Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Applications of Rheo-NMR-Microscopy to Complex Fluids.

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Physics at Massey University by Craig Rofe

May 6, 1997
Abstract

The non-Newtonian behavior of various complex fluids is described in detail, including shear thinning, slip and spurt phenomena. Dynamic NMR microscopy velocity profiles, achieved in capillary, cylindrical-Couette and cone-and-plate geometries, demonstrate that direct measurement of the above phenomena is possible.

NMR diffusion measurements, using polyethylene oxide solutions, reveal that the onset of entanglements is observed at a concentration around 1-2 % (w/v). Shear thinning is observed in 5 % monodisperse polyethylene oxide solutions using capillary velocity profiles. A power law analysis demonstrates an increase in shear thinning with increasing shear rate. A decrease in the power law exponent, n, from 0.4 to 0.35 is observed over the range of shear rates used here.

Slip is demonstrated by the discontinuous velocity profile obtained using 0.2 % Unam Xanthan solutions. An increase in the amount of slip with increasing shear stress is suggested, demonstrated in both capillary and cylindrical-Couette geometries. The exclusiveness of slip to particular Xanthan gums is also shown.

Velocity distributions of Cetyl Pyridinium Chloride-Sodium Salicylate micelles demonstrate the spurt phenomenon as a process observed above a critical shear stress, σ_c. This process is thought to differentiate from that of slip in that its properties rely on bulk fluid properties.

The mobility of polyolefins, containing side chains, were investigated by relaxation measurements in the melt. As the polymers were sheared, a decrease in the mobility was observed, consistent with the disentanglement of the chain network. Viscosity scaling laws, and the influence of polymer side branch length, were also studied.

Gradient coil developments are also described in detail. Linearity, homogeneity and screening conditions are investigated for a transverse quadrupole-target-field gradient coil. The need for large gradients are discussed with the implications to removing susceptibility effects found with model and natural systems.
Acknowledgements

This thesis is dedicated to Mina McKenzie who is greatly missed amongst her family and the wider community. Mina and I often talked about celebrating the completion of this thesis together, but even though our relationship has changed, we will celebrate together and apart. She still continues to guide me throughout my life, enabling me with strength and clarity for a sometimes puzzling world.

I thank my father for his continued support with education throughout my youth. A person who has the supported vision that education is the key in breaking negative cyclic trends for young Māori.

To Professor Paul Callaghan, my chief supervisor, thank you for your patience and guidance in the completion of this thesis. The six year journey we have undertaken has led us through crests and troughs but now we find ourselves on te maunga!

As is always the case, I will undoubtedly forget to thank everyone I want to, but here is an honest attempt:
Associate Professor Rod Lambert for his discussions on rheology and general co-supervisor role.

Geoff Nesbitt for his foster parent qualities and also giving me the opportunity to do research at Shell Research, Amsterdam, The Netherlands. Antonio Wilson and the AG/32 department for their warmth and support during the cold Dutch winter.

Lourdes de Vargas for inspiring me with her eternal high spirits, a 100% true Mexican woman scientist.
Bas Smeulders for his careful guidance with the wormlike micelle experiments.
Noel Foot, Steve Denby and other electronic workshop-support staff for their constant harassment in preparation for the ‘outside’ world.
Stephanie O’Sullivan for her constant support of my work.
My friends, Peter Saunders, Andrew Coy, Yang Xia and Bertram Manz, thank you for your support.
To others who have helped me directly, and indirectly, thank you.
Finally to my family, Louisa McKenzie and Emma McKenzie-Young, thanks for providing me with a warm and safe environment to take shelter from my thesis.
Contents

Abstract
Acknowledgements
Table of Contents
List of Figures
List of Tables

1 Rheo-NMR of Complex Fluids 1
 1.1 Viscoelasticity 1
 1.2 Macroscopic and Microscopic Views 2
 1.3 Rheo-NMR 2

2 Rheological Background 4
 2.1 Viscoelasticity 4
 2.1.1 Linear Viscous & Elastic Behavior 5
 2.1.1.1 The Generalised Maxwell Model 6
 2.1.2 Non-Linear Viscoelasticity 7
 2.1.2.1 The Maxwell Model 7
 2.1.2.2 Shear Thickening, Shear Thinning and The Power
 Law Model 8
 2.1.3 Molecular Models for Viscoelasticity 9
 2.2 Classical Rheometry 9
 2.3 Slip and Spurt 11
 2.3.1 Slip 11
 2.3.2 Spurt 13
 2.4 Molecular Basis of Viscoelasticity 16
 2.4.1 Rigid Rod 16
 2.4.2 Isolated Polymer Random Coils 16
CONTENTS

2.4.3 Entangled Polymer Random Coils 17
2.4.4 Wormlike Surfactants .. 20

3 Nuclear Magnetic Resonance (NMR) 21
 3.1 Basic Theory of NMR .. 21
 3.1.1 Quantum Description ... 21
 3.1.1.1 Excitation and the Rotating Frame 23
 3.1.1.2 Ensemble Averaging of the Nuclear States 24
 3.1.2 Semi-Classical Description 26
 3.1.2.1 Excitation .. 26
 3.1.3 Relaxation .. 29
 3.1.4 Chemical Shift .. 30
 3.1.5 Signal Detection .. 30
 3.2 NMR Microscopy ... 33
 3.2.1 Gradients .. 33
 3.2.2 Spatial Encoding ... 33
 3.2.2.1 Spin Density and k-Space 33
 3.2.2.2 Fourier Imaging ... 34
 3.2.3 Encoding for Motion .. 36
 3.2.3.1 q-Space Imaging .. 36
 3.2.4 Combining Spatial and Motional Encoding 38
 3.3 Software and Hardware used in NMR 39
 3.3.1 Imageshow .. 39
 3.3.2 Spectrometers ... 39
 3.4 Rheometers ... 40
 3.4.1 The Capillary Rheometer 41
 3.4.2 The Cylindrical-Couette Rheometer 42
 3.4.3 Combined Cylindrical-Couette-Cone-and-Plate Rheometer . 44
 3.4.4 Power Law Velocity Profiles 49

4 Shear Thinning of Semi-Dilute PEO Solutions 50
 4.1 Diffusion & Velocity Measurements 51
 4.1.1 Experimental Setup .. 51
 4.1.2 Results .. 53
 4.2 Discussion ... 59
 4.3 Conclusions .. 61
CONTENTS

5 Slip Behavior of Xanthan Gum Solutions 63
 5.1 Xanthan Gum ... 63
 5.1.1 Structure ... 64
 5.1.2 Properties ... 64
 5.1.3 Molecular Weight Distribution 65
 5.2 Cone and Plate Viscosity Measurements 68
 5.3 Velocity Measurements in Cylindrical-Couette Flow .. 71
 5.3.1 Experimental Setup 71
 5.3.2 Results .. 73
 5.4 Velocity Measurements in Capillary Flow 79
 5.4.1 Experimental Setup 79
 5.4.2 Results .. 79
 5.4.3 Discussion ... 87
 5.5 Conclusions ... 89

6 The Spurt Effect of Wormlike Micelles 91
 6.1 Cetyl Pyridinium Chloride/Sodium Salicylate Micelle .. 91
 6.1.1 Structure .. 91
 6.1.2 Rheology .. 92
 6.1.2.1 Strain-Controlled Experiments 92
 6.1.2.2 Stress-Controlled Experiments 97
 6.2 Determination of Flow Curve Using MRI 100
 6.3 Velocity Measurements 100
 6.3.1 Setup .. 100
 6.3.2 Results .. 101
 6.3.3 Discussion ... 105
 6.4 Conclusions ... 109

7 Mobility of Polyolefins 110
 7.1 Polymerisation of Carishop Polymers 110
 7.2 Setup .. 113
 7.2.1 Previous Results 113
 7.2.1.1 Polyolefin Characterisation 113
 7.2.1.2 Viscosity Anomaly 114
 7.3 Results .. 117
 7.3.1 Viscosity Measurements 117
 7.3.2 Relaxation Measurements 120
 7.3.2.1 T_2 Zero Shear 120
 7.3.2.2 T_2^* Influence of Shear 126
CONTENTS

7.4 Conclusions .. 128

8 Large Magnetic Field Gradients 129
 8.1 The Need for Large Magnetic Field Gradients 129
 8.2 Probe Development ... 130
 8.2.1 The Quadrupole Gradient Coil 130
 8.2.1.1 Homogeneity and Gradient Calculations 133
 8.2.1.2 Active Screening of the Quadrupole Coil's 'End Fields' .. 135
 8.2.1.3 Eddy Field Calculations 139
 8.2.2 The Target-Field Gradient Coil 144
 8.2.2.1 The Target Function 145
 8.2.2.2 Homogeneity and Gradient Calculations 149
 8.2.2.3 Former Design and Wiring 149
 8.2.2.4 Gradient Strength and Eddy Current Testing 152
 8.3 High Spatial Resolution & Double Phase Encoding 154
 8.3.1 Susceptibility Effects 154
 8.3.2 Diffusive Effects .. 156
 8.3.2.1 Homogeneous Systems 156
 8.3.2.2 Heterogeneous Systems 157
 8.3.3 Experimental Setup .. 157
 8.3.4 Experimental Results 158
 8.4 Conclusions .. 165

9 Future Directions .. 166
 9.1 Revisiting Experiments 166
 9.2 New Experiments .. 167

Bibliography ... 169

Author’s Publications Arising From Thesis 175
List of Figures

2.1 Cartesian stress coordinates ... 4
2.2 Maxwell element: spring-dashpot 6
2.3 Flow curve: shear thinning, shear thickening and Newtonian behavior 9
2.4 Slip layer hypothesis ... 12
2.5 Flow curve: stress minimum and stress plateau 14
2.6 Capillary flow: shear band .. 15
2.7 Polymer: random coil-bead spring analogy 17
2.8 Reptating polymer .. 18
3.1 Proton's discrete energy levels ... 22
3.2 Rotating B_1 field components ... 24
3.3 Simultaneous precession of magnetisation 28
3.4 Fast and slow motional regimes ... 29
3.5 Free induction decay and spectra .. 32
3.6 Fourier imaging pulse sequence ... 35
3.7 Pulsed gradient spin echo pulse sequence 36
3.8 Fast Fourier transform of 3-D q data set 40
3.9 Capillary rheometer .. 41
3.10 Cylindrical-Couette rheometer ... 43
3.11 Cone-and-plate rheometer .. 44
3.12 Combined cone-and-plate-cylindrical-Couette rheometer 47
3.13 Combined cylindrical-Couette-cone-and-plate rheometer and driv-
ing motor ... 48
4.1 Capillary system for PEO ... 52
4.2 Diffusive echo attenuation of 930 000 da PEO/D$_2$O 54
4.3 Entanglement concentration for PEO 55
4.4 Cylindrical-Couette velocity profile for water 56
4.5 Cylindrical-Couette velocity comparison H$_2$O/PEO 56
4.6 Cylindrical-Couette velocity comparison PEO vs frequency 57
4.7 Cylindrical-Couette power law fit for PEO. 57
4.8 Capillary power law fit for PEO. 58
4.9 PEO viscosity scaling. 60
4.10 PEO logarithmic viscosity scaling. 61
4.11 Migration profile. 62

5.1 Xanthan primary structure. 64
5.2 GPC of Xanthan solutions. 67
5.3 Constant shear viscosity response of Unam Xanthan solution within cone-and-plate geometry. 69
5.4 Dynamic response of Unam Xanthan solution. 70
5.5 Cylindrical-Couette geometry within super-conducting magnet. 72
5.6 Velocity stackplot of Unam Xanthan solution within cylindrical-Couette geometry. 76
5.7 Double slice velocity pulse sequence. 76
5.9 (a) Velocity distribution of Unam Xanthan solution within cylindrical-Couette rheometer. (b) Comparison of normalised velocities versus frequency. 77
5.10 Power-law velocity profile fit for cylindrical-Couette geometry. 78
5.11 Velocity profile across capillary of Xanthan solution versus flow rate. 80
5.12 Normalised velocity distribution across pipe of Unam Xanthan solution versus flow rate. 81
5.13 Power law velocity profile fitting across pipe of Unam Xanthan solution. 82
5.14 Comparison of normalised velocity profiles along pipe. 83
5.15 Comparison of normalised velocity profiles at varying reservoir-pipe contractions. 84
5.16 Power law velocity profile fit across pipe for smallest reservoir-pipe contraction ratio. 84
5.17 Velocity profile across capillary of Unam solution after peristaltic pumping. 85
5.18 Velocity profile across pipe of Aldrich and Kelsan Xanthan solutions. 85
5.19 Slip velocity versus wall stress of imaging and rheometry. 86

6.1 Cetyl Pyridinium Chloride/Sodium Salicylate wormlike micelle structure. 92
6.2 Linear regime of CPyCl/NaSyl wormlike micelle. 93
6.3 Dynamic response of CPyCl/NaSyl wormlike micelle. 94
LIST OF FIGURES

6.4 Time response of CPyCl/NaSyl wormlike micelles when experiencing different magnitude step-strains. .. 95
6.5 Response of CPyCl/NaSyl wormlike micelles with strain-controlled experiment. ... 96
6.6 Response of CPyCl/NaSyl wormlike micelles with stress-controlled experiment. ... 98
6.7 Enhanced flow instability of CPyCl/NaSal wormlike micelles with phase transition. .. 99
6.8 CPyCl/NaSal wormlike micelles capillary velocity profiles. 102
6.9 Normalised capillary velocity profiles for CPyCl/NaSal wormlike micelles. ... 103
6.10 Velocity profile for CPyCl/NaSal micelle in cylindrical-Couette geometry. ... 104
6.11 Calculated local shear rate versus position of CPyCl/NaSal micelles in capillary geometry. ... 106
6.12 Flow curve of CPyCl/NaSal calculated from its local shear rate in capillary geometry. .. 107
6.13 Calculated capillary velocity profiles of CPyCl/NaSal micelles. 108

7.1 Olefin primary and secondary insertion reaction. 111
7.2 Tacticity processes of polyolefins. .. 112
7.3 Previous viscosity anomaly of C_{10-18} 116
7.4 Massey PGSE probe. .. 117
7.5 Combined rheometer viscosity measurements of C_{10,12,18} polyolefins. .. 118
7.6 C_{12} viscosity measurements. ... 119
7.7 Spin echo pulse sequence. .. 120
7.8 T_2 measurements for C_{12} polyolefin. 120
7.9 Comparison of T_2 measurements for mono-disperse polypropylene and C_{12} polyolefin. .. 121
7.10 Binary T_2 echo decay. .. 124
7.11 Deconvolution of polyolefin spectrum. 124
7.12 T_2 measurements for different Carishop. 125
7.13 T_2^* for C_{12} and C_{18} under shear. 127

8.1 Quadrupole coil orientation. ... 131
8.2 Quadrupole coil’s magnetic field distribution. 132
8.3 Discrete wire configuration for quadrupole coil. 132
8.4 Calculated gradient magnitude for quadrupole coil. 134
8.5 Calculated gradient homogeneity for quadrupole coil. 134
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6</td>
<td>Cylindrical polar coordinate system for current distributions</td>
<td>135</td>
</tr>
<tr>
<td>8.7</td>
<td>Screening volume for transverse coil</td>
<td>138</td>
</tr>
<tr>
<td>8.8</td>
<td>Dummy saddle coil dimensions</td>
<td>140</td>
</tr>
<tr>
<td>8.9</td>
<td>Gradient calculations for dummy saddle coil</td>
<td>141</td>
</tr>
<tr>
<td>8.10</td>
<td>Three dimensional magnetic field plot- dummy saddle coil and quadrupole coil</td>
<td>142</td>
</tr>
<tr>
<td>8.11</td>
<td>Comparative field profiles- saddle and quadrupole coils</td>
<td>143</td>
</tr>
<tr>
<td>8.12</td>
<td>Calculated current inverse space distributions</td>
<td>146</td>
</tr>
<tr>
<td>8.13</td>
<td>Calculated real space current distributions</td>
<td>147</td>
</tr>
<tr>
<td>8.14</td>
<td>Calculated wire paths</td>
<td>148</td>
</tr>
<tr>
<td>8.15</td>
<td>Quadrupole gradient coil probe</td>
<td>150</td>
</tr>
<tr>
<td>8.16</td>
<td>RF tuning circuit</td>
<td>151</td>
</tr>
<tr>
<td>8.17</td>
<td>Pre-emphasis pulse sequence</td>
<td>152</td>
</tr>
<tr>
<td>8.18</td>
<td>Phase-frequency and phase-phase spin echo pulse sequences</td>
<td>155</td>
</tr>
<tr>
<td>8.19</td>
<td>Phase-frequency and phase-phase spin echo pulse sequence used for</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>glass/acetone image comparison</td>
<td></td>
</tr>
<tr>
<td>8.20</td>
<td>Geranium stem images which used phase-frequency and double phase</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>encoding schemes</td>
<td></td>
</tr>
<tr>
<td>8.21</td>
<td>Double phase encoding ability to provide chemical selection</td>
<td>163</td>
</tr>
<tr>
<td>8.22</td>
<td>Experimental and calculated diffusive attenuation under phase-phase</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>encoding scheme</td>
<td></td>
</tr>
</tbody>
</table>
List of Tables

7.1 Molecular weight of polyolefins using GPC, GPC-light scattering
7.2 Viscosity trend of polyolefins using GPC-light scattering
7.3 Proton Magnitude

8.1 Experimentally determined gradient magnitudes for the quadrupole and target field gradient coils
8.2 Inductance and resistance measurements of the quadrupole-target-field gradient coils