Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
HOMOGENISATION IN THE RIBOSOMAL RNA GENES OF AN *EPICHLOË* ENDOPHYTE HYBRID

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
in
Molecular Genetics

at Massey University, Palmerston North
New Zealand

Austen Rawlinson Deldyck Ganley

1999
For Denis and Phil Ganley
ABSTRACT

Homogenisation mechanisms in the ribosomal RNA genes were investigated using *Epichloë* fungal endophyte interspecific hybrid isolate, Lp1. The two progenitor isolates, *Neotyphodium lolii* Lp5 and *E. typhina* E8, were used for comparison. Three areas of homogenisation were examined.

The first area involved characterisation of extraordinary length heterogeneity in the rDNA of Lp1. This was shown by Southern analyses on single-spore isolates to be present intragenomically and localised to the intergenic spacer (IGS). Length heterogeneity is not a feature of either progenitor, suggesting it is a consequence of the hybridisation. The length heterogeneity was shown to result from copy number variation of sub-repeats in the IGS, which is consistent with unequal crossing over occurring in the rDNA, suggesting that unequal crossing over plays a role in homogenisation. Multi-variant repeat PCR mapping of the sub-repeat array revealed that the ends of the array behave differently, and biased initiation of recombination is discussed. Several results are not consistent with homogenisation by unequal crossing over and the potential roles of gene conversion and extrachromosomal rDNA circles in homogenisation are discussed. Finally, evidence is presented that suggests the rate of homogenisation is very rapid. A group I intron is present in the 28S *rrn* gene of Lp1, and is widespread in the *Epichloë* endophytes. Closely-related introns in other fungal 18S *rrn* genes provide evidence for intron transposition.

The second area involved testing the hypothesis that the presence of one type of rDNA sequence in Lp1 is the result of interlocus homogenisation. CHEF gel electrophoresis revealed that Lp1 and Lp5 have at least five rDNA arrays organised as major and minor loci, an unusual situation in fungi. The organisation in E8 could not be determined. One potential rDNA-DNA junction was cloned but has not been analysed.

The final area initially involved testing the hypothesis that interlocus homogenisation of 5S rRNA gene arrays occurs more slowly than that of rDNA arrays in hybrids. However the 5S rRNA genes in the *Epichloë* endophytes were shown to be organised as dispersed copies, not in tandem arrays. Shared polymorphisms between Lp1, Lp5 and E8 may indicate the homogenisation rate of these dispersed repeats is slower, and gene conversion as a homogenisation mechanism is discussed. The 5S rRNA genes are located on the same chromosomal bands as the rDNA in Lp1 and Lp5, and therefore are markers that demonstrate the rDNA-containing Lp5 chromosomes are present in Lp1. This and the CHEF results provide evidence for interlocus homogenisation of the rDNA having occurred in Lp1, and extends observation of this phenomenon to fungi.
ACKNOWLEDGEMENTS

During my years at Massey University (now a decade!) I have come to know many wonderful people who have contributed to this thesis in a myriad of ways. Somehow I am meant to, and want to, distil into a few words all your encouragement, ideas, distractions, patience, forbearance, beers, inspiration, etc., etc. - a high-on impossible task! So to everyone who I omit to mention personally - cheers, I'll buy you a beer sometime!

First I want to thank my parents, Janine and Garth, for their unconditional love and support throughout. It was them who instilled in me the belief that I could achieve the goals that I set, whatever they were, and it is that which sees me where I am today. To them and the rest of my family - Beccey, Jules and Karen, Denise and Steve, and the many others, thanks for everything (I couldn't have done it without you guys) - especially for understanding when I have been focussed on work to the exclusion of all else.

Carolyn and David - what can I say? If helping out at all times of the day and night wasn't enough, you then let me live with you, drink your beer, and have parties when you're not there! And that's not even counting work or putting the thesis together... Carolyn, I fail to understand how people in other labs can operate properly without you there - does that express how much I owe you for all your help in the lab? You are a rock. Really. And David - the world would be a poorer place without beer and mushrooms, and who better to enjoy both with.

Rich, Mike and Hale, it was you guys who influenced my impressions on what science and scientists were about and (oddly enough) helped me decide to do this "thing". Our many adventures in places far-and-wide have kept me going throughout adversity, and provided a kind of "reality grounding" for which I am very grateful to have. I hope there will be more!

Over the years I have lived with some wonderful people, who, I suspect, have shaped my life in more ways than I realise. Tania, my longest and dearest flatmate! Living with you was constant fun, and I miss not having you around. Thanks for everything! Justin - you narrowly scrape into this section by virtue of around nine months flatting, but the same couldn't be said as far as friendship is concerned. A Justin in the hand is worth two in the bush, I always say, and have yet to be proved wrong! With Jaki and Lucy, and Steve and Dave I had the unlikely pleasure of having two perfect flats - you guys are great! I also want to thank Bruce and Toshi for letting me take over their place - it was a perfect place for writing. And cheers for the various harvests too!

Anna, I enjoyed living with you when we were together. I guess things change and are not always as we may think or like. I hope we have both learned from our experiences.
I would like to thank many dear friends for helping me see life outside of scientific world. To Damian, Paul and Carolyn, Maria, Cybele, Francesca, Carmel and Tony, Kirsty, Jenny, Jules and Morgan - viva la revolution!! To Linda, Kate, Peng and Ina, Marty, Mark and Vanessa, Sue, God, Blair, Mike, Marcus, Ian, Roo and Blake I owe thanks for many-and-varied "extra curricular" activities and liberties. On the political front people like the Summer of Resistance rabble, the Waihopai "hippy-type individuals", Edwina, Patrick, Eleven, Ian, Stewart, Chris, Maryanne and Dion, Kevin, Gerard, and Don are a constant source of inspiration. Thanks for your dedication and doing all the stuff that I couldn't do - kia kaha!

I would also like to thank many dear friends in the scientific world. It is people such as Marion, Miranda, Mick and Linda, Paul, Rebecca, Rochelle, Rose, Martin, Ant, Pete, Steve and Basil who make this a great place to work! I would especially like to thank Brendon for all the advice, beers and just plain chatting we shared.

The many people who have passed through the Scott Base lab and surrounds during my time here have all made a mark in their own ways. I would like to thank in particular Christina for our many discussions on endophytes, Lisa for saving me from crises, Emily for beers and rugby, Sirinda, Jo, Bek and Seth. Thanks also go to David Penny for helpful advice and ideas on the evolutionary side of things, Mike Christensen for helpful advice and ideas on the endophyte side of things, and Max Scott as my co-supervisor for trying to tether my flights-of-fancy back to scientific reality!

I would like to thank Massey University for a Doctoral Scholarship that partially supported me financially through this PhD.

And for the dessert course! My most sincere thanks and gratitude go to my supervisor, Barry Scott. I know that the course of study I chose to pursue was not one in your immediate area of interest, nor was one that you would have preferred me to do. But since I made the decision you have provided unstinting input and support of the highest quality, and for your willingness to become familiar with an obscure and at times confusing field to an extent that few would match I am extremely grateful. I have thoroughly enjoyed my time working with you, and I think we got the mix of independence and tutelage about right. I hope this thesis reflects that!
<table>
<thead>
<tr>
<th>CHAPTER 1</th>
<th>INTRODUCTION</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>BIOLOGY OF THE EPICHLOE ENDOPHYTES</td>
<td>2</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Interspecific hybridisation of the Epichloë endophytes</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2</td>
<td>The origin of Epichloë endophytes isolate Lp1</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>RIBOSOMAL RNA GENES</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1</td>
<td>The 18S - 5.8S - 28S ribosomal RNA genes</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2</td>
<td>The ribosomal DNA in Lp1</td>
<td>5</td>
</tr>
<tr>
<td>1.2.3</td>
<td>The 5S ribosomal RNA</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>CONCERTED EVOLUTION</td>
<td>7</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Patterns of concerted evolution</td>
<td>7</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Mechanisms of homogenisation</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>AIMS AND OBJECTIVES OF THIS STUDY</td>
<td>12</td>
</tr>
</tbody>
</table>
MATERIALS AND METHODS

2.1 STRAINS AND GROWTH CONDITIONS

- **2.1.1** Fungal and bacterial strains, \(\lambda\) clones and plasmids .. 14
- **2.1.2** Fungal growth conditions .. 14
- **2.1.3** Single spore fungal purification .. 14
- **2.1.4** Bacterial growth conditions .. 14

2.2 MEDIA AND COMMON SOLUTIONS

- **2.2.1** Potato dextrose media (PD), .. 18
- **2.2.2** Luria broth media (LB), .. 18
- **2.2.3** SOC media, .. 18
- **2.2.4** Common buffers and solutions .. 18

2.3 DNA ISOLATION

- **2.3.1** Isolation of fungal genomic DNA .. 21
- **2.3.2** Extraction of plasmid DNA from bacterial cultures by the rapid boil method .. 21
- **2.3.3** Extraction of plasmid DNA from bacterial cultures by the alkaline lysis method .. 22
- **2.3.4** Extraction of plasmid DNA from bacterial cultures by the caesium chloride method .. 22

2.4 DNA QUANTIFICATION

- **2.4.1** DNA Quantification by ethidium bromide staining .. 23
- **2.4.2** Fluorometric quantification .. 23
- **2.4.3** Spectrophotometric quantification .. 23

2.5 RESTRICTION ENDONUCLEASE DIGESTION OF DNA

2.6 PHENOL/CHLOROFORM EXTRACTION

2.7 DNA PRECIPITATION

2.8 AGAROSE GEL ELECTROPHORESIS

- **2.8.1** Agarose gels .. 25
- **2.8.2** Mini gel electrophoresis .. 25
- **2.8.3** Overnight gels .. 25
- **2.8.4** Detection of DNA .. 25
- **2.8.5** Determination of DNA band sizes .. 25
2.9 SEAPLAQUE DNA EXTRACIONS.. 26

2.10 SOUTHERN BLOTTING AND HYBRIDISATION.......................... 26
 2.10.1 Southern (capillary) blotting...................................... 26
 2.10.2 Making radiolabelled DNA probes.............................. 27
 2.10.3 Hybridisation of radiolabelled probes.......................... 27
 2.10.4 Detection of hybridisation signal.............................. 27
 2.10.5 Stripping nylon membranes................................. 27

2.11 CAP TREATMENT OF VECTORS.. 27

2.12 LIGATIONS.. 28
 2.12.1 Ligation into pUC118.. 28
 2.12.2 Ligation into pGEM®-T.. 28

2.13 TRANSFORMATION OF E. COLI.. 28
 2.13.1 Preparation of electrocompetent cells.......................... 28
 2.13.2 Electroporation and detection of transformants................ 29

2.14 SUBCLONING DNA FRAGMENTS.. 29

2.15 GENERATION OF NESTED DELETIONS BY EXONUCLEASE
 III DIGESTION.. 29

2.16 DNA SEQUENCING.. 30
 2.16.1 Sequenase™ sequencing... 30
 2.16.2 Amplicycle™ sequencing... 31
 2.16.3 Electrophoresis of sequencing reactions...................... 31
 2.16.4 Automatic sequencing.. 32
 2.16.5 Sequence analysis.. 32

2.17 POLYMERASE CHAIN REACTION (PCR).............................. 32
 2.17.1 Oligonucleotide primers.. 32
 2.17.2 PCR conditions... 32
 2.17.3 Stabbed band PCR reamplification.............................. 35
 2.17.4 Purification of PCR products..................................... 35

2.18 MULTI VARIANT REPEAT PCR ANALYSIS............................ 35
2.19 CONTOUR-CLAMPED HOMOGENEOUS ELECTRIC FIELD (CHEF) GEL ELECTROPHORESIS

2.19.1	Preparation of fungal protoplasts	36
2.19.2	Preparation of DNA in agarose-embedded plugs	36
2.19.3	Restriction endonuclease digestion of agarose-embedded plugs	37
2.19.4	CHEF gel electrophoresis conditions	37

2.20 PCR-BASED CLONING OF RDNA JUNCTION FRAGMENTS

2.20.1	Preparation of genomic (or vector) DNA	37
2.20.2	Preparation of linker DNA	38
2.20.3	Preparation of Dynabeads®	38
2.20.4	Enrichment of junction fragments	38
2.20.5	PCR amplification of junction fragments	39
2.20.6	Cloning of potential junction fragments	39
CHAPTER 3

RESULTS...40

3.1

CHARACTERISATION OF EXTRAORDINARY RIBOSOMAL

IGS LENGTH HETEROGENEITY IN THE HYBRID, Lp1........41

3.1.1
Generation of single spore isolates..41

3.1.2
Length heterogeneity occurs within the rDNA cluster and

is still being generated..41

3.1.3
Length variation of the IGS is not observed in either

progenitor of Lp1..46

3.1.4
Length heterogeneity localised to the intergenic spacer............50

3.1.5
Heterogeneity is not a general feature of the Lp1 genome........52

3.1.6
Intergenic spacer contains sub-repeat elements........................52

3.1.7
Digestion of the 111/119 bp sub-repeats abolishes

heterogeneity...60

3.1.8
Arrangement of the 111/119 bp sub-repeats in the IGS..............62

3.1.9
IGS length heterogeneity in other *Epichloë* endophyte

hybrids..65

3.1.10
Spread of a deletion in the IGS..65

3.2

GROUP I INTRON IN THE Lp1 28S rRNA GENE..............................68

3.2.1
Discovery of an insertion element in the Lp1 28S rRNA gene......68

3.2.2
The insertion element is a group I intron..................................71

3.2.3
Structure of the Lp1 group I intron...71

3.3

INTERLOCUS HOMOGENISATION OF THE rDNA IN THE

HYBRID, Lp1..75

3.3.1
Lp1 rDNA is exclusively derived from E8..............................75

3.3.2
Chromosomal location of the rDNA...77

3.3.3
Separation of the individual rDNA arrays..............................81

3.3.4
Strategy for cloning rDNA-DNA junction fragments............84

3.3.5
Results of the rDNA junction cloning.....................................86

3.4

CHARACTERISATION OF THE 5S RIBOSOMAL RNA

GENES..89

3.4.1
Cloning the 5S rRNA genes...89

3.4.2
5S rRNA genes in the *Epichloë* endophytes are dispersed......91

3.4.3
The rDNA and 5S rRNA genes are located on the same

chromosomal bands..94
CHAPTER 4

DISCUSSION .. 97

4.1 LENGTH HETEROGENEITY IS A RESULT OF UNEQUAL CROSSING OVER IN THE rDNA .. 98

- **4.1.1** Unequal crossing over as a mechanism for homogenisation of the rDNA ... 98
- **4.1.2** Unequal crossing over in the Lp1 rDNA is mitotic .. 99

4.2 THE RATE AND NATURE OF TURNOVER IN THE IGS:

- **4.2.1** Incongruences between the results and the unequal crossing over model of homogenisation ... 99
- **4.2.2** Rapid turnover of repeats in the rDNA ... 100
- **4.2.3** Clustering of IGS length variants .. 100
- **4.2.4** Restriction of IGS lengths .. 101
- **4.2.5** Non-random arrangement of the IGS sub-repeat variants 102

4.3 IMPLICATIONS FOR THE HOMOGENISATION MECHANISM .. 102

- **4.3.1** Selection against small spacers .. 103
- **4.3.2** Biased initiation of crossing over in the sub-repeats 103
- **4.3.3** Rapid homogenisation ... 106

4.4 GENE CONVERSION AS A HOMOGENISATION MECHANISM ... 109

- **4.4.1** A rapid homogenisation-like process induced by double strand breaks .. 109
- **4.4.2** Potential role of double strand breaks in rDNA homogenisation 111

4.5 EXTRACHROMOSOMAL rDNA CIRCLE AMPLIFICATION AS A MECHANISM FOR HOMOGENISATION .. 111

- **4.5.1** Previous models of homogenisation .. 112
- **4.5.2** Extrachromosomal rDNA amplification model of homogenisation 114
- **4.5.3** The nucleolus as a regulatory centre for rDNA homogenisation 116

4.6 THE IGS LENGTH HETEROGENEITY ARISES THROUGH HYBRIDISATION 117
CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS.. 131

5.1 CONCLUSIONS.. 132

5.2 FUTURE DIRECTIONS.. 135

5.2.1 Determination of homogenisation mechanisms.................................. 135

5.2.2 Towards an assay for homogenisation... 135

5.2.3 Other directions.. 136

APPENDIX... 137

1 PUBLICATION... 138

2 SEQUENCE OF THE POTENTIAL Lp5 rDNA JUNCTION FRAGMENT........... 139

BIBLIOGRAPHY... 140
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table 2.1</th>
<th>Fungal and Bacterial Strains, λ Clones and Plasmids</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.2</td>
<td>Oligonucleotide Primers</td>
<td>33</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Thermocycling Conditions Used for PCR Amplifications</td>
<td>34</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1.1 Restriction map of λPN1...6
Figure 1.2 Unequal crossing over as a mechanism for
 homogenisation of a tandem array..10

Figure 3.1 SalI genomic digests of Lp1 laboratory cultures and
 single-spore purified isolates...42
Figure 3.2 Southern analysis of the SalI Lp1 genomic digests
 from Figure 3.1 with the 4.1 kb SalI IGS probe.........................44
Figure 3.3 Southern analysis of the SalI Lp1 genomic digests
 from Figure 3.1 with the 5.6 kb SalI coding
 region probe...47
Figure 3.4 The progenitors of Lp1 do not display ribosomal
 length heterogeneity...49
Figure 3.5 Length heterogeneity is specific to the Lp1 ribosomal
 IGS region..51
Figure 3.6 Length heterogeneity is not a feature of the Lp1 genome......53
Figure 3.7 Generation of nested deletions of the Lp1 IGS clone
 by exonuclease III digestion...54
Figure 3.8 Sequence of the 4.1 kb SalI IGS clone from pPN50
 and surrounding sequence..55
Figure 3.9 Length heterogeneity is the result of copy number
 variation of the 1111119 bp sub-repeats..................................61
Figure 3.10 Multi-variant repeat PCR mapping of the 1111119 bp
 sub-repeats in the Lp1 rDNA IGS...63
Figure 3.11 IGS length heterogeneity is not a general feature of
 Epichloë endophyte hybrids..66
Figure 3.12 Characterisation of the deletion in the Lp1 IGS..................67
Figure 3.13 Progression of the deletion through rounds of single-sporing .. 69

Figure 3.14 Insertion element in the Lp1 28S rRNA gene .. 70

Figure 3.15 Group I intron alignment .. 72

Figure 3.16 Putative internal guide sequence of the Lp1 group I intron 74

Figure 3.17 Comparison of the nts1 - nts2 and nts3 - nts4 PCR products between Lp1, E8 and Lp5 76

Figure 3.18 The *Epichloë* endophytes contain multiple rDNA clusters 78

Figure 3.19 Hybridisation of the 5.6 kb *SalI* coding region probe is specific for the rDNA in CHEF gels .. 80

Figure 3.20 CHEF gel separation of intact Lp1 rDNA clusters by *HindIII* and *BamHI* digestion 82

Figure 3.21 CHEF gel separation of intact rDNA clusters in Lp1, Lp5 and E8 ... 83

Figure 3.22 PCR method for cloning rDNA junction fragments ... 85

Figure 3.23 rDNA junction fragment PCR cloning using *HindIII* ... 87

Figure 3.24 Initial PCR cloning of the 5S rRNA genes .. 90

Figure 3.25 Hybridisation of the Lp5 5S1 - 5S2 PCR product to Lp1 and progenitors 92

Figure 3.26 Amplification and characterisation of *Epichloë* endophyte 5S rRNA genes 93

Figure 3.27 The 5S rRNA genes are dispersed in the *Epichloë* endophytes ... 95

Figure 3.28 The 5S rRNA and *rrn* genes are located on the same chromosomal bands 96

Figure 4.1 Model of biased initiation of crossing over based on the Chi system in prokaryotes ... 105

Figure 4.2 Meiotic recombination disrupts homogenisation ... 108

Figure 4.3 Extrachromosomal ribosomal DNA circle mechanism for generation of clusters of length variants ... 115