Epidemiology and Diagnosis of Equid Herpesviruses 1 and 4 in horses in New Zealand.

A thesis presented
in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Massey University

Jennifer Jane Donald

1998
Abstract

Equid herpesvirus 1 (EHV-1) and Equid herpesvirus 4 (EHV-4) are ubiquitous viral pathogens of horses in all major horse-rearing countries in the world. These viruses are associated with four clinical syndromes, respiratory disease, abortion, perinatal disease and neurological disease. Traditional serological tests, such as virus neutralisation and complement fixation, are unable to discriminate between antibodies to EHV-1 and EHV-4. A blocking ELISA test has been developed which showed the potential to be used to screen horses for the presence of specific antibodies to EHV-1.

The blocking ELISA test was shown to be specific, sensitive and repeatable for detecting antibodies to EHV-1 even in the presence of antibodies to EHV-4 when tested with polyclonal monospecific antisera to the two viruses raised in equine foetuses and in sheep. Vaccinal antibodies produced with the subunit vaccine Pneumequine® cannot however be reliably distinguished, by the blocking ELISA, from antibodies produced in natural infections or following the use of whole virus vaccines. Possibly, future genetically engineered vaccines which incorporate only the surface glycoproteins will stimulate the production of antibodies which will not be detected and allow the use of the test to differentiate horses naturally infected from those vaccinated with engineered vaccines.

In a structured serological survey of Thoroughbred horses in New Zealand it was found that about 70% of adult (>24 months old) horses have specific EHV-1 antibodies and are therefore assumed to be latently infected with the virus. The prevalence increased with age, with 29% of 6-12 month old and 48% of 13-24 month old horses having specific EHV-1 antibodies. Gender was found to have a minor effect on the prevalence of specific antibodies, with female horses having slightly higher prevalence than males. In the survey, samples from two different years were tested. There was a slightly higher prevalence in 1995 than 1993, which is believed to be due to an increase in infection particularly in young horses in that
Abstract

year. In a group of young horses sampled monthly from birth, no clinical signs of respiratory
disease were seen but four of the nine foals showed seroconversion to EHV-1 around the
time of weaning.

In an investigation of an outbreak of EHV-1 abortion on a Thoroughbred stud, high levels
of specific EHV-1 antibody were found in sera from four of the six mares that aborted. The
blocking ELISA test would have had considerable diagnostic value following the first
abortions however, high levels of specific antibody were still present in some of the mares a
year later. It was not possible to determine whether this was due to the persistence of these
antibodies or whether it was due to reinfection or reactivation of latent virus.

With tissue from the aborted foetuses it was possible to evaluate the ability of the EHV-1
specific monoclonal antibody, which forms the basis of the blocking ELISA test, to detect
viral antigen in formalin-fixed tissue. After finding a suitable pretreatment involving
microwave irradiation and trypsinisation it was possible to 'unmask' and visualise viral antigen
in formalin-fixed tissue using the monoclonal antibody and an immunoperoxidase detection
system. This provides a useful tool for the direct diagnosis of infection due to EHV-1 in
tissue without the need for virus isolation and subsequent typing.

The specific blocking ELISA and its associated monoclonal antibody, has proven useful both
in the diagnosis of infection due to EHV-1 and in epidemiological studies of the virus. Use
of the test in other countries, particularly where the incidence of abortion and neurological
disease are higher than in New Zealand, would yield valuable information on the prevalence
of the virus in different situations. In addition, the test has application as a management tool
on a horse stud for the segregation of horses latently infected with EHV-1 and those naïve
to the virus as a control measure for the serious sequelae of abortion and neurological
disease.
Acknowledgements

Firstly, I would like to acknowledge the New Zealand Equine Research Foundation for providing the funding which made it possible to carry out this work and also to Massey University for both the financial support and providing the necessary facilities.

I am grateful for the assistance I have received from many people, too many to name individually, both at Massey University and other institutions. My thanks to them all.

I would like to acknowledge the extensive part Dr. Nigel Perkins played in the foetal inoculations and the induction of the mares. Without his expertise this part of my work would not have been possible.

Special thanks also to Marty Johnston, Robin Whitson, Marge Chandler, Sheila Ramsay and Noel Rutherford for their help in looking after the mares and foals; Drs. Richard Turner and Dave Keenan for providing samples from the abortion cases; Dr. Ian Anderson and the staff of the Equine Blood Typing and Research Unit for the use of their records and samples; Dr. Kern Keene for the samples from the unvaccinated horses; Dr. Alan Alexander and the staff of the Animal Health Services for the provision of the sheep and their help with the inoculations and blood collection; Pacific Vet and Merial New Zealand Ltd. for providing the vaccines; Dr. Warren Hunt and the staff of the AgResearch Thoroughbred Research Stud, Flock House for the use of the horses and their assistance with the collection of samples; Dr. Jim Hutton and the Lincoln Animal Health laboratory for the samples from the abortion cases; Dr. Dirk Pfeiffer for the statistical analysis; Mrs Pat Davey and Mrs Pam Slack for cutting and staining the histological sections; my great workmates, Mrs Roz Power, Miss Sheryl Bayliss and Dr. Phil Clark; Mr Malcolm Rice for getting me started in the lab again and the 'Virology Group' for all the discussions.
To my supervisors, Dr. Keith Thompson, Dr. John Lumsden and Dr. Elizabeth Carpenter a special thanks for their support and advice, not only about this work but future directions.

A very special thanks to my parents for their support and constant encouragement.

And last, but by no means least, I would like to thank my chief supervisor Professor Colin Wilks, for his assistance and support, for always making time available and also for his friendship.
Table of Contents

Abstract .. ii
Acknowledgements .. iv
Table of Contents .. vi
List of Figures .. xi
List of Tables .. xvi
Abbreviations .. xviii

Chapter 1 Equid Herpesviruses 1 and 4 - a review ... 1
 Introduction ... 1
 The Viruses ... 3
 Clinical Syndromes and Pathogenesis ... 6
 Respiratory disease ... 6
 Abortion ... 8
 Perinatal disease .. 11
 Neurological disease .. 12
 Immune Response ... 13
 Epidemiology .. 19
 Vaccination .. 22
 Laboratory Diagnosis ... 28
 The Blocking ELISA Test ... 32
 The Scope of this Thesis ... 34

Chapter 2 Materials and Methods ... 36
 Introduction ... 36
 Cell Culture .. 36
 Virus Propagation ... 37
Table of Contents

Virus Neutralisation tests ... 37
The Blocking ELISA test ... 38
 Monoclonal antibody ... 38
 Biotinylation of the monoclonal antibody 38
 Preparation of antigen .. 39
 Optimisation of antigen and biotinylated monoclonal antibody ... 40
 Blocking ELISA method .. 40
The Indirect ELISA test .. 42

Chapter 3 Standardisation of the EHV-1 blocking ELISA 43
 Introduction .. 43
 Immunocompetence of the equine foetus 44
Materials and Methods ... 48
 Antigen preparation for animal immunisation 48
 Inoculation of equine foetuses 51
 Animals used .. 51
 Inoculation procedure 52
 Induction of parturition 54
 Blood collection .. 54
 Immunisation of sheep ... 54
 Measurement of antibodies 55
 Lymphocyte proliferation assays 55
 Preparation of lymphocytes 55
 Viral antigen and mitogens used 56
 Assay procedure ... 56
 Interleukin-2 assay .. 57
Results ... 59
 Equine foetal inoculations 59
 Antibody levels .. 59
 Lymphocyte proliferation 65
 Interleukin-2 assay .. 68
Table of Contents

Antibody responses in the sheep ... 72
Discussion ... 77
Equine foetal inoculation ... 77
 The safety of the procedure ... 77
 Antibody responses ... 78
 Cell-mediated immune responses .. 81
 Interleukin-2 assay .. 82
Standardisation of the blocking ELISA 83
Summary .. 85

Chapter 4 An outbreak of EHV-1 abortion: a case report 87
 Introduction .. 87
 Abortion due to EHV-1 in New Zealand and Australia 87
Materials and Methods ... 88
 Histopathology .. 88
 Virus isolation ... 89
 Measurement of antibodies ... 89
 Virus typing by immunocytochemistry 89
 Immunocytochemistry on formalin-fixed cell cultures 90
 Immunocytochemistry on formalin-fixed tissues 91
Field observations and laboratory findings 92
 History .. 92
 Gross pathology .. 93
 Histopathology .. 93
 Virus isolation .. 95
 Typing of isolates by immunocytochemistry in cell culture 95
 Immunocytochemistry on formalin-fixed cell culture 97
 Immunocytochemistry on formalin-fixed tissue sections 97
 Serology ... 99
Discussion .. 106
 Identification of the causative agent 106
 Use of the blocking ELISA as a possible aid to diagnosis 106
Table of Contents

Immunocytochemistry on formalin-fixed tissues 108
DNA fingerprinting of the isolates 109
The source of the virus ... 110
Protective immunity .. 111
Summary .. 112

Chapter 5 Prevalence of antibodies to EHV-1 and EHV-4 in horses in New Zealand .. 113

Introduction ... 113
The Kaimanawa wild horses ... 113
Materials and Methods .. 114
Populations sampled ... 114
Unvaccinated adult horses .. 114
1993 and 1995 survey samples .. 115
Monthly samples from a group of foals and their dams 116
Samples from the Kaimanawa horses 117
Measurement of antibodies ... 117
Statistical analyses ... 117
Results ... 118
Unvaccinated adult horses .. 118
1993 and 1995 survey samples .. 119
The Kaimanawa horses .. 126
Monthly samples from the foals and their dams 127
Discussion .. 132
The prevalence of virus neutralising antibodies to
EHV-1 and EHV-4 .. 132
The prevalence of specific EHV-1 antibodies 132
The age at which horses are infected with EHV-1 136
Summary ... 137
Table of Contents

Chapter 6 Evaluation of the EHV-1 blocking ELISA 139

Introduction ... 139

Materials and Methods ... 140

Vaccination of sheep with commercial vaccines 140

Results .. 141

Sensitivity and specificity .. 141

Animals known to have been exposed to EHV-1 or EHV-4 141

Correlation with the virus neutralisation test 141

Repeatability ... 143

Vaccination of sheep with commercial vaccines 144

Discussion .. 148

Sensitivity and specificity .. 148

Repeatability ... 150

Ability of the blocking ELISA to detect vaccinal antibodies 151

Summary .. 152

Chapter 7 Summary and General Discussion 153

Appendix I Buffers and Solutions 161

Appendix II Blocking ELISA controls 163

Serum and Plasma comparison 163

Repeatability ... 164

Appendix III Virus neutralisation and blocking ELISA results 168

Unvaccinated adult horses .. 168

1993 survey ... 170

1995 survey ... 179

Kaimanawa horses ... 189

Bibliography ... 191
List of Figures

Figure 3.1: Purification of virus by an aqueous two-phase polymer procedure modified from Schloer and Breese, (1982) 50

Figure 3.2: Ultrasound-guided inoculation of the equine foetus, showing the entry of the needle (arrow) into muscle in the shoulder region of the foetus 53

Figure 3.3: Ultrasound-guided inoculation of the equine foetus, showing injection of the viral antigen suspension in adjuvant 53

Figure 3.4: Virus neutralisation titre to EHV-1 (Durham) obtained on the weekly samples from the mares 60

Figure 3.5: Indirect ELISA results for the pre-suckle foal sera 61

Figure 3.6: Blocking ELISA results for the pre-suckle foal sera 62

Figure 3.7: Percent blocking as determined in the blocking ELISA for the three foal sera with good antibody levels 63

Figure 3.8: Percent blocking as determined in the blocking ELISA when the EHV-1 serum (Foal 5) was diluted in antibody-negative serum (Control Foal 1), a low titre EHV-4 serum (Foal 4) and a high titre EHV-4 serum (Foal 6) 64

Figure 3.9: Titration of human recombinant IL-2 with equine lymphocytes 68
Figure 3.10: Counts obtained in the IL-2 assays for the supernatants from the bulk lymphocyte cultures from the foals 69

Figure 3.11: Counts obtained in the IL-2 assays for the supernatants from the bulk lymphocyte cultures from the mares 69

Figure 3.12: Sheep inoculated with EHV-1 on two occasions 73

Figure 3.13: Sheep inoculated with EHV-4 on two occasions 74

Figure 3.14: Sheep inoculated with EHV-1 as the primary and EHV-4 as the secondary inoculum 75

Figure 3.15: Sheep inoculated with EHV-4 as the primary and EHV-1 as the secondary inoculum 76

Figure 4.1: Age of pregnant mares on the property during the 1994 outbreak with the outcome of the pregnancy in that year shown as live foals (x) and aborted foals (o) 92

Figure 4.2: Histopathology of the lung lesions from the 1995 foetus (x210) with necrosis of bronchial epithelial cells and acidophilic intranuclear inclusion bodies (inset x840). (Haematoxylin and Eosin) 94

Figure 4.3: Histopathology of the liver lesions from the 1995 foetus showing a focus of necrosis and acidophilic inclusion bodies (x840) (Haematoxylin and Eosin) 94
Figure 4.4: Immunoperoxidase staining of EFK cells infected with EHV-1 (Durham), EHV-4 (Horner) or the lung isolate from the 1994 aborted foetus. Counter stained with blued Mayer's Haematoxylin. (x420) .. 96

Figure 4.5: Immunoperoxidase staining of formalin-fixed cell cultures before (a) and after pre-treatment (b). Counter stained with blued Mayer's Haematoxylin (x420) 97

Figure 4.6: Immunoperoxidase staining of formalin-fixed lung from the 1995 aborted foetus. No pre-treatment. Counter stained with blued Mayer's Haematoxylin. (x420) 98

Figure 4.7: Immunoperoxidase staining of formalin-fixed lung from the 1995 aborted foetus after pre-treatment (x420). Inset shows positive staining of inclusion bodies (x840). Counter stained with blued Mayer's Haematoxylin. 98

Figure 4.8: Blocking ELISA results on diluted serum samples taken on 21/9/94 .. 102

Figure 4.9: Blocking ELISA results on diluted serum samples taken on 2/11/94 .. 103

Figure 4.10: Blocking ELISA results on diluted serum samples taken on 1/6/95 ... 104

Figure 4.11: Blocking ELISA results on diluted serum samples taken on 6/9/95 ... 105
Figure 5.1: Virus neutralisation titre to EHV-1 (Durham) versus number of horses for the group of unvaccinated adult horses ... 118

Figure 5.2: Per cent blocking, as determined with the blocking ELISA, versus number of horses for the group of unvaccinated adult horses ... 118

Figure 5.3: Virus neutralisation titre to EHV-1 (Durham) versus number of horses for the 1993 samples ... 124

Figure 5.4: Per cent blocking, as determined with the blocking ELISA, versus number of horses for the 1993 samples ... 124

Figure 5.5: Virus neutralisation titre to EHV-1 (Durham) versus number of horses for the 1995 samples ... 125

Figure 5.6: Per cent blocking, as determined with the blocking ELISA, versus number of horses for the 1995 samples ... 125

Figure 5.7: Virus neutralisation titre versus number of horses for the Kaimanawa horses ... 126

Figure 5.8: Per cent blocking, as determined with the blocking ELISA, versus number of horses for the Kaimanawa horses ... 126

Figure 5.9: Virus neutralisation titre to EHV-1 (Durham) for the monthly samples from the foals ... 128
Figure 5.10: Per cent blocking, as determined with the blocking ELISA, for the monthly samples from the foals 129

Figure 5.11: Virus neutralisation titre to EHV-1 (Durham) for the monthly samples from the mares 130

Figure 5.12: Per cent blocking, as determined with the blocking ELISA, for the monthly samples from the mares 131

Figure 6.1: Per cent blocking, as determined by the blocking ELISA, versus number of horses for which the virus neutralisation titre was ≤2 142

Figure 6.2: Per cent blocking, as determined by the blocking ELISA, versus number of horses for which the virus neutralisation titre was 2 142

Figure 6.3: Per cent blocking, as determined by the blocking ELISA, versus number of horses for which the virus neutralisation titre was ≥32 143

Figure 6.4: Sheep inoculated with Fort Dodge EHV-1/EHV-4 vaccine on two occasions 145

Figure 6.5: Sheep inoculated with Pneumabort K +1B* vaccine on two occasions 146

Figure 6.6: Sheep inoculated with Pneumequine* vaccine on two occasions 147
List of Tables

Table 3.1: The development of tissues, cells and the immune response in domestic animals expressed in days gestation 45

Table 3.2: Inoculum received and timing of inoculations for the six foals 51

Table 3.3: Inoculum used for the immunisation of eight sheep to raise polyclonal monospecific antisera 55

Table 3.4: Virus neutralisation titres against EHV-1 (Durham) and EHV-4 (Horner) obtained on the pre-suckle foal sera 59

Table 3.5: Lymphocyte proliferation counts ± SD (SI) for the foals 66

Table 3.6: Lymphocyte proliferation counts ± SD (SI) for the mares 67

Table 3.7: Comparison of stimulation indices from the lymphocyte proliferation and IL-2 assays for the mares 70

Table 3.8: Comparison of stimulation indices from the lymphocyte proliferation and IL-2 assays for the foals 71

Table 4.1: Isolation of virus in EFK cell culture from specified tissues of the foetuses aborted in 1994 and 1995 95
Table 4.2: Virus neutralisation titres against EHV-1 (Durham) and EHV-4 (Horner) for samples collected on 21/9/94 and 2/11/94, 16 days and 6 weeks respectively after the last abortion .. 99

Table 4.3: Virus neutralisation titres against EHV-1 (Durham) for sera collected during 1995 .. 100

Table 5.1: Number of samples tested from each region of New Zealand when the results for 1993 and 1995 are combined 116

Table 5.2: The effect of age, gender, year and region on the presence of virus neutralisation and specific EHV-1 antibodies for the 1993 and 1995 samples tested 120

Table 5.3: Adjusted odds ratios and 95% confidence limits from the final regression model for the effect of age, gender, year and region on the risk of the presence of virus neutralising antibodies. .. 121

Table 5.4: Adjusted odds ratios and 95% confidence limits from the final regression model for the effect of age, gender, year and region on the risk of the presence of specific EHV-1 antibodies 122

Table 6.1: Summary of animals inoculated or known to have been infected with EHV-1 ... 141
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATV</td>
<td>Antibiotic/Trypsin/Versene</td>
</tr>
<tr>
<td>bp</td>
<td>Base pairs</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CF</td>
<td>Complement fixing (antibodies)</td>
</tr>
<tr>
<td>CL</td>
<td>Confidence limits</td>
</tr>
<tr>
<td>Con A</td>
<td>Concanavalin A</td>
</tr>
<tr>
<td>CPE</td>
<td>Cytopathic effect</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>DAB</td>
<td>3',3' Diaminobenzidine tetrachloride</td>
</tr>
<tr>
<td>EBTRU</td>
<td>Equine Blood Typing and Research Unit</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine tetra-acetic acid</td>
</tr>
<tr>
<td>EFK</td>
<td>Equine foetal kidney (cells)</td>
</tr>
<tr>
<td>EHV-1</td>
<td>Equid herpesvirus 1</td>
</tr>
<tr>
<td>EHV-2</td>
<td>Equid herpesvirus 2</td>
</tr>
<tr>
<td>EHV-3</td>
<td>Equid herpesvirus 3</td>
</tr>
<tr>
<td>EHV-4</td>
<td>Equid herpesvirus 4</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme linked immunosorbant assay</td>
</tr>
<tr>
<td>FBS</td>
<td>Foetal bovine serum</td>
</tr>
<tr>
<td>gp</td>
<td>Glycoprotein</td>
</tr>
<tr>
<td>HSV-1</td>
<td>Herpes simplex virus 1</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>IL-2</td>
<td>Interleukin-2</td>
</tr>
<tr>
<td>IV</td>
<td>Intravenous</td>
</tr>
<tr>
<td>kbp</td>
<td>Kilobase pairs</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>LAT</td>
<td>Latency associated transcripts</td>
</tr>
<tr>
<td>mAb</td>
<td>Monoclonal antibody</td>
</tr>
<tr>
<td>2-ME</td>
<td>2-mercaptoethanol</td>
</tr>
<tr>
<td>MEM</td>
<td>Minimal essential media</td>
</tr>
<tr>
<td>MHC</td>
<td>Major Histocompatibility Complex</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>OPD</td>
<td>ortho-phenylenediamine dihydrochloride</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>PBL</td>
<td>Peripheral blood leucocyte</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PHA</td>
<td>Phytohaemagglutinin</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PSK</td>
<td>Penicillin/Streptomycin/Kanamycin</td>
</tr>
<tr>
<td>RK13</td>
<td>Rabbit kidney (cell line)</td>
</tr>
<tr>
<td>SAHRP</td>
<td>Streptavidin horseradish peroxidase</td>
</tr>
<tr>
<td>SCID</td>
<td>Severe combined immunodeficiency (disease)</td>
</tr>
<tr>
<td>SPF</td>
<td>Specific pathogen free</td>
</tr>
<tr>
<td>TCID<sub>50</sub></td>
<td>Tissue culture infective doses 50%</td>
</tr>
<tr>
<td>TK</td>
<td>Thymidine kinase</td>
</tr>
<tr>
<td>VN</td>
<td>Virus neutralisation</td>
</tr>
</tbody>
</table>