Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Flow and Diffusion Measurements on Complex Fluids Using Dynamic NMR Microscopy

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Physics at Massey University

Bertram Manz
1996
Abstract

This thesis deals with the measurement of fluid motion by NMR methods and the relationship of that motion both to the molecular organisation and to the fluid boundary conditions. The theory and technique of dynamic NMR microscopy are presented. A specially designed high gradient probe for Pulsed Gradient Spin Echo (PGSE) experiments is described.

First, the time evolution of electroosmotic flow in a capillary is measured. With increasing time after the application of an electrophoretic pulse a transition from plug flow to parabolic flow is found. The agreement of the measured flow profiles with theory is excellent.

Next, a two-dimensional velocity exchange experiment (VEXSY) is described. Experiments on unrestricted Brownian motion, laminar circular flow in a Couette cell and flow through microspheres are performed.

A major aspect of the thesis concerns molecular dynamics in semi-dilute polymer solutions close to a de-mixing transition. Therefore, a description of the Flory-Huggins model for the phase behaviour of polymer solutions is given along with a review of the literature on shear-induced effects in semi-dilute polymer solutions. PGSE experiments were performed in order to measure the temperature dependence of the self-diffusion coefficient of polystyrene in semi-dilute cyclohexane solutions near the de-mixing transition over a wide range of molar masses. The temperature dependence can be described by a Williams-Landel-Ferry (WLF) equation, characteristic of a glass transition. From the self-diffusion coefficients the values for the tube disengagement times were obtained.

NMR rheology experiments were performed on semi-dilute polystyrene/cyclohexane solutions near the de-mixing transition. The flow profiles exhibit power law behaviour, and from the power law index the entanglement formation times are extracted. A consistency of the values for the entanglement formation times and tube disengagement times was found.

As part of the study of polymer solutions at elevated temperatures, strong convectional effects were observed. In order to carry out diffusion measurements these effects were suppressed using better thermal equilibration. However, the
convection process itself was subject to NMR investigation. Convectional flow
in a capillary was measured using PGSE NMR, VEXSY and dynamic NMR mi-
croscopy. The VEXSY experiment shows that the flow is stationary. The velocity
propagator measured using dynamic NMR microscopy was used to calculate the
echo attenuation function $E(q)$. It was found that the pronounced minima and
maxima in the Stejskal–Tanner plots agree well with the measured $E(q)$ values.

Flow profiles of lyotropic liquid crystals are presented. Using deuterium NMR
spectroscopy it is shown that the shear–induced alignment of molecules can be
measured using NMR microscopy.
Acknowledgements

The following people have helped me with this work. It is a pleasure to thank them here.

Prof. Paul T. Callaghan, my first supervisor, for his constant support, enthusiasm and expertise.

Assoc. Prof. Rod K. Lambert, my second supervisor, for support and discussions.

The staff of the electronics workshop who built the shift register which enabled me to sleep at night while the experiments were running, and for helping me with many little problems.

The staff of the mechanical workshop for building a driving system for the Couette system and countless other items.

Grant Platt for building the dewars of the PGSE probe and for cutting and sealing my sample tubes.

Dr. Phil Back for designing and building the PGSE probe.

Dr. Bas Smeulders for supplying me with information about the Dobanol/Water system.

Dr. Joe Seymour who inspired me with his enthusiasm and gave me permission to use some of his data.

My fellow graduate students Andrew, Craig, Lucy and all other inhabitants of the NMR lab for being friends and colleagues.

The secretaries for their help with administration.

All members of the Physics department for maintaining a pleasant working environment.

The German Academic Exchange Service (DAAD) and the New Zealand Foundation for Research. Science and Technology for financial support.

Anna for putting up with me.
Contents

Abstract i
Acknowledgements iii
Table of Contents v
List of Figures xi
List of Tables xv

1 Introduction 1
1.1 Introduction .. 1
1.2 Organisation of the Thesis 2

2 Introduction to NMR and Imaging 5
2.1 NMR Theory ... 6
 2.1.1 The Quantum Mechanical Description 6
 2.1.1.1 Quantum Mechanical States and Operators ... 6
 2.1.1.2 Angular Momentum Operators 7
 2.1.1.3 Nuclear Spins in a Magnetic Field 7
 2.1.1.4 The Ensemble Average 8
 2.1.1.5 Time Evolution 9
 2.1.2 The Semi-Classical Picture 10
 2.1.2.1 The Rotating Frame 10
 2.1.2.2 Excitation 11
 2.1.2.3 Relaxation 13
 2.1.2.4 Free Induction Decay 14
 2.2 Nuclear Interactions 15
 2.2.1 Magnetic Field Inhomogeneity 15
 2.2.2 Chemical Shift 15
 2.2.3 Dipolar Coupling 16
CONTENTS

2.2.4 Quadrupolar Coupling ... 17

2.3 Spin Manipulations .. 17
 2.3.1 The Spin Echo .. 17
 2.3.2 The Stimulated Echo .. 21
 2.3.3 The Quadrupole Echo ... 21
 2.3.4 Two-Dimensional Spectroscopy 22
 2.3.5 Signal Averaging and Phase Cycling 23
 2.3.6 The Effect of Magnetic Field Gradients 25

2.4 Introduction to NMR Imaging 25
 2.4.1 k-Space Imaging ... 25
 2.4.2 Selective Excitation .. 26
 2.4.2.1 Hard Pulses and Soft Pulses 27
 2.4.2.2 Slice Selection .. 28
 2.4.3 Fourier Imaging in Two Dimensions 28
 2.4.4 Measuring Self-Diffusion: The Pulsed Gradient Spin Echo ... 30
 2.4.5 Dynamic NMR Imaging ... 32
 2.4.5.1 Introduction to q-Space 32
 2.4.5.2 The Dynamic Spin Echo 32

2.5 Hardware and Software ... 34
 2.5.1 The Bruker AMX300 Spectrometer 34
 2.5.2 The FX60 Spectrometer 35
 2.5.3 The High-Gradient Probe 35
 2.5.3.1 The Gradient Coils 36
 2.5.3.2 Gradient Calibration 37
 2.5.3.3 Gradient Eddy Currents 38
 2.5.3.4 Temperature Control 38
 2.5.3.5 r.f. Stage ... 39
 2.5.4 Data Processing .. 40

3 Imaging of Electroosmotic Flow 43
 3.1 Introduction .. 43
 3.1.1 Electrophoresis and NMR 43
 3.1.2 Electroosmosis .. 45
 3.2 Theory .. 45
 3.3 Experimental Section ... 49
 3.4 Results .. 51
 3.5 Discussion .. 55
6.3 Results ... 101
 6.3.1 The Temperature Dependence of D_s at Different Molar Masses 101
 6.3.2 The Temperature Dependence of D_s at Different Concentrations 102
6.4 Discussion .. 104
 6.4.1 Reptation Times ... 104
 6.4.2 Concentration Fluctuations ... 106
 6.4.2.1 Some Calculations ... 108
 6.4.2.2 Comparison With the Experimental Values 110
 6.4.3 Glass Transition ... 111
6.5 Conclusions ... 113

7 Flow Measurements on Polymer Solutions ... 115
 7.1 Instrumentation .. 115
 7.1.1 The Couette Cell .. 115
 7.1.2 Data Analysis ... 117
 7.2 Experimental .. 117
 7.2.1 Sample Preparation .. 117
 7.2.2 Flow Measurements ... 118
 7.3 Results .. 121
 7.4 Discussion ... 122
 7.4.1 Shear-Induced Phase Transitions .. 122
 7.4.2 Entanglement Formation Times ... 123
 7.4.3 Glass Transition ... 125
 7.5 Conclusions .. 126

8 Convection in a Capillary .. 129
 8.1 Introduction .. 129
 8.2 Experimental .. 131
 8.2.1 The PGSE Experiment ... 132
 8.2.2 The Flow Imaging Experiment .. 133
 8.2.3 The VEXSY Experiment .. 135
 8.3 Conclusions .. 137

9 Shear–Induced Order in Liquid Crystals .. 139
 9.1 Lyotropic Systems ... 139
 9.1.1 Introduction ... 139
 9.1.2 Rheology on Lyotropic Systems in the Lamellar Phase 141
 9.1.3 NMR on Lyotropic Systems in the Lamellar Phase 142
9.2 Experimental Section .. 143
 9.2.1 Sample Preparation 143
 9.2.1.1 Dobanol/Water 143
 9.2.1.2 Aerosol OT/Water 143
 9.2.2 Measurement of Flow Profiles 143
 9.2.3 Measurement of Order Parameters 145
9.3 Results ... 146
 9.3.1 Flow Profiles ... 146
 9.3.1.1 Dobanol/Water 146
 9.3.1.2 AOT/Water 147
 9.3.2 Deuterium NMR Spectra 148
9.4 Discussion .. 149
9.5 Conclusions ... 150

10 Conclusion .. 153
 10.1 Summary .. 153
 10.2 Outlook on Future Work 154

Bibliography .. 157

A The PGSE Probe ... 167

B The Pulse Sequences .. 179
 B.1 Pulse Sequence to Send Trigger Pulses to External Shift Register 179
 B.2 Dynamic Spin Echo Soft Soft 179
 B.3 Pulsed Gradient Spin Echo 181
 B.4 Pulsed Gradient Spin Echo With Ramped Gradient Pulses 183
 B.5 Dynamic Stimulated Echo with Electroosmosis Trigger Pulse 184
 B.6 VEXSY .. 186
 B.7 VEXSY with Carr–Purcell Train 188

C The AU Programs ... 191
 C.1 Program to Send Trigger Pulses to External Shift Register 191
 C.2 AU Program for a Set of Experiments with Different Temperatures 192
 C.3 AU Program for a Set of Experiments with Different Motor Speeds 192
List of Figures

2.1 Decomposition of an Oscillating Field 12
2.2 The Free Induction Decay .. 15
2.3 The NMR Spectrum ... 16
2.4 The Quadrupolar Interaction ... 18
2.5 Spin Echo Pulse Sequence .. 18
2.6 Formation of a Spin Echo ... 20
2.7 Stimulated Echo Pulse Sequence ... 21
2.8 Quadrupole Echo Pulse Sequence 22
2.9 Two-Dimensional Spectroscopy .. 22
2.10 Phase Cycling ... 24
2.11 Slice Selection .. 27
2.12 The Spin Warp Pulse Sequence ... 29
2.13 The Pulsed Gradient Spin Echo ... 31
2.14 The Dynamic Spin Echo Pulse Sequence 33
2.15 Circuit Diagram to Show the Connection of Primary and Secondary Coils .. 36
2.16 Calibration of the High Gradient Probe 37
2.17 “Switch-off” Test of the High Gradient Probe 39
2.18 Temperature Calibration of the High Gradient Probe 40
2.19 Circuit Diagram of the r.f. Stage .. 40
2.20 Photos of the High Gradient Probe 42
3.1 Poiseuille Flow in a Capillary ... 46
3.2 Pulse Cycle of the Electric Field Gradient 49
3.3 The Electroosmotic Cell .. 50
3.4 The Pulse Sequence for the Electroosmosis Experiments 51
3.5 Velocity Images of the Electroosmotic Cell 53
3.6 Velocity Profiles of the Electroosmotic Cell 54
4.1 The Basic VEXSY Pulse Sequence .. 59
4.2 Two Types of Displacements that Cannot Be Distinguished 60
4.3 VEXSY Spectrum of Diffusion 61
4.4 Motion in the Complex Plane 62
4.5 The VEXSY Pulse Sequence Using a CPMG Train 65
4.6 VEXSY Spectra of Laminar Couette Flow 67
4.7 Flow Through a Porous Medium 68
4.8 VEXSY Spectra of Flow Through a Porous Medium 71

5.1 Polystyrene .. 74
5.2 Random Coils .. 76
5.3 Polymers in Solution .. 77
5.4 Diagrams of the Free Energy 79
5.5 Phase Diagrams ... 81
5.6 Cloud Point Curves ... 82
5.7 c^* vs. M_w ... 84
5.8 The Reptation Model .. 85
5.9 A Velocity Profile of Fluid Flowing Along a Boundary 87
5.10 Shear Stress vs. Shear Rate Diagram 88
5.11 Viscosity vs. Shear Rate Diagram 89
5.12 Viscosity And Power Law Exponent vs. Shear Rate 90
5.13 Cone and Plate Rheometer and Couette Rheometer 96

6.1 Cyclohexane ... 97
6.2 Stejskal–Tanner Plots .. 102
6.3 D_s vs. T at Different Molar Masses 103
6.4 T_p, T_c and ϕ_c vs. $M_w^{-1/2}$ 104
6.5 log D_s vs. log M_w at Different Temperatures 105
6.6 D_s vs. T at Different Concentrations 106
6.7 log D_s vs. log ϕ at Different Temperatures 107
6.8 τ_d vs. M_w at Different Temperatures 108
6.9 Concentration Fluctuations 109
6.10 D_s vs. T at Different Molar Masses With Fitted Curves 111
6.11 T_g, T_p and T_c vs. M_w 113

7.1 The Couette Cell Used For the Experiments in This Thesis 116
7.2 The Pulse Sequence motorstep 116
7.3 NMR Image of the Couette Cell 118
7.4 Resolution Enhancement Using Double Slice Selection 119
7.5 Dynamic Spin Echo With Double Slice Selection 120
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>Velocity Profiles in the Couette Cell at Different Temperatures</td>
<td>122</td>
</tr>
<tr>
<td>7.7</td>
<td>n vs. T</td>
<td>123</td>
</tr>
<tr>
<td>7.8</td>
<td>$\log \dot{\gamma}$ vs. $\log r$</td>
<td>124</td>
</tr>
<tr>
<td>7.9</td>
<td>τ_η vs. M_w</td>
<td>125</td>
</tr>
<tr>
<td>7.10</td>
<td>$a T$ vs. T with WLF Fit</td>
<td>126</td>
</tr>
<tr>
<td>8.1</td>
<td>Convection</td>
<td>129</td>
</tr>
<tr>
<td>8.2</td>
<td>Bénard Cells</td>
<td>130</td>
</tr>
<tr>
<td>8.3</td>
<td>PGSE Experiment of a Polymer Solution Undergoing Convectonal Flow</td>
<td>133</td>
</tr>
<tr>
<td>8.4</td>
<td>Velocity Image of a Convectonal Cell</td>
<td>134</td>
</tr>
<tr>
<td>8.5</td>
<td>Three Different Types of Motion</td>
<td>135</td>
</tr>
<tr>
<td>8.6</td>
<td>The Fourier Transform of the Velocity Propagator</td>
<td>136</td>
</tr>
<tr>
<td>8.7</td>
<td>VEXSY Images of a Polymer Solution Undergoing Convectonal Flow</td>
<td>137</td>
</tr>
<tr>
<td>9.1</td>
<td>Nematic and Smectic Liquid Crystals</td>
<td>140</td>
</tr>
<tr>
<td>9.2</td>
<td>The Lamellar Phase of a Lipid/Water System</td>
<td>141</td>
</tr>
<tr>
<td>9.3</td>
<td>Velocity Profiles of Dobanol/Water in the Couette Cell</td>
<td>144</td>
</tr>
<tr>
<td>9.4</td>
<td>Velocity Profiles of AOT/Water in the Couette Cell</td>
<td>145</td>
</tr>
<tr>
<td>9.5</td>
<td>$\dot{\gamma}$ vs. r for Dobanol/Water</td>
<td>147</td>
</tr>
<tr>
<td>9.6</td>
<td>τ and η vs. $\dot{\gamma}$ for Dobanol/Water</td>
<td>148</td>
</tr>
<tr>
<td>9.7</td>
<td>$\dot{\gamma}$ vs. r for AOT/Water in the Couette Cell</td>
<td>149</td>
</tr>
<tr>
<td>9.8</td>
<td>Deuterium NMR Spectra of Sheared Dobanol/D$_2$O</td>
<td>150</td>
</tr>
<tr>
<td>9.9</td>
<td>Deuterium NMR Spectra of Sheared AOT/D$_2$O</td>
<td>151</td>
</tr>
</tbody>
</table>
List of Tables

2.1 Gradient Coil Specifications 36
5.1 Specifications of the PS samples 75
6.1 Physico-chemical Parameters of Cyclohexane 98
6.2 Parameters for the PGSE Experiments at Different M_w 100
6.3 Parameters for the PGSE Experiments at Different Concentrations 101
6.4 Parameters for the WLF Fit 112
7.1 Parameters for the Flow Imaging Experiments 121
9.1 Parameters for the Flow Imaging Experiments 145
LIST OF TABLES