Avian Malaria (*Plasmodium* spp.) in the Auckland Region: Host-Parasite Associations, Capture Technique Bias, and Landscape Disease Dynamics

A thesis submitted in partial fulfilment of the requirements for the degree of

Master of Science in Conservation Biology

Massey University

Auckland, New Zealand

David Gudex-Cross

2011
Bellbird (*Anthornis melanura*)

Plasmodium (*Novyella*) sp. found in bellbirds

Two avian malaria vectors in New Zealand
Culex pervigilans (dark) and *Culex quinquefasciatus* (light)
Photographs by D.J. Gudex-Cross
ABSTRACT

Avian malaria parasites (*Plasmodium* spp.) are distributed throughout the world and affect a vast range of bird species. However many aspects of avian malaria in New Zealand, such as the extent of parasite diversity, distribution and prevalence in host populations, are currently unknown. Thus, the first aim of this study was to examine these parameters in native and exotic bird species of the Auckland Region, North Island. A total of 21 species were sampled at two sites: Tiritiri Matangi Island and Waharau Regional Park. Of these, five native (bellbird *Anthornis melanura*, tui *Prosthemadera novaeseelandiae*, New Zealand fantail *Rhipidura fuliginosa placabilis*, North Island tomtit *Petroica macrocephala toitoi* and silvereye *Zosterops lateralis*) and three exotic (myna *Acridotheres tristis*, blackbird *Turdus merula* and song thrush *T. philomelos*) species were infected. This is the first reported incidence of avian malaria in the New Zealand fantail, and only the second record in tui. The parasite morphospecies identified in this survey were *P. (Haemamoeba) relictum*, *P. (Huffia) elongatum*, *P. (Novyella) rouxi* and two *P. (Novyella)* spp. not yet formally taxonomically described, one of which appears to be specific to the endemic bellbird. Parasite prevalence within the two most heavily sampled species varied strikingly: bellbird prevalence was estimated at 41.5% (*N* = 51/123) in the Tiritiri Matangi population and silvereye prevalence at 9.2% (*N* = 22/240) within the Waharau population.

The other two objectives of this study addressed: 1) the potential bias that choice of capture technique may have in avian malaria surveys and 2) the effects of forest fragmentation on avian malaria and vector distributions. The first objective was investigated by comparing prevalence and parasitaemia in adult male bellbirds on Tiritiri
Matangi Island caught via two live-capture techniques: mist netting and supplementary feeder trapping. In this instance it was found that the choice of capture method did influence results: mist netting of bellbirds yielded significantly higher parasitaemia than feeder trapping. The second objective was investigated through a comparison of mosquito species abundance, composition, and avian malaria prevalence in silvereyes at forest edge versus interior sites in Waharau Regional Park. A total of five mosquito species, three native (Aedes antipodeus, Culex asteliae and Cx. pervigilans) and two exotic (Ae. notoscriptus and Cx. quinquefasciatus), were trapped in this study. Significantly more exotic mosquitoes were trapped at the forest edge, with almost complete absence in the interior. Furthermore, analysis of the individual species showed a significant edge-association for Cx. quinquefasciatus. Although significantly more native mosquitoes were trapped in the forest interior versus the edge, this was due to high Ae. antipodeus abundance in one interior site. Consequently, no edge- or interior-associations were found for the individual native species. Finally, avian malaria prevalence in silvereyes did not significantly differ between forest edge and interior.

The outcomes of this study included: a) additional baseline prevalence data for New Zealand; b) records of two new parasite-native bird associations; c) a demonstration that different live-capture techniques can bias estimates of parasitaemia; d) confirmation that forest edge habitats are more prone to exotic mosquito invasions in New Zealand; and e) determination that avian malaria prevalence in the silvereye does not differ between birds caught at forest edge and interior and is thus not closely correlated to mosquito distribution at these sites. A discussion of the future avenues of avian malaria research in New Zealand is provided at the end of this study.
ACKNOWLEDGEMENTS

First and foremost I’d like to thank my parents, Bev Gudex and Ron Cross, for all the love and support they put behind all my endeavours. I wouldn’t be the person I am today without you guys, both literally and figuratively! Love ya.

Next a gracious bout of thanks to my advisors: Rosemary Barraclough, Jose Derraik and Dianne Brunton. Rosemary, thank you for your helpful advice and unwavering support throughout the course of my studies. Jose, thank you for your fieldwork help and introducing me to your two wonderful sons. Dianne, thank you for allowing me the opportunity to join the Ecology and Conservation Group at Massey University and all your statistics help.

A big ‘thank you’ to Tim Lovegrove for his gracious assistance with planning my stay at Waharau and support throughout my time in New Zealand. Also to Michael Anderson for helping me with fieldwork and thesis writing. Cheers, Doc. Speaking of fieldwork, this thesis wouldn’t be half the book it is today without the help of all my great volunteers. So many thanks to Ash King and Jennifer Bruce for helping me on Tiritiri Matangi. Rémi Bigonneau and Cécile Houille, thanks for your help at Waharau – and thanks Rémi for extending your stay to help me polish off those cases of wine, er, for the sake of my project. Thanks to Karli Stevens (I’m still Scrabble Master!), Elizabeth Milne, and the friendly folks at Ecoquest for additional help at Waharau. Also, Ranger Mike! Thanks for those thrilling four-wheeler rides along the tracks of Waharau, and for your kindness and support during my stay in the park. Thanks to the Supporters of Tiritiri Matangi Island
and Rangers Dave and James for providing me with tips on where to catch birds on the island.

Finally, I’d like to thank all the friends and colleagues I’ve made at Massey and throughout the country – you’ve helped make my two years in New Zealand ones to define a lifetime by. So a tasty pint and cheers! to: Ashleigh Kirkwood, Idan Shapira and Dana Lischinsky, Sarah Wells, Jo Peace, Kevin Parker, Josie Galbraith, Luis Ortiz-Catedral, Marleen Baling, John Steemson, Jennifer Rickett, Anne-Sophie Boyer, Marta Guemes, Karen Stockin, David Raubenheimer, Weihong Ji, Lucy Morris, Jan Maether, Amanda Jennings, Emmanuelle Martinez-Smagge, Manuela Barry, Brigitte Kreigenhofer, Andy Warneford, Mark Seabrook-Davison, Sarah Dwyer, Gabrielle Machovsky Capuska, Fidi Jordan, Michelle Roper, Jenny Laycock… and everyone else I’ve had the pleasure of meeting along the way. It has been an honour befriending all of you.

The Real Work

It may be that when we no longer know what to do
we have come to our real work,
and that when we no longer know which way to go
we have come to our real journey.

The mind that is not baffled is not employed.

The impeded stream is the one that sings.

-Wendell Berry

(The Collected Poems of Wendell Berry ©1987, North Point Press)
PERMITTING AND BIRD NOMENCLATURE

This research was approved by the Massey university Animal Ethics Committee (AEC/13, amended 01/09) and Department of Conservation (permit AK-20666-FAU). Bird banding was carried out under Department of Conservation permit No. 2008/33. Massey University (Masterate Scholarship) and the Auckland Regional Council provided funding for this study.

The scientific names of New Zealand birds used in this study follow the nomenclature of:

TABLE OF CONTENTS

ABSTRACT .. III
ACKNOWLEDGEMENTS .. V
PERMITTING AND BIRD NOMENCLATURE .. VI
LIST OF FIGURES ... XI
LIST OF TABLES ... XII
LIST OF APPENDICES .. XIV

CHAPTER 1. General overview of avian malaria and research objective 1
ABSTRACT .. 2
1.1 INTRODUCTION ... 3
 1.1.1 Classification and nomenclature ... 3
 1.1.2 Life cycle .. 6
 1.1.3 Distribution and diversity .. 8
1.2 METHODS OF DETECTION ... 10
 1.2.1 Microscopy .. 10
 1.2.2 Polymerase chain reaction (PCR) .. 12
1.3 EFFECTS ON HOST SPECIES ... 13
 1.3.1 General pathology and host susceptibility .. 13
 1.3.2 Effects on wild populations .. 16
1.4 DYNAMICS ON A LANDSCAPE SCALE ... 17
 1.4.1 The case of Hawaii ... 17
 1.4.2 Effects of landscape variation on disease dynamics 19
1.5 RESEARCH OBJECTIVES ... 20

CHAPTER 2. A survey of avian malaria at two sites in the Auckland Region, North Island, New Zealand: Tiritiri Matangi Island and Waharau Regional Park 22
ABSTRACT .. 23
2.1 INTRODUCTION .. 24
2.2 METHODS .. 27
 2.2.1 Survey locations .. 27
 2.2.2 Sampling times, sites and techniques .. 30
 2.2.3 Data analysis .. 32
2.3 RESULTS ... 33
 2.3.1 Tiritiri Matangi Island survey ... 33
 2.3.2 Waharau Regional Park survey ... 36
 2.3.3 Overall Auckland Region survey ... 36
 2.3.4 Parasite Descriptions ... 38
 2.3.4.1 P. (Huffia) elongatum .. 39
 2.3.4.2 P. (Haemamoeba) relictum .. 41
 2.3.4.3 P. (Novyella) rouxi .. 43
 2.3.4.4 Bellbird P. (Novyella) sp ... 45
 2.3.4.5 Tui P. (Novyella) sp .. 47
2.4 DISCUSSION .. 48
CHAPTER 3. Does avian malaria prevalence and parasitaemia in the bellbird (Anthornis melanura) differ between two capture techniques: mist nets and supplementary feeders? .. 56
ABSTRACT .. 57
3.1 INTRODUCTION .. 58
3.2 NULL HYPOTHESES ... 60
3.3 METHODS .. 60
 3.3.1 Study site and sampling techniques .. 60
 3.3.2 Prevalence and parasitaemia determination .. 61
 3.3.3 Statistical analyses .. 63
 3.3.3.1 Prevalence analysis .. 63
 3.3.3.2 Parasitaemia analysis .. 63
 3.3.4 General parasitaemia trends .. 65
3.4 RESULTS .. 66
 3.4.1 Prevalence .. 66
 3.4.2 Parasitaemia ... 67
3.5 DISCUSSION .. 71
 3.5.1 Prevalence and parasitaemia .. 71
 3.5.2 Feeder access and parasitaemia ... 72
3.6 CONCLUSION ... 74
Appendix 3.1 Statistical outputs for the prevalence data ... 75
Appendix 3.2 Statistical outputs for the parasitaemia data ... 76

CHAPTER 4. Mosquito abundance, composition, and disease prevalence in silveryeyes (Zosterops lateralis) at forest edge and forest interior sites in Waharau Regional Park, North Island, New Zealand .. 77
ABSTRACT .. 78
4.1 INTRODUCTION .. 80
4.2 NULL HYPOTHESES ... 83
4.3 METHODS .. 83
 4.3.1 Study site and sampling techniques .. 83
 4.3.2 Experimental design .. 85
 4.3.3 Statistical analyses .. 89
 4.3.3.1 Avian malaria prevalence .. 89
 4.3.3.2 Mosquito relative abundances .. 89
4.4 RESULTS .. 91
 4.4.1 Exotic and native mosquito species .. 91
 4.4.2 Aedes antipodeus ... 96
 4.4.3 Aedes notoscriptus .. 98
 4.4.4 Culex astelai ... 100
 4.4.5 Culex pervigilans .. 102
4.4.6 *Culex quinquefasciatus* .. 104
4.4.7 Avian malaria prevalence .. 106

4.5 DISCUSSION .. 107
4.5.1 Exotic mosquito species .. 108
4.5.2 Native mosquito species .. 111
4.5.3 Avian malaria prevalence .. 112

4.6 CONCLUSION .. 113

Appendix 4.1 Mosquito species identification photographs and descriptions 116
Appendix 4.2 Statistical outputs for the mosquito data ... 119
Appendix 4.3 Statistical outputs for the malaria prevalence data .. 124

CHAPTER 5. General summary and recommendations for future research 125

5.1 GENERAL SUMMARY .. 126
5.1.1 Avian malaria host-parasite associations in the Auckland Region 126
5.1.2 Does capture technique bias avian malaria survey results? A case study of Tiritiri Matangi Island bellbirds .. 129
5.1.3 Mosquito abundance, composition, and avian malaria prevalence at forest edge and forest interior sites in Waharau Regional Park 130

5.2 RESEARCH RECOMMENDATIONS .. 133
5.2.1 Host-parasite associations and vector competency in New Zealand 133
5.2.2 Host-parasite dynamics in Tiritiri Matangi Island bellbirds and the effects of supplementary feeding ... 134
5.2.3 Land use, habitat fragmentation, and avian malaria disease dynamics ... 136

REFERENCES .. 138
LIST OF FIGURES

Figure 1.1. Avian malaria components..1
Figure 1.2. The most well supported molecular phylogeny of haemosporidian genera to date showing parasite-vector-host relationships from Martinsen et al. (2008)........5
Figure 1.3. A generalised haemosporidian life cycle from Atkinson (1999)..5
Figure 2.1. A field station used for avian malaria sampling at Waharau Regional Park..........................7
Figure 2.2. Map of the two North Island locations in the Auckland Region surveyed for avian malaria..22
Figure 2.3. Map of the Tiritiri Matangi sites surveyed for avian malaria..31
Figure 2.4. Map of the Waharau Regional Park sites surveyed for avian malaria..........................32
Figure 2.5. Plasmodium elongatum from silvereye, New Zealand fantail and song thrush..................40
Figure 2.6. Plasmodium relictum from blackbird and silvereye...42
Figure 2.7. Plasmodium rouxi from blackbird and myna...44
Figure 2.8. Plasmodium (Novyella) sp. from Tiritiri Matangi bellbirds..46
Figure 2.9. Plasmodium (Novyella) sp. form Tiritiri Matangi tui...48
Figure 3.1. An example of high parasitaemia in a bellbird infected with avian malaria..........56
Figure 3.2. The strongly right-skewed frequency distribution of the bellbird parasitaemia data...64
Figure 3.3. The normalised frequency distribution of the bellbird parasitaemia data following natural log (ln) transformation...64
Figure 3.4. The expected probabilities of infection (±SE) per capture technique within each season for Tiritiri Matangi adult male bellbirds...67
Figure 3.5. Box-plot of the untransformed bellbird parasitaemia data pooled per season, capture technique and overall...68
Figure 3.6. Box-plot of the untransformed bellbird parasitaemia data per capture technique within each season...69
Figure 4.1. Two vector species of avian malaria in New Zealand...77
Figure 4.2. Map of the Waharau Regional Park forest edge and forest interior sites.................88
Figure 4.3. The mean number of exotic and native mosquitoes captured per night for each site and habitat location...95
Figure 4.4. The mean number of exotic and native mosquitoes captured per night at canopy and ground level for each site and habitat location...95
Figure 4.5. The mean number of Aedes antipodeus captured per night for each site and habitat location...97
Figure 4.6. The mean number of Aedes antipodeus captured per night at canopy and ground level for each site and habitat location...97
Figure 4.7. The mean number of Aedes notoscriptus captured per night for each site and habitat location...99
Figure 4.8. The mean number of Aedes notoscriptus captured per night at canopy and ground level for each site and habitat location...99
Figure 4.9. The mean number of Culex asteliae captured per night for each site and habitat location...101
Figure 4.10. The mean number of Culex asteliae captured per night at canopy and ground level for each site and habitat location...101
Figure 4.11. The mean number of *Culex pervigilans* captured per night for each site and habitat location...103

Figure 4.12. The mean number of *Culex pervigilans* captured per night at canopy and ground level for each site and habitat location..103

Figure 4.13. The mean number of *Culex quinquefasciatus* captured per night for each edge site...105

Figure 4.14. The mean number of *Culex quinquefasciatus* captured per night at canopy and ground level for each edge site...105

Figure 5.1. North Island tomtit (*Petroica macrocephala toitoi*) in Waharau Regional Park...125
LIST OF TABLES

Table 2.1. Results of avian malaria surveys conducted in the Auckland Region............35
Table 2.2. Avian malaria species found per host in the Auckland Region survey............38
Table 3.1. An example of the parasitaemia estimation method used in this study..........62
Table 3.2. Tiritiri Matangi adult male bellbird prevalence per season and capture technique..66
Table 3.3. Descriptive statistics of the parasitaemia levels found in Tiritiri Matangi bellbirds per season, capture technique, and capture technique within each season..70
Table 4.1. Key characteristics of each Waharau Regional park site.................................89
Table 4.2. The relative abundance of mosquito species captured at two forest edge and two forest interior sites in Waharau Regional Park...92
Table 4.3. GLM results for differences in exotic and native relative mosquito abundances per site and capture height..93
Table 4.4. Avian malaria prevalence in silvereyes per site and habitat location in Waharau Regional Park..106
LIST OF APPENDICES

Appendix 3.1. Statistical outputs for the prevalence data.................................75
Appendix 3.2. Statistical outputs for the parasitaemia data..............................76
Appendix 4.1. Mosquito species identification photographs and descriptions....116
Appendix 4.2. Statistical outputs for the mosquito data.................................119
Appendix 4.3. Statistical outputs for the malaria prevalence data....................124