Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
SYSTEMS FOR THE PREVENTION AND CONTROL
OF INFECTIOUS DISEASES IN PIGS

A thesis presented
in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
at Massey University

Katharina D.C. Stärk

1998
The results of science remain hypotheses that may have been well tested, but not established: not shown to be true. Of course, they may be true. But even if they fail to be true, they are splendid hypotheses, opening the way to still better ones.

Karl R. Popper, A World of Propensities, 1990
Abstract

An expert system (RestiMATE) was designed that assists veterinary practitioners in assessing the respiratory health status of a pig farm. RestiMATE uses classification rules to identify patterns of environmental risk factors for respiratory diseases and to select optimal management interventions to control and prevent respiratory diseases. The classification rules are based on expert interviews and on empirical data collected in New Zealand. Recursive partitioning and neural network techniques have been applied for rule induction. These methods were compared with logistic regression and appeared to be similarly efficient in terms of classification while providing additional insight into the structure of a data set. Non-parametric analytical methods appear to be particularly suitable when analysing complex data sets and for exploratory data analysis.

EpiMAN-SF is an advanced decision-support system designed to manage and analyse data accumulated during an African swine fever or classical swine fever emergency. EpiMAN-SF offers state-of-the-art technology for managing data related to a swine fever epidemic, including laboratory results. An expert system was developed to support rapid classification of contacts between pig farms in terms of the risk of virus transmission. These classifications are used to set priorities in visiting farms for laboratory investigations. The validation of the expert system showed that its evaluation was more consistent and generally more risk-averse than that of human experts. A stochastic simulation model was developed to investigate the spread of swine fever infection within a farm and a second model (INTERSPREAD-SF) was designed to forecast the dynamics of the epidemic within a region and to evaluate control strategies. INTERSPREAD-SF has been validated using real outbreak data from Germany and was shown to be capable of realistically replicating the behaviour of classical swine fever. However, more research is needed to complete our knowledge about the detailed epidemiological processes during a swine fever epidemic.

A prerequisite for efficient disease control in pig populations is reliable animal identification. A series of trials was conducted in order to compare electronic ear tags and implantable identification chips with visual ear tags. It was shown that the difficulties with respect to implants are loss rates of up to 18.1% within 4 weeks after implantation while electronic ear tags were lost or damaged by processing at the abattoir in up to 23.4% of pigs.

Infectious aerosols were reviewed as an additional aspect of the causative network of infectious diseases in pigs. An air sampling system based on air filtration was developed and applied in combination with polymerase chain reaction assays. Using this technique, *Mycoplasma hyopneumoniae*, the major causative agent of enzootic pneumonia was isolated from air samples for the first time. However, the attempt to isolate classical swine fever virus from the air was unsuccessful, probably due to technical difficulties.
Doing a PhD is all about learning. I certainly learnt a lot during these last three years in the Epidemiology Group (now EpiCentre) at the Department of Veterinary Clinical Sciences (now Institute of Veterinary, Animal and Biomedical Sciences). Probably the experience of the most lasting value to me was to realise that no matter how good or bad a situation, I can always learn something: either how to do something or how not to do it. Therefore, first of all, I would like to thank everyone who has helped me learn.

In this context, I am particularly grateful to my chief supervisor Prof. Roger Morris, who provided me with the ideas and vision, which are the strong foundations of this thesis. The help of my second supervisor Dr. Dirk Pfeiffer was indispensable in successfully realising many aspects of my work. His ‘you can do it’ attitude helped me tackle many problems and allowed me to put analytical issues into perspective. I also worked with Mr. Mark Stern on software design issues and the INTERSPREAD model. Many other people have contributed significantly to the content of this thesis, and their help is acknowledged at the end of each chapter.

I would probably never have come to New Zealand if it had not been for the motivation and enthusiasm of my mentor and friend Prof. Ueli Kihm. He taught me the importance of integrity and modesty. I have also not forgotten the repeated advice given by my first boss and teacher in animal health, Prof. Hermann Keller. He showed me that research needs to serve the purpose of solving problems, a principle that I believe is very much present in this thesis.

As I am definitely a social person whose performance depends on personal discussions and a motivating atmosphere to a large extent, I thank all my friends within the Epidemiology Group, particularly Dirk, Barb, Deb, Jo and Ron for letting me share with them my thoughts, ideas and frustrations every day.

This PhD project was funded by the Swiss National Science Foundation (Grant No. 823B-040072) and supported by the Swiss Federal Veterinary Office. For the trials described in CHAPTER 2.4 approval from the Massey University Animal Ethics Committee was obtained.

The preparation of a PhD inevitably impacts on family life. I would therefore like to acknowledge the support of my husband Marcus and of my family in Europe.

Katharina D.C. Stärk
Palmerston North, March 1998
Table of contents

Abstract .. i
Acknowledgements ... iii
Table of contents ... v
List of Figures ... xi
List of Tables ... xiii

INTRODUCTION ... 1

PART I Endemic infectious diseases Example: Respiratory diseases .. 7

CHAPTER 1.1 EPIDEMIOLOGICAL INVESTIGATION OF THE INFLUENCE OF ENVIRONMENTAL RISK FACTORS ON RESPIRATORY DISEASES IN SWINE – A LITERATURE REVIEW .. 9
1. Summary .. 11
2. Introduction ... 11
3. Methods .. 12
 3.1 Study design and sample size ... 12
 3.2 Case definition ... 14
 3.3 Exposure definition and measurement ... 18
 3.4 Data analysis ... 18
4. Results and discussion ... 19
 4.1 Infection pressure .. 21
 4.2 Susceptibility ... 24
 4.3 Path model hypothesis ... 27
5. Conclusion ... 27

CHAPTER 1.2 RISK FACTORS FOR RESPIRATORY DISEASES IN NEW ZEALAND PIG HERDS .. 39
1. Abstract .. 41
2. Introduction ... 41
3. Material and methods .. 41
 3.1 Farm recruitment ... 41
 3.2 Abattoir data recording .. 42
 3.3 Farm data collection .. 44
 3.4 Data management and analysis .. 44
4. Results ... 45
5. Discussion ... 57

CHAPTER 1.3 THE ROLE OF INFECTIOUS AEROSOLS IN DISEASE TRANSMISSION IN PIGS (A LITERATURE REVIEW) ... 63
1. Introduction ... 65
2. Definitions ... 65
3. The airborne pathway ... 66
 3.1 Factors influencing aerosol production .. 66
 3.2 Factors influencing aerosol decay ... 67
 3.3 Factors influencing aerosol inhalation and infection ... 69
4. Aerosol sampling ... 71
Aerosol sample analysis

Airborne diseases in pigs

 6.1 Foot and mouth disease
 6.2 Swine vesicular disease
 6.3 Aujeszky's disease
 6.4 Influenza
 6.5 Porcine respiratory and reproductive syndrome
 6.6 Classical and African swine fever
 6.7 Porcine respiratory corona virus
 6.8 Enzootic pneumonia
 6.9 Pleuropneumonia
 6.10 Atrophic rhinitis
 6.11 Other diseases

Prevention of airborne disease in pig production

CHAPTER 1.4 DETECTION OF *MYCOPLASMA HYOPNEUMONIAE* BY AIR SAMPLING WITH A NESTED PCR ASSAY

1. **Abstract**

2. **Introduction**

3. **Material and Methods**

 3.1 Strain growth conditions and DNA extraction
 3.2 Air sampling system
 3.3 Air-sample processing for PCR assay
 3.4 Design of specific oligonucleotide primers and PCR reactions
 3.5 Field sampling
 3.6 Statistical analysis

4. **Results**

 4.1 Specificity and sensitivity of the nested PCR assay
 4.2 Field sampling

5. **Discussion**

CHAPTER 1.5 ALTERNATIVE METHODS TO SOLVE CLASSIFICATION PROBLEMS IN COMPLEX DATA SETS

1. **Introduction**

2. **Recursive partitioning (classification trees) and machine learning**

3. **Neural networks**

4. **Example: Classification of pig farms with respect to the prevalence of enzootic pneumonia**

 4.1 Data set
 4.2 Methods and software

5. **Results**

6. **Discussion**

CHAPTER 1.6 RestiMATE – THE DESIGN OF AN EXPERT SYSTEM FOR DIAGNOSING AND MANAGING RESPIRATORY DISEASES ON PIG FARMS

1. **Introduction**

2. **Problem definition**

3. **Users**

4. **System structure**

5. **Input**

 5.1 Farm variables
 5.2 Target values
2.1 Rules for calculating time periods ... 235
2.2 Rules for classification of conveyors ... 238
2.3 Rules for re-classification of conveyors after the virus strain becomes known 247
2.4 Validation of rules for the risk classification of conveyors 249
2.5 Rules for the classification of farms .. 252
2.6 Validation of rules for the risk classification of farms .. 260

3. Discussion .. 263

CHAPTER 2.8 WITHIN-FARM SPREAD OF CLASSICAL SWINE FEVER VIRUS – A BLUEPRINT FOR A STOCHASTIC SIMULATION MODEL .. 267
1. Summary ... 269
2. Introduction ... 269
3. Modelling concepts .. 270
4. Model characteristics ... 271
 4.1 Start of infection .. 271
 4.2 Management groups ... 272
 4.3 Transition probabilities .. 273
 4.4 Virus strain .. 274
 4.5 Carrier sow syndrome .. 277
5. Model output .. 277
6. Validation ... 278
7. Discussion ... 279

CHAPTER 2.9 ANALYSIS OF A CLASSICAL SWINE FEVER OUTBREAK IN LOWER SAXONY, GERMANY ... 283
1. Introduction ... 285
2. Material and methods ... 285
 2.1 Outbreak data ... 285
 2.2 Spatial data and mapping ... 288
 2.3 Analytical methods and simulation .. 288
3. Results ... 293
 3.1 Maps of outbreak area ... 293
 3.2 Epidemic curve ... 293
 3.3 Network of spread .. 295
 3.4 Survival curve and dissemination rate .. 296
 3.5 Proportion of IP caused by episode types .. 297
 3.6 Simulation modelling ... 298
4. Discussion ... 303
 4.1 Suitability of field data .. 303
 4.2 Outbreak dynamics .. 304
 4.3 Simulation and selection of control strategy .. 305

GENERAL DISCUSSION .. 311
1. What is a system? ... 311
2. Biological systems: investigating the web of causation 313
3. Information systems ... 315
 3.1 Decision-support systems ... 315
 3.2 Simulation models as elements of decision-support systems 317
 3.3 How to deal with uncertainty .. 317
 3.4 Validation of knowledge-based systems and simulation models 318
 3.5 Use and success of information systems ... 319
4. Systems thinking .. 321
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 1</td>
<td>Causal web based on relationships between several risk factors</td>
</tr>
<tr>
<td>FIGURE 2</td>
<td>Distribution of number of study units in reviewed articles on respiratory diseases in pigs</td>
</tr>
<tr>
<td>FIGURE 3</td>
<td>Alternative pathways for respiratory disease to be influenced by environmental risk factors</td>
</tr>
<tr>
<td>FIGURE 4</td>
<td>Path model hypothesis for the associations between risk factors for respiratory diseases in pigs</td>
</tr>
<tr>
<td>FIGURE 5</td>
<td>Typical lesion classified as 'enzootic-pneumonia-like lesion'</td>
</tr>
<tr>
<td>FIGURE 6</td>
<td>Typical lesion classified as 'Actinobacillus pleuropneumoniae-like lesion'</td>
</tr>
<tr>
<td>FIGURE 7</td>
<td>Location of abattoirs</td>
</tr>
<tr>
<td>FIGURE 8</td>
<td>Violin plots for farm prevalence of enzootic pneumonia and pleurisy/pleuropneumonia in New Zealand pig herds</td>
</tr>
<tr>
<td>FIGURE 9</td>
<td>Association of enzootic pneumonia prevalence and mean enzootic pneumonia score per inspected pig in New Zealand pig herds</td>
</tr>
<tr>
<td>FIGURE 10</td>
<td>Relationship between prevalence of enzootic pneumonia and pleuropneumonia in New Zealand pig herds</td>
</tr>
<tr>
<td>FIGURE 11</td>
<td>Air sampling in the field</td>
</tr>
<tr>
<td>FIGURE 12</td>
<td>PCR analysis of air sampling polyethersulfone membranes</td>
</tr>
<tr>
<td>FIGURE 13</td>
<td>Charts of two pig rooms illustrating the distribution of positive PCR results from 6 air samples</td>
</tr>
<tr>
<td>FIGURE 14</td>
<td>Diagram of a multi-layer perceptron</td>
</tr>
<tr>
<td>FIGURE 15</td>
<td>Classification trees grown using a) ID3 and CART (gini rule), b) C4.5, c) CHAID, and d) CART (twoing rule)</td>
</tr>
<tr>
<td>FIGURE 16</td>
<td>Graphical comparison of classification methods using multidimensional scaling</td>
</tr>
<tr>
<td>FIGURE 17</td>
<td>Structure of an expert system</td>
</tr>
<tr>
<td>FIGURE 18</td>
<td>System architecture of RestiMATE</td>
</tr>
<tr>
<td>FIGURE 19</td>
<td>Example of data entry screen for general farm management area</td>
</tr>
<tr>
<td>FIGURE 20</td>
<td>Example of an output window</td>
</tr>
<tr>
<td>FIGURE 21</td>
<td>Example of a report produced by the expert-based classification method</td>
</tr>
<tr>
<td>FIGURE 22</td>
<td>Piglets with electronic ear tag and visual ear tag</td>
</tr>
<tr>
<td>FIGURE 23</td>
<td>Implantation site at right ear base</td>
</tr>
<tr>
<td>FIGURE 24</td>
<td>Lesions observed with visual ear tags</td>
</tr>
<tr>
<td>FIGURE 25</td>
<td>Comparison of mean migration distance of two different injectable electronic identification transponders</td>
</tr>
<tr>
<td>FIGURE 26</td>
<td>Boxplots of animal numbers on 21 Swiss and 94 Dutch pig farms</td>
</tr>
<tr>
<td>FIGURE 27</td>
<td>Distance to point of origin/destination for contacts on and off 21 Swiss and 96 Dutch pig farms during a 2-week period</td>
</tr>
<tr>
<td>FIGURE 28</td>
<td>Components of EpiMAN-SF</td>
</tr>
<tr>
<td>FIGURE 29</td>
<td>State-transition flowchart for farm status during a swine fever epidemic</td>
</tr>
<tr>
<td>FIGURE 30</td>
<td>System architecture of EpiMAN-SF</td>
</tr>
<tr>
<td>FIGURE 31</td>
<td>Time frames for forward and backward tracing and relationship to risk classification of traces</td>
</tr>
<tr>
<td>FIGURE 32</td>
<td>Agreement among experts when classifying contacts in an imaginary classical swine fever outbreak expressed as difference from the median</td>
</tr>
<tr>
<td>FIGURE 33</td>
<td>Differences between median risk ratings and individual ratings for 10 tracing officers</td>
</tr>
<tr>
<td>FIGURE 34</td>
<td>Differences between median risk ratings and individual ratings for 31 imaginary traces classified by human experts</td>
</tr>
</tbody>
</table>
Agreement between human experts and an expert system when classifying contacts in an imaginary classical swine fever outbreak expressed as difference from the human rating 252

Influence of number of conveyor contacts with different risk categories on the survival probability of a farm to remain free of swine fever ... 255

Mean ranked survival probability and 5% and 95% percentiles of 13 farms with different episode and conveyor scenarios ... 256

Cumulative probability of survival for a neighbouring farm with one medium risk conveyor 257

Tornado diagrams for farms with A) 1, B) 2, C) 3, or D) 4 very-low risk contacts, respectively.... 258

Agreement among experts when ranking farms in an imaginary classical swine fever outbreak expressed as difference from the group median .. 262

Differences between farm rankings performed during an imaginary classical swine fever outbreak by human experts and an expert system .. 262

Elements of simulation process on a farm consisting of several management groups 270

Starting point of classical swine fever infection depending on virus source 272

Distribution of incubation time for a low-moderately virulent classical swine fever strain 276

Percentage of pigs incubating or shedding virus in an infected pig unit during a 30-day simulation period of classical swine fever transmission ... 277

Spread of classical swine fever in a pen with 100 pigs .. 278

Geographic location of German classical swine fever epidemic analysed in this chapter 286

Pig density in Germany based on State figures .. 287

Map of pig farm locations in District 2 .. 294

Example of a thematic map ... 294

Epidemic curve of classical swine fever outbreaks two districts in Lower Saxony between October 1993 and October 1995 ... 295

Network of spread of classical swine fever in two districts in Lower Saxony, Germany, between October 1993 and October 1995 ... 296

Survival function for farms in District 2 between 01/Oct/93 and 18/May/95 297

Typical epidemic curves of mean weekly numbers of classical swine fever outbreaks simulated with INTERSPREAD and applying different control strategies 301

Survival curves for duration of classical swine fever epidemics 302

Relationship between artificial intelligence, expert systems and knowledge-based systems 317
List of Tables

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Factors influencing respiratory disease occurrence or the incidence of re-infection of respiratory</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>disease-free herds</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Influence of herd size on the frequency of respiratory lesions at slaughter</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>Recommended maximal values for air contaminants in swine buildings</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>Definition of macroscopic lung lesions in slaughter pigs</td>
<td>42</td>
</tr>
<tr>
<td>5</td>
<td>The effect of season on the prevalence of respiratory lesions in slaughter-weight pigs in New</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Zealand</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Occurrence of respiratory lesions in slaughter-weight pigs in New Zealand during winter 1995 and</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>summer 1996</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Descriptive statistics of continuous management variables of New Zealand pig farms</td>
<td>51</td>
</tr>
<tr>
<td>8</td>
<td>Farm management for North and South Island pig farms and odds ratios for risk factors for</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>enzootic pneumonia and pleurisy/pleuropneumonia in New Zealand pig herds: Binary variables</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Farm management for North and South Island pig farms and odds ratios for risk factors for</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>enzootic pneumonia and pleurisy/pleuropneumonia in New Zealand pig herds: Continuous</td>
<td></td>
</tr>
<tr>
<td></td>
<td>variables</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Random-effects logistic regression model for enzootic pneumonia in New Zealand pig herds</td>
<td>56</td>
</tr>
<tr>
<td>11</td>
<td>Random-effects logistic regression model for pleurisy / pleuropneumonia in New Zealand pig herds</td>
<td>57</td>
</tr>
<tr>
<td>12</td>
<td>Relationship between body weight of pigs and heat producing units</td>
<td>70</td>
</tr>
<tr>
<td>13</td>
<td>Air sampling methods and their characteristics</td>
<td>72</td>
</tr>
<tr>
<td>14</td>
<td>Airborne infectious diseases in pigs: accumulated evidence</td>
<td>74</td>
</tr>
<tr>
<td>15</td>
<td>Porcine Mycoplasma and Acholeplasma strains used in this study and their reaction in the two steps of</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>the nested PCR assay</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Oligonucleotide primers used in this study</td>
<td>96</td>
</tr>
<tr>
<td>17</td>
<td>Description of Swiss pig farms and rooms sampled</td>
<td>98</td>
</tr>
<tr>
<td>18</td>
<td>Results for air samples analysed with a nested PCR to detect DNA of Mycoplasma hypopneumoniae</td>
<td>102</td>
</tr>
<tr>
<td>19</td>
<td>Factors associated with the outcome of a nested PCR assay to detect DNA from Mycoplasma hypopneumonia</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>in air samples</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Variables used in the analysis of risk factors affecting the prevalence of enzootic pneumonia</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>lesions in New Zealand pig herds</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Comparative performance of classification schemes using data on enzootic pneumonia prevalence from</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>86 farms</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Multinomial logistic regression models for the classification of 3 levels of enzootic pneumonia</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>prevalence in 86 pig farms</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Ranking of variable selection in different classification schemes</td>
<td>121</td>
</tr>
<tr>
<td>24</td>
<td>Results of 15-fold cross-validation</td>
<td>121</td>
</tr>
<tr>
<td>25</td>
<td>Structure of target value table and some examples of variables</td>
<td>137</td>
</tr>
<tr>
<td>26</td>
<td>Farm classification groups for classification tree</td>
<td>138</td>
</tr>
<tr>
<td>27</td>
<td>Rule base to classify farms with respect to the prevalence of EP and PLPN using a classification</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>tree</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Farm classification groups for human expert</td>
<td>140</td>
</tr>
<tr>
<td>29</td>
<td>Rule base for classifying farms with respect to EP</td>
<td>140</td>
</tr>
</tbody>
</table>
TABLE 30. Recommendation examples as they will be stored in the recommendation table of RestiMATE. 143
TABLE 31. Rules for selecting advice components for reporting .. 143
TABLE 32. Comparison of tree-based and expert-based methods in RestiMATE 146
TABLE 33. Sources of classical swine fever outbreaks in European epidemics 156
TABLE 34. Persistence of classical swine fever virus in various pork products 157
TABLE 35. Incubation period and onset of viraemia of African swine fever .. 162
TABLE 36. Earliest onset of African swine fever virus excretion in relation to onset of clinical signs 162
TABLE 37. Persistence of African swine fever virus in various pork products 163
TABLE 38. Serological and virological results of blood samples from pigs infected with classical swine fever virus .. 173
TABLE 39. Relative importance of risk factors for the transmission of classical swine fever within Switzerland as estimated by experts .. 181
TABLE 40. Source of introduction of classical swine fever virus to 121 farms during the 1993-1995 outbreak in Germany .. 182
TABLE 41. Evaluation of adaptive conjoint analysis workshop by participants 182
TABLE 42. Performance of pig identification tags as percentage tags in place and working at different trial stages .. 193
TABLE 43. Summary of results from different electronic identification trials in pigs 197
TABLE 44. Contact-related attributes recorded by farmers ... 204
TABLE 45. Risk classification rules for visitor contacts on and off farms .. 205
TABLE 46. Risk classification rules for family contacts on and off farms ... 205
TABLE 47. Pig and dairy cow inventory for 21 Swiss and 94 Dutch farms .. 207
TABLE 48. Number of contacts per farm for 21 Swiss and 96 Dutch farms in a 2-week period 208
TABLE 49. Distance (km) between origin/destination of contacts and farm for 21 Swiss farms 209
TABLE 50. Number of contacts associated with different risk levels for spread of classical swine fever in 21 Swiss and 96 Dutch pig farms during a 2-week period .. 210
TABLE 51. Descriptive statistics for the number of contacts per farm for 21 Swiss and 96 Dutch farms during a 2-week period ... 211
TABLE 52. Visit schedules and task protocol according to European Union legislation 224
TABLE 53. Rules for scheduling farm visits based on laboratory test results 227
TABLE 54. Chronology of events during a classical swine fever outbreak on different levels with respect to procedures performed in EpiMAN-SF ... 227
TABLE 55. Differences between low-moderate virulence strains and high-virulence strains and effect of assumption on EpiMAN-SF decisions .. 236
TABLE 56. Rules for estimating the period when a farm became infected .. 238
TABLE 57. Rules for classifying conveyors when tracing back to identify the source of infection and the source of the conveyor is an RP .. 240
TABLE 58. Rules for classifying conveyors when tracing back to identify source of infection and source of conveyor is not an RP .. 244
TABLE 59. Rules for classifying conveyors when tracing forward to identify secondary outbreaks and source of conveyor is an RP .. 244
TABLE 60. Rules for classifying conveyors when tracing forward to identify secondary outbreaks and the source of conveyor is not an RP .. 247
TABLE 61. Risk classification table for conveyors (source = RP) .. 248
TABLE 62. Frequency of tracing classifications by human experts and expert system 252
TABLE 63. Transmission probabilities for conveyors and episodes ... 254
TABLE 64. Characteristics of scenarios used to explore farm risk classifications 256

xiv
TABLE 65. Rules for scheduling farms for farm visits based on directive 80/217 EEC.................................259
TABLE 66. Example of a table containing information on management groups ...273
TABLE 67. State transition possibilities for the simulation of spread of classical swine fever virus273
TABLE 68. Epidemiological differences between classical swine fever virus strains of low, moderate and high virulence ...275
TABLE 69. Characteristics of classical swine fever virus isolates ...275
TABLE 70. Descriptive statistics of farms in two classical swine fever-infected districts in Germany286
TABLE 71. Input parameters related to between-farm spread as used by INTERSPREAD to simulate the dynamics of classical swine fever ..290
TABLE 72. Control measures applied in all scenarios ..291
TABLE 73. Combination of control strategies ...292
TABLE 74. Further assumptions for classical swine fever simulation with INTERSPREAD292
TABLE 75. Distribution of sources of classical swine fever infection for 37 outbreaks in Germany298
TABLE 76. Descriptive statistics of INTERSPREAD simulations ...299
TABLE 77. Number of farms affected by different infection and control mechanisms300