Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
An evaluation of major nutrients in dairy pasture in New Zealand and their effects on milk production and herd reproductive performance

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Science at Massey University, Palmerston North

SOREN MOLLER
1997
ABSTRACT

This thesis presents the results of seven experiments or trials between August 1990 and November 1994 designed to study the causes and effects of the variation in nutrient content within dairy pasture in New Zealand and their impact on dairy cow lactation and reproductive performance.

The work includes the results of two observational studies; a survey of seasonal variation in dairy pasture nutrients on four dairy farms; two controlled field trials of supplementation of pasture fed cows in seven commercial dairy herds (involving 1650 cows); an experiment recording changes in pasture nutrients with grazing, maturity and soil phosphate levels; and a replicated split plot trial measuring changes in pasture nutrients after nitrogen (N) application. Trials or experiments involved aspects of agronomy and pasture management, herd reproductive performance and dairy cow nutrition.

A common theme of the work was examination of factors affecting the high crude protein levels present in the diets of dairy cows consuming fresh ryegrass/white clover pasture, measurement of this and testing of some practices that may affect the productive penalties caused by these high protein levels.

Section 1 of the thesis deals with the initial observations (Chapter 1) and a survey of pasture nutrient changes through all seasons on four dairy farms (Chapter 2).

The first chapter describes the initial observational studies over two springs (1990 and 1991) in nine commercial dairy herds and additional survey information from 35 herds (1991). There was a strong negative relationship between urea levels in blood (or milk) and milk production in three separate datasets using principal component analysis (PCA). Milk urea levels related closely to pasture protein levels and especially protein/soluble carbohydrate ratios in pasture. Herd reproductive performance was also worse in the herds with higher urea levels. For example, the four herds observed in
1990 averaged 23.62, 24.09, 20.91 and 21.88% for pasture crude protein; 7.38, 8.20, 5.85 and 6.20 mmol/l for serum urea; and 0.74, 0.75, 0.94 and 0.91 kg milkfat/cow/day respectively over the 17 week period. “Empty” (non-pregnant) cow percentages for the herds were 10.6%, 4.2%, 1.8% and 3.1% respectively. Tentative conclusions were made on the basis of these findings relating especially to the potential negative effects of excess dietary crude protein in pasture on milk production and on herd reproductive performance. These conclusions were then explored in more depth and reported in subsequent chapters.

Seasonal changes in pasture nutrients on dairy farms were measured by analysing pasture collected over two years from four dairy farms of varying soil type and climate (Chapter 2). Two of the farms were at Massey University and two in the Waikato district. All farms were of above average productivity for their district. Samples were collected every two weeks from each farm and represented pasture about to be consumed by cows on these farms. These were analysed for major nutrients or analytes (crude protein (CP), acid detergent fibre (ADF), neutral detergent fibre (NDF), soluble carbohydrates (SOLCHO), pectin, digestibility (DOMD), potassium, calcium, phosphorus, and magnesium) using near infra red spectrometry (NIRS). Highest pasture CP, DOMD, and SOLCHO levels were found in spring and autumn (ranging from 23.6-25.8%, 75.4-78.1% and 9-12% DM respectively) with lowest ADF, NDF and pectin levels (ranging from 27-28%, 36-38% and 1.8% respectively). The converse applied to the summer period with 20-22% CP, 70-71% DOMD, 8-10% SOLCHO, and 29-31% ADF, 42-45% NDF and 2-2.5% pectin. Calcium and magnesium levels were highest in summer (0.8% and 0.2% respectively compared to 0.65% and 0.19% respectively), and potassium higher in spring and winter (3.2%). The potential consequences for milk production from dairy cows calving seasonally are discussed, with particular reference to the imbalance in the rumen between rumen degraded protein and fermentable carbohydrates. Especially notable were the seasonal differences in protein levels and the changes in the type of carbohydrate available in late spring/summer. Soluble carbohydrate decreased, and fibre expressed as NDF and ADF increased in late spring and summer.
Section 2 of the thesis deals with supplementation trials on 6 commercial dairy herds (Chapter 3) and another supplementation trial on a 7th herd involving maize silage and concentrates (Chapter 4).

Controlled supplementation trials on six commercial dairy herds (total 1380 cows) were carried out in spring 1992 to examine the reproductive and productive effects of supplementing pasture-fed cows with carbohydrates (either soluble carbohydrate or starch). Herds were split into treated and control groups on each farm to remove individual farm factors from the experiment and relatively low levels of either molasses (3 herds, 700 mls molasses/cow/day) or concentrate (3 herds, 1.3 kg concentrate/cow/day) were fed for an extended period in spring (approximately 90 days, from 1 September to 25 November). Significant milk production and reproductive effects were measured when results were pooled for all herds. Immediate responses were approximately 0.5 litres of milk per kg of supplement on average, but the main milk production response was observed later in the experiment (October and November) and was higher in better fed herds and those in better body condition. No effect was found on non-return rate or submission rate, but empty cow rates at the end of the mating season in the supplemented group were half those of the control groups (2.7% vs 5%). These results may indicate considerable productive and reproductive advantage in supporting pasture fed cows through October/November with appropriate supplement when ryegrass is in the reproductive phase, and has reduced digestibility which is likely to limit intake of ME. Improving diet quality or ME concentration at this stage may help reduce the monthly decline from peak lactation which typically occurs at this time in most districts in New Zealand.

Chapter 4 describes a controlled supplementation trial which was carried out in spring 1993 on a 240 cow commercial dairy herd where the diet was formulated according to recommended nutrient levels for high production (NRC, 1989). The diet was improved in content of “bypass” protein, soluble carbohydrate, lipid and minerals. The base diet for control and treated groups was pasture and maize silage. Both control and treated herds were offered the same amount of metabolisable energy (ME) - ie. the diets were iso-energetic. Improved milk production (2 litres milk) and reproduction (2.7% empty vs 6%) occurred in response to the addition of the balancing concentrate in the treated
group. There was a large carryover effect when the concentrate feeding ceased and the sole diet was pasture. Pasture dry matter assessment indicated the supplemented cows continued to consume more dry matter than control cows. The immediate response to supplementation was 1.25 litres/kg DM of supplement, and with the carryover response added exceeded 2.5 litres/kg DM of supplement. The immediate response improved after supplementation had continued for 2-3 weeks. This trial did not show substitution for pasture, but the converse. Improving the balance of dietary nutrients in pasture did improve performance.

Section 3 of the thesis deals with aspects of grazing management, agronomy and the effects of application of nitrogen to pasture on the nutrients within pasture (Chapters 5 and 6).

Variation in pasture nutrients from week to week was evident in the seasonal study presented in Chapter 2. More information regarding changes in pasture nutrients after grazing and as pasture matures was sought because this was considered a likely source of variation in productivity. In Chapter 5 nutrient levels in pasture were determined after grazing or in pasture left ungrazed by sampling every five days during spring from five sites located on two dairy farms. Sites were either grazed as part of normal rotation (3 sites) on the farm or were caged (2 sites) to prevent grazing. Conclusions from this study were limited by a lack of replication, but nevertheless highlighted reduced CP with maturity, increased NDF with maturity and immediately after grazing, reduced SOLCHO just after grazing and reduced digestibility with the advancement of spring into October. Pectin and calcium levels increased as spring advanced. The results were consistent with literature on the subject.

The effects of the level of nitrogen fertiliser and the timing of application in spring on pasture nutrient composition were examined in the final experiment reported in Chapter 6. Nitrogen was identified from the literature as one of the main external influences likely to affect pasture protein levels. Nitrogen was applied as urea to small (2 m²) plots at 0, 20, 40 and 80 kg N/ha and at varying times (15 August, 31 August and 14 September) in late winter/early spring to dairy pasture at the Massey University Dairy Research Unit. The trial was a replicated split plot design with levels of N randomised
within starting dates. Significantly reduced ADF and NDF levels, reduced SOLCHO, reduced dry matter %, and increased CP levels occurred after N application. Higher N rates produced greater changes. Application of N earlier in winter resulted in greater effects on ADF (2% difference vs 6%), NDF (2% difference vs 6%) and CP (5% vs 7%) but lesser effects on SOLCHO (1.5% difference vs 0.5%) and these lasted longer in wintery conditions. Effects on SOLCHO were more marked later in the experiment. Brix values (a refractometer measurement of juice squeezed from the herbage sample) were also examined as part of this study to evaluate their usefulness as a rapid measure of SOLCHO concentration; results were inconclusive. The consequences of the effects of N on pasture for dairy cows are discussed and possible dietary or management improvements to minimise the consequences are suggested. The increased protein and reduced fermentable carbohydrate (reduced SOLCHO and reduced ADF or NDF) mean that poorer rumen fermentation could occur after N application, with lower amounts of bacterial tissue presented to the small intestine from ruminal fluid.

A final summarising chapter (Chapter 7) combines the conclusions from the various studies, indicates the need for further information and discusses how this might be obtained. Studies presented in this thesis have not conclusively shown that high CP in pasture has damaging effects on productivity, but have indicated strong associations and various factors influencing pasture CP and also other pasture nutrients.
I would like to especially thank my main supervisors, Professor John Hodgson and Dr Gavin Wilson for their patience, guidance and encouragement as this work has unfolded in the last 6 years. Their experience and advice has been most valuable.

Professor Warren Parker, Dr Nick Edwards, Dr Roger Ellison (local supervisor), Professor Alex Chu, Dr Cory Matthew, Dr Martin Upsdell have all assisted with advice and encouragement at various times and I am indebted to them. Nick Edwards provided a large amount of assistance with work presented in Chapter 2 (seasonal survey of dairy pasture nutrients) and Chapter 6 (effects of nitrogen application on pasture nutrients) especially. Warren Parker has helped with many of the studies, checking draft of published papers, assisting with setup and funding support.

My partner, Choo Ying, has been at various times a mentor, laboratory analyst, assistant, and technical advisor. The thesis may not have been completed without her.

Those providing physical assistance with each experiment have been acknowledged at the end of each chapter. In particular, David Miller (Livestock Improvement Corporation, Consulting Officer Service), Les Hill and Mike Judge (formerly local MAF farm consultants); Jim van der Poel, Barry and Ann Cox, Steve and Faith Palairet, Kevin and Tammy Lynch, John and Lorraine Poot, Clemance and Wendy Te Brake, Bert and Ann van der Hulst, David Hoyte, Brian and Lillian Trebilco, Warren Timms, Murray and Kim Jamieson, Brian McKay, Fiona Cayzer and many others who assisted especially with their time and expertise at various stages.

Financial assistance came from the Claude McCarthy Scholarship (administered by the NZ University Vice Chancellor’s Committee), New Zealand Large Herds Association, MUARF (Massey University Agricultural Research Foundation), MUGRF (Massey University Graduate Research Fund), Dairying Research Corporation, Ruakura Animal Health Laboratory, New Zealand Dairy Group, Livestock Improvement Corporation, Sydney University - Camden Laboratory, Penn State University - Animal Science
Department, David Johnstone Memorial Trust, BOP Fertiliser Company, Agrifeeds (NZ) Ltd, NRM (NZ) Ltd, and Skellerup (NZ) Ltd. Kathy Hamilton (Plant Science Department, Massey University) has tidied up the thesis ready for presentation.

I am most grateful to everyone mentioned for their assistance.
FOREWORD

This thesis began with on-farm observations made over a period of 16 years as a practising veterinarian on the frequency of dairy herd reproductive problems in seasonally calving dairy herds in the Waikato district. In adverse springs (very wet or overcast weather for prolonged periods in August/September/October) the incidence of anoestrus, poor conception and non-pregnant cows increased. Milk productivity was also correlated with herd reproductive performance, with better performance in high producing herds. Assessment of pasture suggested that poor performance did not necessarily relate to the quantity of dry matter available to the cows (as was often assumed), and the hypothesis formed was that changes in nutrients within pasture were at least in part responsible for differences in herd reproductive performance, and that these changes would reflect in selected blood parameters in cows within these herds.

The objectives of the studies reported in this thesis were a) to test these hypotheses in the context of commercial dairy herds, b) to evaluate the impact of alternative management practices on the nutrient balance of grazed pasture, and c) to assess the value of alternative supplementary feeding strategies in overcoming the limitations of grazed herbage as a source of nutrients for lactating dairy cows.

Studies began in 1990 when four herds were selected for their likely herd reproductive performance and herd milk production performance based on previous client records in the veterinary practice. These herds were monitored in detail for reproductive performance, milk production, changes in selected blood parameters, and the nutrients within the pasture consumed. Interactions between the measured data were then examined and interpreted. The observational study was repeated in 1991 in order to include dry matter intake and bulk vat milk urea measurements. The observational studies provided strong evidence of associations between weather conditions, pasture nutrients, blood parameters, herd reproductive performance and milk production.

The observational studies led to a survey establishing normal seasonal variation in pasture on dairy farms, controlled field trials with supplements designed to address
nutrient deficiencies identified in pasture, and studies designed to identify factors affecting nutrient levels in pasture like fertiliser application of phosphate and nitrogen, and also the effects of grazing and maturity on pasture nutrients.

The thesis consists of 3 sections. The first section includes the results of the initial observational studies and the survey of seasonal variation in pasture nutrients from four dairy farms. These serve as the basis from which the other work developed, although chronologically the survey of seasonal variation occurred after some of the other work was already complete. It was realised that this fundamental survey information (Chapter 2) was not available in the literature. The second section presents the results of controlled supplementation experiments in commercial dairy herds in spring where the pasture diet was supplemented with nutrients designed to correct imbalances in pasture identified in Section 1 when compared to recommendations for high producing cows. The third section presents the results of two experiments designed to clarify aspects of pasture management and fertiliser use likely to influence pasture nutrient status. In particular, the effect of grazing, pasture maturity, soil phosphate status, nitrogen (N) application to pasture and the timing of N application in the winter spring period were examined. A concluding chapter links the work in the 3 sections and suggests further studies to extend the results presented.

The subject matter of the thesis is varied, and therefore the normal thesis convention of an introductory literature review has not been followed. Instead, each chapter starts with an extended introduction in which the appropriate literature is cited. Chapter 7 then links the findings in the various chapters and makes conclusions. Physical assistance with the studies is acknowledged at the end of each chapter.

Commercial dairy farms were selected for most of the trial work in an attempt to keep the work relevant to practical circumstances encountered on farms. This made for difficulty in working with standard statistical design, but provided the opportunity to work with substantial numbers of cows (eg 1400 cows for the carbohydrate supplementation trial in Chapter 3) and a more powerful basis for ensuring effects on reproductive performance.
TABLE OF CONTENTS

ABSTRACT... i
ACKNOWLEDGEMENTS.. i
FOREWORD... viii
TABLE OF CONTENTS.. x
LIST OF TABLES... xvi
LIST OF FIGURES... xviii
LIST OF PLATES.. xxiii
LIST OF APPENDICES.. xxiv

SECTION 1.. 1

CHAPTER 1 Observational studies in commercial dairy herds
linking pasture nutrients with milk production and
herd reproductive performance.............................. 2
1.1 INTRODUCTION.. 2
 1.1.1 The dairy system practised in New Zealand............... 2
 1.1.2 Nutritional quantity and quality in a pasture based dairy system..... 5
 1.1.3 Herd reproductive performance.................................. 8
1.2 EXPERIMENTAL METHOD.. 11
1.3 RESULTS AND DISCUSSION...................................... 13
 1.3.1 Weather data for 1990.. 13
 1.3.2 Herd details and results for 1990.................................. 13
 1.3.3 Milk production data for 1990..................................... 18
 1.3.4 Blood analyses for 1990 data...................................... 18
 1.3.5 Pasture nutrients (1990 data)................................... 21
 1.3.6 Combined interpretation of data from weather, production, blood
parameters measured and pasture analysis - 1990 data.................... 24
Table of Contents

1.3.7 Data from 1991 - Results and Discussion .. 26
1.3.8 Reproductive results and discussion .. 26
1.3.9 Reproductive performance and milk production 28
1.3.10 Relationship between pasture and animal variables 28
 1.3.10.1 Principle Component Analysis .. 28
 1.3.10.2 Correlation Matrix .. 31
1.4 INTEGRATING DISCUSSION .. 31
1.5 CONCLUSIONS .. 35

ACKNOWLEDGEMENTS ... 37

CHAPTER 2 Seasonal variation in nutrient levels of New Zealand dairy pastures .. 38

PREFACE ... 38

2.1 INTRODUCTION .. 38
 2.1.1 Pasture digestibility ... 39
 2.1.2 Crude protein % (CP%) .. 40
 2.1.3 Neutral detergent fibre (NDF) and acid detergent fibre (ADF) 41
 2.1.4 Soluble carbohydrate and pectin .. 42
 2.1.5 Dry matter % .. 42
 2.1.6 Minerals .. 42

2.2 EXPERIMENTAL DESIGN .. 43
 2.2.1 Pasture sampling procedure .. 44
 2.2.2 Sampling method .. 45
 2.2.3 Sample preparation and analysis method ... 45

2.3 RESULTS AND DISCUSSION ... 47
 2.3.1 Seasonal changes .. 47
 2.3.2 Digestibility .. 49
 2.3.3 Crude protein ... 50
 2.3.4 Neutral detergent fibre ... 54
 2.3.5 Acid detergent fibre .. 58
 2.3.6 Soluble carbohydrate .. 58
 2.3.7 Pectin ... 61
 2.3.8 Calcium .. 61
3.4.7 Herd 5 ... 111
3.5 CONCLUSIONS ... 112
ACKNOWLEDGEMENTS .. 114

CHAPTER 4 Supplementation to “balance” nutrient intakes
of cows fed pasture and maize silage 115
PREFACE ... 115
4.1 INTRODUCTION .. 116
4.2 METHODS ... 121
4.3 RESULTS ... 127
4.4 DISCUSSION AND CONCLUSIONS 132
ACKNOWLEDGEMENTS .. 137

SECTION 3 ... 138

CHAPTER 5 Nutrient changes in pasture as it matures and
after grazing ... 139
PREFACE ... 139
5.1 INTRODUCTION ... 139
5.2 METHODS ... 144
5.3 RESULTS ... 146
5.4 DISCUSSION .. 162
 5.4.1 Grazed vs Non-grazed Sites 162
 5.4.2 High P vs Low P sites 163
 5.4.3 Herbage accumulation rate 163
 5.4.4 Mineral levels ... 164
 5.4.5 Correlations .. 165
 5.4.6 General comments 165
 5.47 Consequences for dairy cow nutrition 167
5.5 CONCLUSIONS .. 169
CHAPTER 6 Effects of nitrogen fertiliser (urea) on pasture nutrient composition - results of a replicated split plot trial

PREFACE

6.1 INTRODUCTION

6.2 METHOD

6.3 RESULTS

6.3.1 Mean results

6.3.2 Correlation matrix for all the trial data

6.3.3 Herbage accumulation

6.3.4 Efficient of N response

6.3.5 Acceleration of HAR

6.3.6 Dry matter %

6.3.7 Crude protein

6.3.8 Soluble carbohydrates

6.3.9 Neutral detergent fibre

6.3.10 Acid detergent fibre

6.3.11 “Total carbohydrate”

6.3.12 Hemicellulose

6.3.13 Brix

6.4 DISCUSSION

6.4.1 N responses

6.4.2 Herbage accumulation rates

6.4.3 Effect of N on nutrients in pasture

6.4.4 Correlations

6.4.5 Significance of the findings for dairy nutrition

6.5 CONCLUSIONS

ACKNOWLEDGEMENTS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Range in herd reproductive performance experienced in the south west Waikato district.</td>
<td>8</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Herd performance and descriptive data for the four farms in 1990</td>
<td>16</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>Reproductive performance and milk production data from 35 herds in 1991</td>
<td>28</td>
</tr>
<tr>
<td>Table 1.4</td>
<td>Principal Component Analysis on 1990 data</td>
<td>29</td>
</tr>
<tr>
<td>Table 1.5</td>
<td>Principal Component Analysis on 1991 data</td>
<td>29</td>
</tr>
<tr>
<td>Table 1.6</td>
<td>Principal Component Analysis for 35 farm dataset in 1991</td>
<td>30</td>
</tr>
<tr>
<td>Table 1.7</td>
<td>Correlation matrix for complete data points (n = 59)</td>
<td>32</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Farm details</td>
<td>44</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Variance values for the NIR prediction compared to the 'wet' chemistry result</td>
<td>46</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Means and standard errors for all variables by farm and over all 4 farms</td>
<td>48</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Seasonal changes in pasture nutrients</td>
<td>48</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Theoretical calculation of excess NDF in pasture</td>
<td>54</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Correlation Matrix for the variables measured in 237 pasture samples</td>
<td>67</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Mean milk production averages in the five herds-daily factory records (SEM) from 1 September - 25 November</td>
<td>83</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Mean milk urea, supplement, condition score and rotation length in the 5 herds (SEM)</td>
<td>84</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Average pasture measurements or concentrations for the five trial farms (SEM)</td>
<td>84</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Mean values for Albumin (SEM)</td>
<td>98</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Correlation matrix of chosen indices related to milk urea</td>
<td>100</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Regression equations for the relationship between dietary parameters and milk urea</td>
<td>102</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Reproductive data for each herd</td>
<td>103</td>
</tr>
</tbody>
</table>
Table 3.8 Reproductive performance in six supplemented herds versus control herds ... 104
Table 3.9 Predicted calving spread for “Supplemented” herds and “Control” herds to low level carbohydrate supplementation in spring 104
Table 4.1 Differences in pasture, pasture/maize silage and recommended early lactation diets .. 120
Table 4.2 “Assessed” diets of supplemented and control herds 123
Table 4.3 Average weights (kg) and condition scores of a sample of 50 cows from each herd ... 129
Table 4.4 Reproductive performance in supplemented and control groups 130
Table 4.5 Blood parameters in supplemented and control groups on 3 consecutive samplings from the same cows 131
Table 5.1 Mean values for pasture nutrients measured in spring dairy pasture (12 September-3 November) from five sites 147
Table 5.2 Correlation matrix for the measured data 148
Table 6.1 Sampling pattern .. 173
Table 6.2 Mean herbage accumulated and herbage accumulation rates (kg DM/ha daily) for four replicates - Start date 1 176
Table 6.3 Mean herbage accumulated and herbage accumulation rates (kg DM/ha daily) for four replicates - Start date 2 176
Table 6.4 Mean herbage accumulated and herbage accumulation rates (kg DM/ha daily) for four replicates - Start date 3 177
Table 6.5 Net herbage accumulated (kg DM/ha) means and SED for the combined start dates ... 177
Table 6.6 Correlation data across treatments and through time 178
Table 6.7 SED and means for crude protein (%DM) 185
Table 6.8 SED and means for soluble carbohydrate (%DM) 187
Table 6.9 SED and means for NDF (% of DM) ... 189
Table 6.10 SED and mean for ADF .. 191
Table 6.11 Brix means and SED for combined start dates 194
LIST OF FIGURES

Figure 1.1 Average pasture dry matter and metabolisable energy production for No 2 dairy at DRC and the feed requirements for a herd stocked at 3.0 Friesian cows/ha and fully fed from peak to end of season .. 3

Figure 1.2 Stocking rate versus milkfat production/ha ... 3

Figure 1.3 Graph based on data produced by Danfaer et al. (1980) predicting the degree of metabolism energy loss caused by high protein diets.. 7

Figure 1.4 Mean daily rainfall (mm) for the 3 days previous to pasture sample collection on each farm through time (7 August - 20 November) .. 14

Figure 1.5 Mean ground temperature (10 cm) for the 3 days before pasture sample collection through time (7 August-20 November) 14

Figure 1.6 Mean daily sunlight hours for the 3 days before pasture sample collection through time (7 August-20 November) 15

Figure 1.7 Herd milkfat (kg) per hectare versus week of observation 15

Figure 1.8 Per cow milk fat (kg) per day versus week of observation 17

Figure 1.9 Per cow protein (kg) per day versus week of observation 17

Figure 1.10 Mean serum albumin in each herd through time (7 August-20 November) .. 19

Figure 1.11 Mean serum urea in each herd through time (7 August-20 November) .. 19

Figure 1.12 Mean serum beta-hydroxybutyrate in each herd through time (7 August-20 November) .. 20

Figure 1.13 Mean serum non-esterified fatty acid from 10 cows in each herd through time (7 August-20 November) .. 20

Figure 1.14 Mean blood glucose in cows from each herd through time (7 August-20 November) .. 21

Figure 1.15 Soluble carbohydrate % from pasture about to be grazed versus week of observation .. 22
Figure 1.16 Dry matter % from pasture about to be grazed versus week of observation

Figure 1.17 Crude protein % in pasture about to be grazed versus week of observation

Figure 1.18 Acid detergent fibre % in pasture about to be grazed versus week of observation

Figure 1.19 Milk urea and N/SOLCHO ratio versus time for 1991 data

Figure 1.20 Chemical composition of pasture versus time for 1991 data

Figure 1.21 Weekly non-return rate (60 d) for the four herds superimposed on blood urea through time for the artificial breeding period (1990 data)

Figure 2.1 Seasonal trends for in vitro digestibility (DOMD) for the four farms

Figure 2.2 Metabolisable energy values for pasture on the four farms

Figure 2.3 Seasonal trends for crude protein (CP) for the four farms

Figure 2.4 Seasonal trends for neutral detergent fibre (NDF) for the four farms

Figure 2.5 Hemicellulose (NDF-ADF) for all four farms

Figure 2.6 Seasonal trends for acid detergent fibre (ADF) for the four farms

Figure 2.7 Seasonal trends for soluble carbohydrate (SolCHO) for the four farms

Figure 2.8 Seasonal trends for pectin for the four farms

Figure 2.9 Seasonal trends for calcium for the four farms

Figure 2.10 Seasonal trends for magnesium for the four farms

Figure 2.11 Seasonal trends for potassium for the four farms

Figure 2.12 Seasonal trends for phosphorus for the four farms

Figure 3.1 Dry matter % for weekly samples from the five farms versus time (1 September-25 November)

Figure 3.2 Digestibility (DOMD) for weekly samples from the five farms (1 September-25 November)

Figure 3.3 Crude protein concentration for weekly samples from the five farms (1 September-25 November)
Figure 3.4 NDF concentrations for weekly samples from the five farms
(1 September-25 November) .. 86
Figure 3.5 Soluble carbohydrate concentration for weekly samples from
five farms (1 September-25 November) 86
Figure 3.6 Milkfat/cow/day for Herd 1 versus time (1 September-25
November) ... 87
Figure 3.7 Milkfat/cow/day for Herd 2 versus time (1 September-25
November) ... 88
Figure 3.8 Milkfat/cow/day for Herd 3 versus time (1 September-25
November) ... 88
Figure 3.9 Milkfat/cow/day for Herd 4 versus time (1 September-25
November) ... 88
Figure 3.10 Milkfat/cow/day for Herd 5 versus time (1 September-25
November) ... 89
Figure 3.11 Milk protein/cow/day for Herd 1 versus time (1 September-25
November) ... 89
Figure 3.12 Milk protein/cow/day for Herd 2 versus time (1 September-25
November) ... 89
Figure 3.13 Milk protein/cow/day for Herd 3 versus time (1 September-25
November) ... 90
Figure 3.14 Milk protein/cow/day for Herd 4 versus time (1 September-25
November) ... 90
Figure 3.15 Milk protein/cow/day for Herd 5 versus time (1 September-25
November) ... 90
Figure 3.16 Difference in per cow litres milk/day between treated and
control herds versus time .. 91
Figure 3.17 Difference in per cow milkfat/day (kg) between treated and
control herds versus time .. 92
Figure 3.18 Difference in per cow milk protein/day (kg) between treated
and control herds versus time .. 93
Figure 3.19 Difference in per cow milk lactose/day (kg) between treated
and control herds versus time .. 94
Figure 3.20 Difference in per cow milk solids (kg milk fat, plus kg milk protein and milk lactose) between treated and control herds versus time... 95
Figure 3.21 Difference in per cow protein/fat ratio between treated and control herds versus time... 96
Figure 3.22 Weekly mean milk urea for Herd 1 versus time (1 September-25 November).. 98
Figure 3.23 Weekly mean milk urea for Herd 2 versus time (1 September-25 November).. 99
Figure 3.24 Weekly mean milk urea for Herd 3 versus time (1 September-25 November).. 99
Figure 3.25 Weekly mean milk urea for Herd 4 versus time (1 September-25 November).. 99
Figure 3.26 Weekly mean milk urea for Herd 5 versus time (1 September-25 November).. 100
Figure 3.27 Differences in bulk vat milk urea (mmol/l) between treated and control herds versus time... 101
Figure 4.1 Trial design.. 122
Figure 4.2 Average pasture cover for each farmlet.. 127
Figure 4.3 Milk solids per cow per day.. 128
Figure 4.4 Liveweight change in the two trial herds....................................... 129
Figure 4.5 Milk urea levels in supplemented and control herds before, during and after the supplementation period.. 132
Figure 5.1 Effects of stage of maturity (days since grazing) on pasture composition during spring... 141
Figure 5.2 Change in pasture nutrients after grazing.................................... 142
Figure 5.3 Mineral content of pasture after grazing...................................... 142
Figure 5.4 Soil temperature °C at 10 cm depth vs date of sampling............... 149
Figure 5.5 Herbage mass at each site vs date of sampling............................ 150
Figure 5.6 Herbage accumulation rate for the five sites vs date of sampling... 151
Figure 5.7 Dry matter % for the five sites vs date of sampling...................... 152
Figure 5.8 Digestibility (DOMD) vs date of sampling.................................. 153
Figure 5.9 Crude protein % for the five sites vs date of sampling.................. 154
List of Figures

Figure 5.10 NDF % for the five sites vs date of sampling .. 155
Figure 5.11 SOLCHO % for the five sites vs date of sampling ... 156
Figure 5.12 Pectin % for the five sites vs date of sampling ... 157
Figure 5.13 Phosphorus in pasture (g/kg) for the five sites vs date of sampling 158
Figure 5.14 Potassium in pasture (g/kg) for the five sites vs date of sampling 159
Figure 5.15 Calcium in pasture (g/kg) for the five sites vs date of sampling 160
Figure 5.16 Magnesium in pasture (g/kg) for the five sites vs time 161
Figure 6.1 Pasture accumulated (HA) from time of N application versus date of sampling .. 179
Figure 6.2 Pasture accumulation rate (HAR) from time of N application versus date of sampling .. 180
Figure 6.3 Current herbage accumulation rate (kg DM/ha/day) versus herbage mass at sampling .. 181
Figure 6.4 Current herbage accumulation rate versus herbage accumulated for Start date 1 ... 182
Figure 6.5 Current herbage accumulation rate versus herbage accumulated for Start date 2 ... 182
Figure 6.6 Current herbage accumulation rate versus herbage accumulated for Start date 3 ... 183
Figure 6.7 Dry matter % for the four N rates versus sampling date 184
Figure 6.8 Crude protein % in pasture with the four N rates versus sampling date 184
Figure 6.9 Soluble carbohydrate % in pasture with the four N rates vs sampling date 186
Figure 6.10 Neutral detergent fibre % in pasture with the four N rates versus sampling date .. 188
Figure 6.11 Acid detergent fibre % in pasture with the four N rates versus sampling date .. 190
Figure 6.12 “Total” carbohydrate (NDF + SOLCHO) % in pasture with the four N rates versus sampling date .. 192
Figure 6.13 “Hemicellulose” (NDF-ADF) % in pasture with the four N rates versus sampling date .. 193
Figure 6.14 Brix values for all start dates combined versus sampling date 194
LIST OF PLATES

Plate 4.1 Maize silage with concentrate being fed in paddock along
fenceline... 125
Plate 5.1 Photo of cage and equipment used............................ 145
Plate 6.1 Site of replicated plots at Massey University............... 173
LIST OF APPENDICES

Appendix A.1 Extraction of carbohydrates ... 255
Appendix A.2 Uronic Acid Determination ("Blumenkrantz Method") 261
Appendix A.3 Protein determination by Kjeldhal digestion method 266
Appendix A.4 Determination of acid detergent and neutral detergent fibre 273
Appendix A.5 Determination of In Vitro digestibility using cellulase 279
Appendix A.6 Non-structural carbohydrate determination 286
Appendix A.7 Urea determination in milk/blood 290
Appendix A.8 Determination of Beta-Hydroxy Butyrate in blood 292
Appendix A.9 Albumin determination in blood 295
Appendix A.10 Glucose determination in blood 298
Appendix A.11 Determination of Non-esterified fatty acids in serum 300
Appendix B.1 Moller, S.N., Parker, W.J. & Edwards (1996). Within-year variation in pasture quality has implications for dairy cow nutrition ... 305