Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
MODELLING OF A DIRECT OSMOTIC CONCENTRATION MEMBRANE SYSTEM

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in Food Engineering

at Massey University

Marie Wong

1997
ABSTRACT

Direct osmotic concentration (DOC) is a novel continuous membrane process. Two co-current streams, separated by a semi-permeable membrane, are recycled through a DOC module. The turbulent-flow dilute juice stream is concentrated by osmotically extracting water across the membrane into a laminar-flow, concentrated osmotic agent (OA) stream. The semi-permeable membrane is asymmetric, with a non-porous active layer (15 μm) and a porous support layer (150 μm). Membrane solute rejection was greater than 99%. Normal operation orients the active layer towards the juice stream.

For this study, water (osmotic pressure = 0) was used in the juice channel. The relationship between water flux rate and the osmotic pressure of the bulk OA stream was asymptotic, reaching a maximum flux of $1.75 \times 10^{-3} \text{kg m}^{-2} \text{s}^{-1}$, when using fructose OA at 15 MPa osmotic pressure and 20°C.

Flux rates doubled when NaCl replaced fructose as OA. A doubling in temperature to 40°C resulted in a 50% increase in flux rate. OA solution properties, particularly viscosity and factors affecting diffusion coefficients had a strong influence on flux rates.

When the membrane was reversed, with the active layer facing the OA channel and the support layer filled only with water, flux rates were 40 to 60% higher than the normal orientation.

There were three resistances to water flow associated with: osmosis across the membrane active layer (R_1); diffusion and porous flow across the support layer (R_2), and, diffusion across the boundary layer in the OA channel (R_3). For fructose OA at 0.50 g (g solution)$^{-1}$ (osmotic pressure = 15 MPa), R_1 contributed 9% of the total resistance to water flux in the DOC module, R_2 contributed 64% and R_1 contributed 27%. For an iso-osmotic concentration of NaCl OA (0.15 g (g solution)$^{-1}$) the relative resistances were: $R_1 = 17\%$, $R_2 = 44\%$ and $R_3 = 39\%$. It was clear that the water flux from the dilute to concentrated stream was more strongly influenced by the support membrane and OA solution properties than the active semi-permeable membrane itself. This accounted for the asymptotic relationship between bulk OA stream properties and flux rate.

The mathematical model successfully incorporated these resistances and solution properties. Data calculated using this model agreed well with experimental results.
ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to all my supervisors Professors Ray Winger, Robert McKibbin and Ronald Wrolstad, for all their help, support and guidance throughout this research. Each supervisor helped me in very different ways towards completing this research and I have gained a lot from each.

I would like to thank Osmotek Inc. for supplying the DOC equipment and membranes. Thanks to Robert Salter, Keith Lampi, Dr Ed Beaudry, Dr Jack Herron and Carl Jochums for their help and generosity.

I would like to thank The Horticulture & Food Research Institute of NZ Ltd (HortResearch) for supporting me and providing financial assistance. I would also like to thank FRST for funding the programme through which this research was funded. I would like to thank Frucor Processors Ltd for supplying apple juice for trials.

Thanks to all members of the Food Science Group who were formally from the Food Science & Technology Group, HortResearch for their support. Special thanks to Jeff Keene for assistance on the HPLC.

Thanks to Paul Sutherland and Dr Ian Hallet for microscopy work. Thanks to the following people for letting me use their equipment: Dr Ron Wong, Crop & Food Research; Dr Don Stanton, ESR; Stephanie Parkes and Dr Ross Beever, LandCare.

Thanks to the Department of Food Science & Technology, Oregon State University (OSU), especially to those who helped me during my two visits to OSU and made the work more enjoyable and successful. Special thanks to Bob Durst and Ken Stewart.

I would like to thank John Maindonald, University of Newcastle (formally HortResearch), for his help and advice on the statistical analyses completed. I would also like to thank Dr Alan Easteal, University of Auckland, for his advice and discussions on diffusion coefficients.

Special thanks to Dr Ian Boag, Alicia Boag, Catriona Jenkinson, Dr Sam Peterson, Jane La Riviere and Jason Wallis who I am indebted to for their generosity and friendship. Special thanks to my parents for their continual support and encouragement.

Last but not least thanks to Phil for his patience, support and encouragement.
TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGEMENTS .. iii

LIST OF ABBREVIATIONS ... xi

LIST OF NOMENCLATURE ... xii

CHAPTER 1

INTRODUCTION .. i

CHAPTER 2

LITERATURE REVIEW .. 7

2.1. Osmosis ... 7

2.1.1. Equivalent osmotic pressure terms ... 11

2.2. Membrane Processing .. 12

2.3. DOC apparatus designed by Osmotek Inc. .. 16

2.4. Modelling direct osmotic concentration .. 17

2.4.1. Model for a counter-current direct osmosis system 18

2.4.2. Solution-diffusion model for asymmetric membranes 20

2.4.2.1. Mass transfer coefficients .. 21

2.4.2.2. Transport models for membrane processes .. 24

2.4.3. Resistance model .. 26

2.5. Diffusion in liquids .. 28

2.6. Viscosity of fluids ... 39

2.7. Flow of real fluids .. 44

2.8. Flow through porous media .. 50

2.9. Conclusions ... 51

CHAPTER 3

MATERIALS AND METHODOLOGY ... 53

3.1. Materials and equipment ... 53

3.2. Methodology .. 60

3.2.1. Density .. 60

3.2.2. Refractive index .. 61

3.2.3. Viscosity .. 61

3.2.4. Specific conductance ... 61
3.2.5. Storage and re-concentration of osmotic agents
3.2.6. Determining the concentration of the sugar OA solutions
3.2.7. Determining the concentration of sodium chloride OA solutions
3.2.8. HPLC analysis of sugars
3.2.9. DOC apparatus and operation
3.2.10. Standard operation start up procedure of DOC apparatus
3.2.11. Equilibration of DOC module
3.2.12. Experimental operation of DOC apparatus
3.2.13. Determination of water flux rate
3.2.14. Data analysis for flux rate
3.2.15. Cleaning of DOC module and membranes
3.2.16. Membrane replacement
3.2.17. Determining the time required to flush the OA circuit
3.2.18. Determining the time required for equilibration of membranes
3.2.19. Visualisation of flow characteristics
3.2.20. Determining iso-osmotic concentrations of sugar solutions

3.3. Analysis of data
3.3.1. Comparison of non-linear and linear curves
3.3.2. Best fit polynomial equations for physical properties
3.3.3. Mass Balances

CHAPTER 4
PHYSICAL PROPERTIES OF AQUEOUS SOLUTIONS
4.1. Concentration, refractive index, density and specific conductance
4.2. Osmosity and osmotic pressure
4.2.1. Iso-osmotic sugar solutions
4.3. Absolute and relative viscosity of fructose and NaCl solutions
4.3.1. Relationship between temperature and viscosity of fructose solutions
4.4. Binary diffusion coefficients for fructose and NaCl solutions
4.5. Viscosity and diffusion coefficients of fructose and NaCl solutions
4.5.1. Fructose and NaCl solutions used during experimental trials
4.5.2. Sucrose, fructose and NaCl solutions at approximate iso-osmotic concentrations
CHAPTER 5
DOC MODULE AND OPERATION

5.1. DOC module 113
5.2. Flow in the juice circuit 120
5.3. Flow in the OA circuit 125
 5.3.1. Entry length for fully-developed laminar flow 130
5.4. DOC membranes 135
 5.4.1. Membrane structure 135
 5.4.2. Membrane orientation 135
 5.4.3. Membrane area at equilibrium 138
 5.4.4. Membrane stretching and membrane gap 142
 5.4.5. Salt permeability test for new membranes .. 145
5.5. Equilibration of DOC module 145
5.6. Osmotic agent concentration changes after DOC .. 146
5.7. Mass balances 151

CHAPTER 6
MASS FLUX RATES IN THE SMALL DOC MODULE

6.1. Flow velocity and water flux rate 152
6.2. Impact of osmotic pressure difference on water flux rate .. 153
6.3. Influence of temperature on water flux rate 153
6.4. Water flux rates and OA solution properties 161
 6.4.1. Water flux rates using NaCl 161
 6.4.2. Water flux rate and OA solution viscosity 161
 6.4.3. Water flux rate and solution diffusion coefficients .. 166
6.5. Water flux rate and membrane orientation 169
6.6. Solute transfer during DOC 172
6.7. Membrane constant 'C' for solvent transfer across active membrane layer .. 184
6.8. Resistances to water transfer in the DOC module 186
6.9. Actual water flux rate across membrane 190

CHAPTER 7
WATER FLUX RATES IN THE PILOT PLANT DOC MODULE 192

7.1. Scaling up water flux rates to the pilot plant DOC module ... 192
LIST OF FIGURES

Figure 2.1. Solution-diffusion model for asymmetric membranes 22
Figure 2.2. Binary diffusion coefficients for aqueous solutions 35
Figure 2.3. Viscosity of glucose solutions at different temperatures 42
Figure 2.4. Boundary layer formation in laminar flow conditions 45
Figure 3.1. DOC unit flow diagram ... 66
Figure 3.2. DOC unit flow diagram and dye injection points 73
Figure 4.1. Refractive index of aqueous sugar solutions at 20°C 82
Figure 4.2. Density of aqueous sugar solutions at 20°C 84
Figure 4.3. Physical properties of sodium chloride solutions at 20°C 86
Figure 4.4. Influence of temperature on osmotic pressure of NaCl solutions 89
Figure 4.5. Calibration curves for determining osmotic pressure using osmosity ... 91
Figure 4.6. Solute concentration and osmotic pressure 94
Figure 4.7. Iso-osmotic sugar solutions at 20°C 96
Figure 4.8. Relative viscosity of aqueous fructose solutions 100
Figure 4.9. Absolute viscosity of NaCl solutions at 20°C 103
Figure 4.10. Relationship between temperature and viscosity of fructose solutions ... 105
Figure 4.11. Binary diffusion coefficients for aqueous fructose solutions 108
Figure 5.1. Schematic diagram of the small laboratory DOC module 114
Figure 5.2. Drawing of small laboratory DOC module 116
Figure 5.3. DOC module OA plate .. 118
Figure 5.4. OA plate of the pilot plant DOC module 121
Figure 5.5. Schematic drawing of side view of DOC module 123
Figure 5.6. The progress of amaranth dye in the juice circuit 126
Figure 5.7. The progress of amaranth dye in the OA circuit 128
Figure 5.8. A single OA flow channel ... 131
Figure 5.9. DOC membrane structure .. 136
Figure 5.10. The membrane gap and deflection between two support bars 139
Figure 5.11. Water flow rates into and out of juice circuit 143
Figure 5.12. Water flux rate errors during membrane equilibration period 147
Figure 6.1. Impact of osmotic pressure difference on water flux rates in the small laboratory DOC module .. 154
Figure 6.2. Influence of temperature on water flux rates in the small laboratory DOC module .. 156
Figure 6.3. Relationship between temperature and water flux rate for fructose solutions ... 159
Figure 6.4. Water flux rates using NaCl or fructose solution in small laboratory DOC module .. 162
Figure 6.5. Water flux rates for approximate iso-osmotic OA solutions with different solution viscosities .. 164
Figure 6.6. Water flux rates for approximate iso-osmotic OA solutions with varying solution diffusion coefficients 167
Figure 6.7. Water flux rates for different membrane orientations 170
Figure 6.8. Solute flux rates of different molecular weight solutes in the small laboratory DOC module 175
Figure 6.9. Solute flux rates as influenced by OA solute concentration 178
Figure 6.10. Fructose solute flux rates as influenced by temperature 180
Figure 6.11. Solute and water flux rates in the small laboratory DOC module .. 182
Figure 6.12. Membrane orientation and resistances 187
Figure 7.1. Water flux rates in the small laboratory and pilot plant DOC modules .. 193
Figure 8.1. DOC membrane and OA channel boundary layer 197
Figure 8.2. OA flow channel .. 202
Figure 8.3. Flow diagram of iterative procedure to solve for concentration \(Y_1 \) .. 220
Figure 8.4. Theoretical and experimental water flux rates for fructose and NaCl as osmotic agents ... 225
Figure 8.5. Theoretical and experimental flux rates at various temperatures using fructose .. 227
Figure 8.6. Relationship between the theoretical actual osmotic pressure driving force and experimental water flux rates 231
Figure 8.7. Concentration profiles across support and boundary layers in DOC membrane .. 233
Figure A2.1. Flow diagram of DOC unit used for unsteady state modelling 251
Figure A2.2. Unsteady state modelling results for DOC module 254
LIST OF TABLES

Table 2.1. J'_{AB} and the relationship between $\log_d(D_{AB})$ and mole fraction for sugar solutions .. 37
Table 2.2. Mean binary diffusion coefficients for NaCl solutions between 18 and 35°C .. 39
Table 2.3. Relationship between $\log_d(\mu/\mu_0)$ and mole fraction of sugar solutions at various temperatures 41
Table 3.1. Mean values of the refractive index and the dispersion varied according to the temperature of distilled water 62
Table 4.1. Equivalent solution concentrations for iso-osmotic solutions at 20°C .. 98
Table 4.2. Absolute viscosities (μ) of aqueous fructose solutions .. 99
Table 4.3. Relationship between $\log_d(\mu/\mu_0)$ and mole fraction of fructose solutions at various temperatures 99
Table 4.4. Activation energies for fructose solution viscosity ... 102
Table 4.5. J'_{AB} and the relationship between $\log_d(D_{AB})$ and mole fraction for fructose solutions 110
Table 4.6. Viscosity and diffusion coefficients of various fructose and NaCl solutions at 20°C .. 111
Table 4.7. Viscosity and diffusion coefficients of sucrose, fructose and NaCl solutions .. 112
Table 5.1. Dimensions and flow conditions in the juice circuit of the DOC modules .. 120
Table 5.2. Dimensions and flow conditions in the OA circuit ... 133
Table 5.3. Entry length for fully-developed flow at 20°C ... 135
Table 5.4. Total membrane area available for mass transfer ... 142
Table 5.5. Impact of 45 minutes recirculation on OA concentration .. 149
Table 6.1. Water flux rates and flow channel velocity at 20°C ... 152
Table 6.2. Activation energies for water flux during DOC ... 158
Table 6.3. Solute movement across the DOC membrane ... 173
Table 6.4. Membrane constants for the active layer of DOC membranes ... 185
Table 6.5. Contributions of individual resistances ... 190
Table 8.1. Summary of DOC model ... 218
Table 8.2. Data and functions used to solve the mathematical model for the small laboratory DOC module at 20°C 223
Table 8.3. Contributions of individual resistances determined from theoretical and experimental data 229
LIST OF ABBREVIATIONS

am - active membrane layer
bl - boundary layer in OA channel
Case 1 - active layer facing the juice circuit, support layer facing the OA circuit and a fully-developed velocity boundary layer in OA flow channel
Case 2 - active layer facing the juice circuit, support layer facing the OA circuit, no velocity boundary layers in OA channel
Case 3 - active layer facing the OA circuit, support layer facing the juice circuit and a fully-developed velocity boundary layer in OA flow channel

DOC - direct osmotic concentration
ED - electrodialysis
fdbl - fully-developed boundary layer
Hg - mercury
HPLC - high performance liquid chromatography
GS - gas separation
KCl - potassium chloride
MD - membrane distillation
MF - microfiltration
NaCl - sodium chloride
NF - nanofiltration
NZ - New Zealand
OA - osmotic agent
OA\textsubscript{IN} - flow rate of OA into module
OA\textsubscript{OUT} - flow rate of OA out of module
OD - osmotic distillation
p - level of significance of a statistical test
PRO - pressure retarded osmosis
PV - pervaporation
PVC - polyvinyl chloride
RO - reverse osmosis
sm - support membrane layer
UF - ultrafiltration
USA - United States of America
vs - versus
LIST OF NOMENCLATURE

- \(\alpha_i \) - activity of solvent \(i \) (always \(\leq 1.0 \))
- \(A_m \) - membrane area, \(\text{m}^2 \)
- \(c_i \) - mass concentration of component \(i \), \(\text{kg} \ \text{m}^{-3} \)
- \(C \) - membrane constant, \(\text{kg} \ \text{m}^{-2} \ \text{s}^{-1} \ \text{Pa}^{-1} \)
- \(d_s \) - thickness of membrane active layer, \(\text{m} \)
- \(d_e \) - thickness of membrane support layer, \(\text{m} \)
- \(D_{i,m} \) - diffusion coefficient of component \(i \) within the membrane, \(\text{m}^2 \ \text{s}^{-1} \)
- \(D_{i,A} \) - self diffusion coefficient, \(\text{m}^2 \ \text{s}^{-1} \)
- \(D_{i,t} \) - tracer diffusion coefficient, \(\text{m}^2 \ \text{s}^{-1} \)
- \(D_{i,B} \) - binary diffusion coefficient of component \(A \) in a mixture of \(A \) and \(B \), \(\text{m}^2 \ \text{s}^{-1} \)
- \(D_{i,B}^{\alpha} \) - binary diffusion coefficient of solute at infinite dilution at \(T^\alpha \ \text{C} \), \(\text{m}^2 \ \text{s}^{-1} \)
- \(D_{ij} \) - effective diffusion coefficient at concentration \(Y \), \(\text{m}^2 \ \text{s}^{-1} \)
- \(d_f \) - degrees of freedom
- \(E_a \) - activation energy, \(\text{J} \ \text{mol}^{-1} \)
- \(k[x] \) - expected value of \(x \)-coefficient
- \(F \) - force, \(\text{N} \)
- \(F(Y) \) - integral function of \(Y \)
- \(g \) - gravitational acceleration, \(\text{m} \ \text{s}^{-2} \)
- \(G \) - Gibbs free energy, \(\text{J} \)
- \(G_i \) - pressure gradient in the \(x \) direction, \(dP/dx \)
- \(h \) - equivalent flow channel height; distance between membrane and OA wall when fully deflected, \(\text{m} \)
- \(I \) - integral function describing velocity and concentration profiles across the OA channel
- \(l \) - correction factor for \(l \)
- \(j \) - molar diffusion flux, \(\text{mol} \ \text{m}^{-2} \ \text{s}^{-1} \)
- \(k \) - mass transfer coefficient, \(\text{m} \ \text{s}^{-1} \) [Section 2.4.2]
- \(k \) - Boltzmann constant, \(1.38 \times 10^{-23} \ \text{J} \ \text{K}^{-1} \)
- \(k_f \) - permeability of porous media, \(\text{m}^2 \)
- \(l_c \) - characteristic length, \(\text{m} \)
- \(l_o \) - length of membrane arc between two membrane support bars, \(\text{m} \)
- \(l_m \) - length of OA flow channel, \(\text{m} \)
- \(l' \) - entry length before fully-developed flow, \(\text{m} \)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>solution molality, mol (kg solvent)$^{-1}$</td>
</tr>
<tr>
<td>m, n</td>
<td>number of periods in Fourier series</td>
</tr>
<tr>
<td>m_i</td>
<td>mass diffusive flux of component i, kg m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>m_w</td>
<td>water mass flux rate, kg m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>$m_{w}(x,y,z)$</td>
<td>water mass flux rate at position (x,y,z), kg m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>M</td>
<td>solution molarity, mol l$^{-1}$</td>
</tr>
<tr>
<td>M_s</td>
<td>molecular weight of solvent, g mol$^{-1}$</td>
</tr>
<tr>
<td>M_j</td>
<td>molecular weight of solute, g mol$^{-1}$</td>
</tr>
<tr>
<td>n</td>
<td>number of samples for each mean</td>
</tr>
<tr>
<td>n</td>
<td>number of horizontal flow channels in OA plate [Section 5.4.3]</td>
</tr>
<tr>
<td>N_i</td>
<td>number of moles of component i (normally the solvent)</td>
</tr>
<tr>
<td>N_j</td>
<td>number of moles of component j (normally the solute)</td>
</tr>
<tr>
<td>Nu</td>
<td>Nusselt number</td>
</tr>
<tr>
<td>p</td>
<td>pressure, Pa</td>
</tr>
<tr>
<td>p_i^*</td>
<td>vapour pressure of pure solvent i, Pa</td>
</tr>
<tr>
<td>p_i</td>
<td>partial vapour pressure of solvent i, in solution, Pa</td>
</tr>
<tr>
<td>Δp</td>
<td>hydraulic pressure difference, Pa</td>
</tr>
<tr>
<td>p, q</td>
<td>number of periods in Fourier series</td>
</tr>
<tr>
<td>q_{aw}</td>
<td>water mass flux rate per unit area along OA flow channel, kg m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>q_{af}</td>
<td>fructose mass flux rate per unit area along OA flow channel, kg m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>Q_m</td>
<td>total mass flow along OA flow channel, kg s$^{-1}$</td>
</tr>
<tr>
<td>Q_{mc}</td>
<td>total mass flow at channel entry, kg s$^{-1}$</td>
</tr>
<tr>
<td>Q_{mf}</td>
<td>total mass flow of fructose along flow channel, kg s$^{-1}$</td>
</tr>
<tr>
<td>r</td>
<td>pore radius, m</td>
</tr>
<tr>
<td>R</td>
<td>gas constant, 8.314 J K$^{-1}$ mol$^{-1}$ \equiv 8.314 m3 Pa K$^{-1}$ mol$^{-1}$</td>
</tr>
<tr>
<td>R</td>
<td>resistance, m2 s Pa kg$^{-1}$</td>
</tr>
<tr>
<td>R_1</td>
<td>resistance in the active membrane layer, m2 s Pa kg$^{-1}$</td>
</tr>
<tr>
<td>R_2</td>
<td>resistance in the porous support layer, m2 s Pa kg$^{-1}$</td>
</tr>
<tr>
<td>R_3</td>
<td>resistance in the velocity boundary layer, m2 s Pa kg$^{-1}$</td>
</tr>
<tr>
<td>$% R$</td>
<td>percentage rejection</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>RSE</td>
<td>residual standard error</td>
</tr>
<tr>
<td>RSS</td>
<td>residual sum of squares</td>
</tr>
<tr>
<td>s</td>
<td>pooled estimate of standard deviation</td>
</tr>
<tr>
<td>S</td>
<td>osmosity, molar concentration of NaCl, mol l$^{-1}$</td>
</tr>
<tr>
<td>Sc</td>
<td>Schmidt number</td>
</tr>
<tr>
<td>sd</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>standard error</td>
</tr>
</tbody>
</table>
\(SE[x] \) - standard error of x-coefficient
\(SEM \) - standard error about the mean
\(Sh \) - Sherwood number
\(t \) - time, s
\(T \) - absolute temperature, K
\(u \) - velocity in the x direction, m s\(^{-1}\)
\(u(x,y,z) \) - velocity in the x direction at position \((x,y,z)\), m s\(^{-1}\)
\(U \) - bulk free-stream velocity in x direction, m s\(^{-1}\)
\(v \) - velocity in the y direction, m s\(^{-1}\)
\(\vec{v} \) - velocity vector
\(\vec{v}_0 \) - superficial or Darcy velocity, volume of flow through a unit cross-sectional area of the solid plus fluid, m\(^3\) m\(^{-2}\) s\(^{-1}\)
\(V_w \) - volumetric water flux rate, m\(^3\) m\(^{-2}\) s\(^{-1}\)
\(w \) - width between two adjacent membrane support bars, width of OA flow channel, m
\(\omega \) - velocity in the z direction, m s\(^{-1}\)
\(x \) - horizontal distance parallel to the membrane, m
\(x \) - coordinate
\(x_i \) - mole fraction of component A
\(y \) - distance perpendicular to the membrane (across membrane or away from the membrane), m
\(y \) - coordinate
\(Y \) - solute mass fraction, solute mass fraction in OA circuit, g (g solution\(^{-1}\))
\(Y(x,y,z) \) - solute mass fraction at position \((x,y,z)\), g (g solution\(^{-1}\))
\(z \) - coordinate
\(\nabla \) - vector differentiation operator

Greek symbols
\(\alpha \) - power term for viscosity in relationship with diffusion coefficient
\(\alpha \) - power term for velocity profile equation
\(\gamma \) - activity coefficient
\(\delta \) - velocity boundary layer thickness, m
\(\delta(x) \) - velocity boundary layer thickness as a function of x, m
\(\delta_c \) - concentration boundary layer thickness, m
\(\Delta \) - membrane deflection between two membrane support bars, m
\(\varepsilon \) - porosity
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ</td>
<td>proportionality constant</td>
</tr>
<tr>
<td>λ</td>
<td>membrane thickness, m</td>
</tr>
<tr>
<td>μ_i</td>
<td>chemical potential of component i, J mol$^{-1}$</td>
</tr>
<tr>
<td>μ</td>
<td>fluid or solution viscosity, kg m$^{-1}$ s$^{-1}$</td>
</tr>
<tr>
<td>μ_0</td>
<td>absolute viscosity of solvent at T °C, kg m$^{-1}$ s$^{-1}$</td>
</tr>
<tr>
<td>$\mu(Y)$</td>
<td>viscosity of solution at concentration Y, kg m$^{-1}$ s$^{-1}$</td>
</tr>
<tr>
<td>ν</td>
<td>kinematic viscosity, m2 s$^{-1}$</td>
</tr>
<tr>
<td>π</td>
<td>osmotic pressure, MPa</td>
</tr>
<tr>
<td>π_A</td>
<td>osmotic pressure of solution A, MPa</td>
</tr>
<tr>
<td>$\pi(Y)$</td>
<td>osmotic pressure of solution at concentration Y, MPa</td>
</tr>
<tr>
<td>$\Delta\pi$</td>
<td>osmotic pressure difference, MPa</td>
</tr>
<tr>
<td>ρ</td>
<td>fluid or solution density, kg m$^{-3}$</td>
</tr>
<tr>
<td>$\rho(Y)$</td>
<td>density of solution at concentration Y, kg m$^{-3}$</td>
</tr>
<tr>
<td>τ</td>
<td>tortuosity</td>
</tr>
<tr>
<td>υ_i</td>
<td>partial molar volume of solvent i, m3 mol$^{-1}$</td>
</tr>
<tr>
<td>ϕ</td>
<td>osmotic coefficient</td>
</tr>
<tr>
<td>ψ</td>
<td>water potential, J kg$^{-1}$</td>
</tr>
</tbody>
</table>

Subscripts

0 - position at the interface between the support layer and the velocity boundary layer

1 - position at the surface of the active layer on OA side

a - active layer

C - bulk OA free-stream solution and bulk OA free-stream solution at flow channel entry

f - fructose

i - component in solution, normally the solvent

j - juice circuit solution

m - mass flow

m - membrane

m, n - number of periods in Fourier series [Equation (8.24)]

OA - osmotic agent solution

s - support layer

w - water