sec Seconds
SO Sham-operation
SON Supra optic nucleus
SS Somatostatin
VFA Volatile fatty acids
VIP Vasoactive intestinal polypeptide
VMH Ventromedial Hypothalamus
LIST OF FIGURES

Figure 1.1 Ventral vagal innervation of the forestomach, upper small intestine and liver of sheep, right cranial aspect. ... 8

Figure 1.2 Dorsal vagal innervation of the forestomach of sheep, right aspect 9

Figure 1.3 A simple schematic representation of the neuroendocrine relationship between the hypothalamus, mammary gland, gastrointestinal tract and the pancreas in a mammalian species.. 12

Figure 2.1 Daily feed intake and milk yield in vagotomized (ADV) and sham-operated (SO) lactating ewes. Pair feeding of SO ewe to the ad libitum intake of the ADV ewe in the pair. ... 60

Figure 2.2 Milk fat percentage and milk fat yield during post-operative days 1-17 in lactating ADV and SO ewes. ... 62

Figure 2.3 Milking-related responses of plasma concentrations of growth hormone, prolactin and non-esterified fatty acids (NEFA) at post-operative day 6 and day 13 in ADV and SO ewes.. 63

Figure 2.4 Plasma concentrations of glucose and insulin before and after intra-jugular glucose injection 7 days (challenge 1) and 14 days (challenge 2) after the vagotomy (ADV) or a sham-operation (SO).. 66

Figure 2.5 The area under the glucose response curve, corrected for baseline, for 90 min and under the insulin response curve, corrected for baseline, for 30 min in lactating ewes in response to an intravenous injection of glucose 7 days (Challenge 1) and 14 days (Challenge 2) after the vagotomy (ADV) or a sham-operation (SO).. 67

Figure 3.1 Daily feed intake and body weight changes in ADV and SO wethers fed ad libitum and fed at 1.1 x maintenance intake level. 80

Figure 3.2 Digestibility of dry matter and nitrogen, and nitrogen retention in ADV and SO wethers fed at 1.1 x maintenance and ad libitum. 81
Figure 3.3 Baseline plasma concentrations of glucose and insulin in ADV and SO wethers fed at 1.1 x maintenance and *ad libitum*.................................82

Figure 3.4 Baseline plasma concentrations of gastrin in ADV and SO wethers fed at 1.1 x maintenance and *ad libitum*..83

Figure 3.5 Plasma concentrations of glucose and insulin before and after intra­jugular glucose injection at day 7 in ADV and SO wethers fed at 1.1 x maintenance and *ad libitum*. ...85

Figure 3.6 Plasma concentrations of glucose and insulin before and after intra­jugular glucose injection at day 14 in ADV and SO wethers fed at 1.1 x maintenance and *ad libitum*. ...86

Figure 4.1 Daily feed intake and body weight changes in ADV and SO ewes fed at 1.3 x maintenance and 2.0 x maintenance intake levels.............................102

Figure 4.2 Body weight gains of lambs and milk yield in ADV and SO ewes fed at 1.3 x maintenance and 2.0 x maintenance intake levels.............................104

Figure 4.3 Milk fat, lactose and protein yields in lactating ADV and SO ewes fed at 1.3 x maintenance and 2.0 x maintenance intake levels.............................105

Figure 4.4 Baseline plasma concentrations of glucose and insulin in lactating ADV and SO ewes fed at 1.3 x maintenance and at 2.0 x maintenance intake during a 29 day sampling period..106

Figure 4.5 Baseline plasma concentrations of prolactin and oxytocin in lactating ADV and SO ewes fed at 1.3 x maintenance and at 2.0 x maintenance intake during a 29 day sampling..108

Figure 4.6 Baseline plasma concentrations of gastrin and β-hydroxybutyrate in lactating ADV and SO ewes fed at 1.3 x maintenance and at 2.0 x maintenance intake during a 29 day sampling..109

Figure 4.7 Plasma oxytocin concentrations before and during suckling in lactating ADV and SO ewes, after a 2-h separation period from their lambs...110
Figure 4.8 Plasma concentrations of glucose and insulin before and after intra-jugular glucose injection at day 12 in ADV and SO ewes fed at 1.3 x maintenance and at 2.0 x maintenance intake levels. .. 112

Figure 4.9 Plasma concentrations of glucose and insulin before and after intra-jugular glucose injection at day 28 in ADV and SO ewes fed at 1.3 x maintenance and at 2.0 x maintenance intake levels. .. 113

Figure 4.10 Physiological confirmation of vagotomy. Contractions of the reticulum, abomasum, duodenum and blood pressure recorded during electrical stimulation of the peripheral ends of the left and right cervical vagus nerves in a vagotomized and a sham-operated ewe. 115

Figure 4.11 Plasma insulin response in lactating ADV and SO ewes in response to the electrical stimulation of the peripheral cut ends of the cervical vagus nerves. .. 116

Figure 5.1 Plasma glucose concentrations in abomasal and duodenal vagotomized (ADV), hepatic, abomasal and duodenal vagotomized (HADV) and sham-operated (SO) wethers before and after intra-jugular glucose injection at two intake levels. .. 133

Figure 5.2 Plasma insulin concentrations in ADV, HADV and SO wethers before and after intra-jugular glucose injection at two intake levels. .. 134

Figure 5.3 The baseline corrected total area under the insulin response curve in ADV, HADV and SO wethers or in wethers received glucose injection 2 h and 22 h after feeding. .. 135

Figure 5.4 Postprandial patterns of plasma glucose and insulin before and after feeding in ADV, HADV and SO wethers at two intake levels. .. 138

Figure 5.5 Glucose response and cephalic phase insulin release (CPIR) in response to presentation of food in ADV, HADV and SO wethers. 140

Figure 5.6 Cephalic phase insulin release. The baseline corrected areas under the insulin response curve in response to presentation of food in ADV, HADV and SO wethers. .. 141
Figure 5.7 Insulin response to bilateral electrical stimulation of the peripheral ends of the cut cervical vagus nerves in ADV, HADV and SO anaesthetized wethers... 142

Figure 6.1 Plasma insulin concentrations before, and during suckling, in ADV and SO ewes without simultaneous feeding.. ... 158

Figure 6.2 Plasma oxytocin concentrations before, and during, suckling in ADV and SO ewes with or without simultaneous feeding, and the baseline corrected total area under the oxytocin response curve during suckling with or without simultaneous feeding.. 159

Figure 6.3 Glucose response and cephalic phase insulin release (CPIR) in response to presentation of food in ADV and SO ewes.......................... 160

Figure 6.4 The baseline corrected areas under the cephalic phase insulin release (CPIR) curve in response to presentation of food in ADV and SO ewes... 161

Figure A1 The elution profile of 125I-OT and percentage of 125I-OT bound, purified by Sephadex G-25 (fine) column equilibrated with assay buffer... 181

Figure A2 The elution profile of 125I-OT from a P-2 column (equilibrated and eluted with assay buffer) for a fraction from the G25 column, percentage of 125I-OT bound and 125I elution profile. .. 182

Figure A3 Antibody dilutions. Standard curves for absolute binding of antibody diluted at 1:40,000, 1:50,000, and 1:60,000. ... 183

Figure A4 Evidence of parallelism: The displacement of 125I-OT by oxytocin in extracted and unextracted normal serum samples and reference samples at three different dilutions.. 184

Figure A5 Oxytocin recovery studies. Oxytocin standard curve with relative binding percentage against oxytocin concentration and recovery of synthetic oxytocin in standards (in assay buffer) after extraction.................. 185
LIST OF TABLES

Table 5.1 Differences in mean plasma glucose concentrations (mmol/l) between 4 sampling days, irrespective of the main treatment groups, measured at 5, 6, 7, 8 and 9 h after feeding. ... 137

Table A1 Recovery of added oxytocin in pooled sheep serum. .. 186