Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Isolation and assessment of attachment bacteria and yeasts for the biological control of *Botrytis cinerea*.

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Science at Massey University Palmerston North New Zealand.

Darryl W. M. Cook
March 1997
Abstract

The biological control of Botrytis cinerea Pers. infection by microbial agents applied to the host surface has been based on a wide range of mechanisms of which resource competition, antibiosis and induced host resistance have been considered the most important. A 1995 review of antagonistic mechanisms concluded that biocontrol agent (BCA) colonisation of the plant host was critical for successful biocontrol but that few isolates appear to achieve this. Recent research has shown a reduced epiphytic growth prior to penetration of B. cinerea when conidia are applied as dry spores. Such pre-penetration infection morphology would provide little opportunity for antibiosis, resource competition or induced host resistance. Contemporary in vivo plant tissue assays and in vitro agar plate-based-assays have perpetuated the traditional biocontrol model based on such mechanisms hence an alternative approach was required. BCA selection based on microbial adhesion to the pathogen itself appeared to offer such an approach.

An investigation of methods of B. cinerea conidial application showed that disease incidence was increased and development advanced from aerosol application of spores. Aerosol application was used as the standard technique for biocontrol experiments in the remainder of this study.

A total of 12 bacterial and eight yeast candidates were obtained from the attachment assay. In vivo, 15 reduced disease by more than 90% in at least one combination of incubation temperature (1°C, 7°C or 15°C) and BCA concentration (three-times to 60-times the B. cinerea population applied). When BCA application followed B. cinerea inoculation by up to 48 h, high biocontrol activity was observed. The five yeasts tested postharvest on kiwifruit conferred high biocontrol (>90%) when applied simultaneously or up to 48 h after B. cinerea inoculation. All eight bacterial and seven yeast BCA candidates also reduced disease incidence in stem wounds by more than 80% in glasshouse tomato plants.

In vitro investigations into antagonistic mechanisms suggested that antibiosis was unlikely to be important in all but two of these bacterial BCAs. Production of
endochitinase was common among the yeasts but there was no single presumptive mechanism for bacterial biocontrol. Variable levels of adhesion by BCA isolates were detected by light and electron microscopy and indicate that biocontrol may not be correlated quantitatively to the number of adhesion events. Adhesion of yeast and biocontrol activity were not affected by a monoclonal antibody to *B. cinerea*. However, bacterial adhesion and biocontrol activity were dramatically reduced indicating that the antibody blocked bacterial adhesion sites and that bacteria and yeast adhere to different sites on the pathogen.

A monoclonal antibody-based ELISA immunoassay was developed to measure vegetative biomass of *B. cinerea* in infected tomato stem tissue with or without BCAs. The key to the successful application of this ELISA assay was the extraction of the pathogen antigen from the plant tissue using 0.1M copper sulphate and salts solution. Significant reductions in pathogen growth were detected in host tissue co-inoculated with *B. cinerea* and BCA.

The attachment assay was an efficient isolation method that optimised use of laboratory resources and could be employed in future programmes as a presumptive test for biocontrol. With this determinative selection criterion, BCAs with desirable characteristics such as reduced importance of BCA application dose and timing were obtained. A comparison of these results with those in the literature led to the proposal for an alternative biocontrol model for *B. cinerea* that could supplement existing technologies.
Acknowledgements

This thesis project was only possible with the help and support of many people. I am grateful to my supervisors Dr’s Molly Dewey, Lian-Heng Cheah and Siva Ganesh for their expertise, skills and time and especially my chief supervisor, Dr Peter Long for his role that was above and beyond the “call of duty” and allowing me the freedom to pursue this “risky” idea. To colleagues, Dr’s Charles Wilson and Michael Wisniewski for the use of their yeast isolates and Dr Philip Elmer for the use of a Botrytis cinerea isolate. I also wish to thank the many staff members including Mr Hugh Neilson for his constant companionship and helpfulness in the laboratory and the manager and staff at the Plant Growth Unit.

To the many friendships formed during my studies, with whom we have shared many great times; Mike Currie, Alison Duffy, Tessa Mills, Ralph Springett and my old flatmate Toni Withers (plus Gem and Cybil) and those who have maintained our friendship while I have been in Palmerston North, Ross Cameron, Sam Ward, Kerry Jacobs and Bernard Fone.

Finally to a very special lady, Kirstin Wurms, who I met on the first day of my PhD studies, fell in love with a beautiful woman that culminated in our marriage in November 1996. Her support, friendship and skills were invaluable.

To Him who is the creator of all things that we seek to understand with our tools we call science and philosophy.

“He makes the grass grow for the cattle, and plants for men to cultivate-bringing forth food from the earth: wine that gladdens the heart of man, oil to make his face shine, and bread that sustains his heart”.

(Psalm 104: 14-15)
Table of contents

ABSTRACT ... ii

ACKNOWLEDGEMENTS .. iv

TABLE OF CONTENTS .. v

TABLE OF FIGURES .. xi

TABLE OF TABLES .. xvi

CHAPTER 1

GENERAL INTRODUCTION .. 1

THE CHANGING FACE OF PLANT PROTECTION 1

1.1 SUSTAINABLE AGRICULTURE ... 1

1.2 PLANT PROTECTION RESEARCH. .. 2

1.3 BOTRYTIS CINEREA PERS. - A PATHOGEN CASE STUDY 3

1.4 BIOCONTROL OF B. CINEREA ... 5

1.4.1 Introduction ... 5

1.4.2 The contemporary model of B. cinerea biocontrol 6

1.4.3 Alternative, selectable cell characters for biocontrol 9

1.5 MICROBIAL ADHESION AS A CRITERION FOR BIOCONTROL SCREENING ... 10

1.5.1 Microbial attachment to plants .. 10

1.5.2 Microbial attachment to fungi (Mycolytic bacteria and yeasts) 11

1.6 PROPOSED SCREENING PROGRAMME. ... 12

THESIS OBJECTIVES .. 13

CHAPTER 2

GENERAL MATERIALS AND METHODS .. 14

2.1 B. CINEREA .. 14

2.1.1 Cultures .. 14

2.1.2 Spore Suspensions .. 14

2.2 BACTERIA AND YEASTS .. 14

2.2.1 Cultures .. 14

2.2.2 Cell Suspensions .. 15

2.3 TOMATO TISSUE .. 16

2.3.1 Growth of the plants .. 16

2.3.2 Tissue preparation .. 16

2.4 STEM TISSUE HOLDERS (STH) ... 16

2.5 ENZYME LINKED IMMUNOSORBANT ASSAYS (ELISA) 17

2.5.1 Phosphate buffered saline (PBS) .. 17

2.5.2 Bicarbonate buffer (pH 9.6) (Bicarb) 17

2.5.3 Preparation of B. cinerea antigen extract 17

2.5.4 Preparation of tomato plant extract used in immunological experiments .. 18

2.5.5 Indirect-plate-trapped-antigen (PTA)-ELISA protocol using anti-mouse antibody conjugate (PTA-ELISA) ... 18

2.5.6 Indirect-PTA-ELISA using the Biotin/ExtrAvidin detection procedure .. 19
CHAPTER 3

DEVELOPMENT OF THE “ATTACHMENT ASSAY” ... 24

3.1 INTRODUCTION .. 24
 3.1.1 The isolation of bacteria or yeasts colonising fungi .. 24
 3.1.2 Reversible microbial adhesion to inert macrosurfaces 25
 3.1.3 The principle of the assay design ... 26
3.2 OBJECTIVES .. 28
3.3 GENERAL NOTE - STATISTICAL ANALYSIS ... 28
3.4 PHASE I - DEVELOPMENT OF THE ATTACHMENT APPARATUS 29
 3.4.1 Experiment One - Retention assessment .. 29
 3.4.1.A Introduction ... 29
 3.4.1.B Materials and Methods ... 29
 3.4.1.C Results ... 29
 3.4.2 Experiment Two - The Prototype wash assay .. 30
 3.4.2.A Materials and Methods ... 30
 3.4.2.B Results ... 30
 3.4.3 Experiment Three - Modifications to the prototype assay 32
 3.4.3.A Introduction ... 32
 3.4.3.B Materials and Methods ... 32
 3.4.3.C Results ... 33
 3.4.4 Summary ... 36
3.5 PHASE II - MINIMISING APPARATUS CONTAMINATION 38
 3.5.1 Materials and Methods .. 38
 3.5.1.A Micro-organisms and cultural conditions .. 38
 3.5.1.B Changes in attachment behaviour of test cells with time 39
 3.5.1.C Investigation into possible electrostatic behaviour 39
 3.5.1.D Effect of wash solution pH and buffer .. 39
 3.5.1.E Phylloplane washings with B. cinerea added .. 40
 3.5.2 Results ... 41
 3.5.2.A Changes in contaminant behaviour with time .. 41
 3.5.2.B Electrostatic behaviour ... 42
 3.5.2.C Effect of pH and Wash Buffer .. 43
 3.5.2.D Removal of phylloplane washings ... 43
3.6 DISCUSSION ... 45

CHAPTER 4

USE OF THE POTTER TOWER FOR INOCULATING TOMATO STEM PIECES WITH B.
CINEREA CONIDIA, YEAST OR BACTERIAL CELLS .. 50

4.1 INTRODUCTION .. 50
4.2 OBJECTIVES .. 51
4.3 SECTION ONE: DEPOSITION PATTERNS OF B. CINEREA AND BACTERIAL OR YEAST CELLS ... 52
 4.3.1 Experiment One: Calibration of the Potter Tower .. 52
 4.3.2 Experiment Two: Dispersal of B. cinerea conidia .. 52
 4.3.2.1 Objective .. 52
 4.3.2.2 Materials and Methods ... 52
 4.3.2.3 Results and discussion .. 53
 4.3.3 Experiment Three: Deposition of Yeast and Bacteria cells 57
 4.3.3.1 Objective .. 57
4.5.1.1 Introduction .. 76
4.5.1.2 Materials and methods ... 77
4.5.1.3 Materials and Methods .. 78
4.5.1.4 Results and discussion ... 79

4.6 DISCUSSION ... 80

5.1 INTRODUCTION .. 81
5.2 OBJECTIVES ... 82
5.3 MATERIALS AND METHODS ... 83
5.3.1 Collection of BCA candidate microbes 83
5.3.2 Candidate microbe extraction 84
5.3.3 Culture of Botrytis cinerea ... 85
5.3.4 Co-incubation .. 86
5.3.5 Extraction of attacher microbes 87
5.3.6 In vivo bioassay for biocontrol by attacher mixtures 88
5.3.7 Confirmation of attachment .. 89
5.3.8 Purification of bacteria and yeasts from mixtures 90
5.3.9 Bioassay for biocontrol of the purified isolates 91
5.3.10 BCA candidate identification 92
5.3.11 Timing of BCA inoculation 93
5.3.12 Statistical analysis .. 94

5.4 RESULTS ... 95
5.4.1 Attachment and biocontrol of crude bacteria and yeast mixtures ... 96
5.4.2 Biocontrol by pure isolates of bacteria and yeasts .. 97
5.4.3 Biocontrol agent identification 98
5.4.4 Timing of BCA application .. 99
5.5 DISCUSSION ... 100

CHAPTER 6

MICROSCOPIC STUDIES OF THE INTERACTIONS OF A RANGE OF ATTACHER BACTERIA AND YEASTS COLONISING B. CINEREA ... 101
6.1 INTRODUCTION .. 101
6.2 OBJECTIVES ... 102
6.3 MATERIALS AND METHODS ... 103
6.3.1 Light microscopic examination in vitro .. 104
6.3.2 Scanning electron microscopy (SEM) 104
6.4 RESULTS ... 105
6.4.1 Light microscopy .. 106
8.2.7 Experiment Seven - Confirmation of biomass determinations ... 172
 8.2.7.A Introduction .. 172
 8.2.7.B Objectives .. 172
 8.2.7.C Materials and Methods ... 172
 8.2.7.D Results and Discussion .. 173
8.2.8 Experiment Eight - Immunofluorescence examination of B. cinerea growth on tomato stem pieces ... 178
 8.2.8.A Materials and Methods .. 178
 8.2.8.B Results and Discussion .. 178
8.3 DISCUSSION .. 182

CHAPTER 9

BIOCONTROL ACTIVITY IN POST-HARVEST COOLSTORED KIWIFRUIT AND LATE SOWN GLASSHOUSE TOMATO PLANTS ... 186
9.1 INTRODUCTION ... 186
9.2 OBJECTIVE ... 188
9.3 POST-HARVEST KIWIFRUIT EXPERIMENT: 1995 .. 189
 9.3.1 Materials and Methods .. 189
 9.3.2 Results .. 190
9.4 POST-HARVEST KIWIFRUIT EXPERIMENT: 1996 .. 192
 9.4.1 Materials and Methods .. 192
 9.4.2 Results .. 193
9.5 GLASSHOUSE TOMATO EXPERIMENT 1996 ... 195
 9.5.1 Materials and Methods .. 195
 9.5.2 Results .. 198
9.6 DISCUSSION ... 203

CHAPTER 10

GENERAL DISCUSSION ... 207

AN IMPROVED METHOD FOR SCREENING MICRO-ORGANISMS FOR BIOCONTROL AGENTS AGAINST B. CINEREA .. 207
10.1 INTRODUCTION ... 207
10.2 THE ATTACHMENT ASSAY ... 209
10.3 B. CINEREA INFECTION ... 211
10.4 THE BIOLOGY OF THE BCAS SELECTED .. 211
 10.4.1 Habitat and location of candidates ... 211
 10.4.2 Taxonomy ... 212
 10.4.3 Biocontrol results .. 212
 10.4.4 Antagonistic function ... 213
10.5 TOWARDS AN ALTERNATIVE BIOCONTROL MODEL ... 214
10.6 FUTURE RESEARCH ... 215
 10.6.1 B. cinerea aetiology ... 215
 10.6.2 The attachment assay ... 216
 10.6.3 Biocontrol studies .. 216
 10.6.4 Mode of antagonism .. 217
 10.6.5 Commercialisation .. 218
10.7 BLUE SKIES RESEARCH ... 219
 10.7.1 Variants of B. cinerea biocontrol .. 219
 10.7.2 Other fungal plant pathogens ... 219
 10.7.3 Insect pests .. 220

REFERENCES ... 221
Table of figures

Fig. 3.1. Principle of the column based assay design... 27

Fig. 3.2. D. hansenii contamination of the nylon mesh after cells were applied then the
apparatus was washed with either 50 ml or 25 ml SDW .. 31

Fig. 3.3. Sectioned view of mesh holder, part of the wash apparatus................................. 37

Fig. 3.4. Fully assembled wash apparatus with a frame to hold six fully assembled columns
and drain to catch waste ... 37

Fig. 3.5. Changes in contamination of the nylon mesh by B. megaterium, C. laurentii, D.
hansenii and Pseudomonas sp. suspended in SDW ... 41

Fig. 3.6. Removal of cfus (obtained from phylloplane washings of Acer sp.) from the nylon
mesh with different numbers of B. cinerea germlings added to the surface 44

Fig. 4.1. Conidial density of B. cinerea applied to PDA using the Potter Tower at 100 mm
Hg nozzle pressure .. 54

Fig. 4.2. Iwao’s patchiness regression of conidia applied to spray table by Potter Tower at
100 mm Hg nozzle pressure compared with a random population distribution 55

Fig. 4.3. Log_{10} viable bacteria density (cfu/mm²) following the application of a range of
concentrations of cell suspensions in SDW using the Potter Tower at a nozzle pressure of
100 mm Hg .. 58

Fig. 4.4. Log_{10} viable yeast density (cfu/mm²) on the spray table following the application
of a range of cell concentrations in SDW using the Potter tower at a nozzle pressure of
100 mm Hg .. 59

Fig. 4.5. The variable expression of lesion symptoms in tomato stem tissue spray
inoculated with B. cinerea conidia .. 61

Fig. 4.6. Daily disease incidence in tomato stem pieces inoculated with 30, 60 and 300
spores/mm² using either the potter tower or in 30 and 60 µl SDW spore suspensions 63

Fig. 4.7. Predictor relationship between log_{10} of bacterial cfu density and suspension
concentration. Dashed lines are 95% predictor bounds for the regression relationship,
parameter values: y=0.80x - 4.85 (r²=0.93; P<0.0001) ... 68

Fig. 4.8. Predictor relationship between log_{10} of yeast cfu density and suspension
concentration. Dashed lines are 95% predictor bounds for the regression relationship
parameter values: y=0.80x - 3.95 (r²=0.97; P<0.0001) ... 68

Fig. 5.1 Typical bacterial cell adhesion to B. cinerea germlings incubated in SDW obtained
from the attachment assay .. 86

Fig. 5.2. Typical yeast cell adhesion to B. cinerea germlings incubated in SDW obtained from
the attachment assay .. 86
Fig. 5.3. Congregation of bacteria cells around *B. cinerea* hyphae from co-incubated samples from the attachment assay .. 87

Fig. 5.4. An example of symptoms of diseased tomato stem pieces (Arrow) and those where BCA candidate 27a stopped infection .. 88

Fig. 5.5. Levels of biocontrol conferred by three concentrations (900, 1600 and 2700 cfu's/sq mm) of bacterial isolate candidates (35a, 22b, 27a and ox1) spray inoculated onto cut tomato stem pieces, incubated at 15°C, 7°C and 1°C .. 90

Fig. 5.6. Levels of biocontrol conferred by three concentrations (900, 1600 and 2700 cfu's/sq mm) of bacterial isolate candidates (ox2, ox3, ox4 and ox5) spray inoculated onto cut tomato stem pieces, incubated at 15°C, 7°C and 1°C .. 91

Fig. 5.7. Levels of biocontrol conferred by three concentrations (900, 1600 and 2700 cfu's/sq mm) of bacterial isolate candidates (ox6, 0x7, ox8a and ox9) spray inoculated onto cut tomato stem pieces, incubated at 15°C, 7°C and 1°C .. 92

Fig. 5.8. Levels of biocontrol conferred by three concentrations (7400, 13,000 and 23,000 cfu's/sq mm) of yeast isolate candidates (532, 552c, 561 and 572c) spray inoculated onto cut tomato stem pieces, incubated at 15°C, 7°C and 1°C .. 93

Fig. 5.9. Levels of biocontrol conferred by three concentrations (7400, 13,000 and 23,000 cfu's/sq mm) of yeast isolate candidates (622b, 662dia, 662dib and 662e) spray inoculated onto cut tomato stem pieces, incubated at 15°C, 7°C and 1°C .. 94

Fig. 5.10. Bacterial isolates (ox7, ox8a and 27a) applied 24 h before, simultaneously and 24 or 48 h after *B. cinerea* spray inoculation to tomato stem pieces .. 97

Fig. 5.11. Yeast isolates (662dia, 662dib and 532) applied 24 h before, simultaneously and 24 or 48 h after *B. cinerea* spray inoculation to tomato stem pieces .. 98

Fig. 6.1. Highly localised, aggressive crowding of bacterial isolate ox3 .. 106

Fig. 6.2. Highly localised, aggressive crowding of yeast isolate 532, *Candida sake* .. 106

Fig. 6.3. Agglutination by yeast cells of isolate 561, *C. sake* around *B. cinerea* hyphae ... 107

Fig. 6.4. Agglutination by bacterial cells of isolate ox6, *Enterobacter cloacae* B ... 107

Fig. 6.5. Co-inoculation of bacterial isolate ox9, *E. cloacae* and *B. cinerea in vitro* and viewed by dark field microscopy, polarised light and quarter wave light ... 108

Fig. 6.6. SEM image of pathogen only control, inoculated onto cut surface of tomato stem pieces, incubated at 12°C for 70 h ... 110

Fig. 6.7. SEM image of hyphal and conidial colonisation by bacterial isolate 35a (*Ochrobactrum anthropii*) on *B. cinerea* ... 111

Fig. 6.8. SEM image of end-on adhesion of bacterial isolate ox2 (*Enterobacter agglomerans*) to hyphae of *B. cinerea* ... 112

Fig. 6.9. SEM image of sparse colonisation of *B. cinerea* hyphae by bacterial isolate ox4 (*Pseudomonas marginalis*) ... 112
Fig. 6.10. SEM image of bacterial isolate ox6 (Enterobacter cloacae B) colonising hyphae of B. cinerea and the distortion in the hyphal surface under the bacterial cell..........................113

Fig. 6.11. SEM image of bacterial isolate ox7 (E. cloacae B) adhering to the tip of an emerging germ tube and distorted pathogen growth ...114

Fig. 6.12. SEM image of aggressive colonisation by bacterial isolate ox8a (Enterobacter aerogenes) of the hyphal surface of B. cinerea and of the plant host surface.................................115

Fig. 6.13. SEM image of bacterial isolate ox9 (E. cloacae) cells associated with B. cinerea hyphae covered with a large amount of the extracellular material116

Fig. 6.14. SEM image of yeast isolate 622b (Trichosporon pullulans) co-inoculated with B. cinerea ...116

Fig. 6.15. SEM image of yeast isolate 662dia (Candida sake) colonising conidia and hyphae of B. cinerea ..117

Fig. 6.16. SEM image of yeast isolate 662dib (Candida pulcherrima) colonising hyphae of B. cinerea ..117

Fig. 6.17. SEM image of colonisation of B. cinerea hyphae and plant surface co-inoculated with yeast 561 (C. sake) ...118

Fig. 6.18. SEM image of collapsed and distorted hyphae of B. cinerea in the presence of isolate 532 (C. sake) and extensive BCA colonisation of the plant surface ..119

Fig. 6.19. SEM image of the very large cell size of yeast isolate 552c (Galactomyces geotrichum). ...120

Fig. 6.20. SEM image of distorted growth of B. cinerea in the presence of isolate 572c (G. geotrichum). ..120

Fig. 7.1. Stylised diagrams of the inoculation pattern used for endochitinase and siderophore detection (A) and for antibiotic detection (B)..130

Fig. 7.2. The interaction between BCA yeast cells or mycelium and B. cinerea mycelium on minimal media with isolate 561, (Candida sake) and with isolate 622b (Trichosporon pullulans). ...138

Fig. 7.2 (cont.). The interaction between BCA yeast cells or mycelium and B. cinerea mycelium on minimal media mycelium of isolate 572c (Galactomyces geotrichum).139

Fig. 7.3. Biocontrol of B. cinerea by bacterial isolates ox 5 and ox9 and yeast isolate 561 with and without the addition of BC-KH4 to excised inoculated tomato stem pieces142

Fig. 7.4. Biocontrol of B. cinerea (indicated by percent healthy stems) on tomato stem pieces in vivo by each bacterial and yeast isolates in the presence of SDW, BC-KH4 and PI-01144

Fig. 7.5. Biocontrol of B. cinerea on tomato stem pieces by bacterial BCA isolates in the presence of SDW, BC-KH4 and PI-01. Data from each bacterial isolate has been pooled144
Fig. 7.6. Biocontrol of *B. cinerea* on tomato stem pieces by yeast BCA isolates in the presence of SDW, BC-KH4 and PI-01. Data from each yeast isolate has been pooled 145

Fig. 7.7. Competitive ELISA for *B. cinerea* antigen detection at various dilutions of BC-KH4 and of galactomannan.. 147

Fig. 7.8. Competitive ELISA for *B. cinerea* antigen detection at various dilutions of BC-KH4 and of galactose ... 148

Fig. 7.9. Competitive ELISA for *B. cinerea* antigen detection at various dilutions of BC-KH4 and of mannose... 149

Fig. 8.1. Indirect PTA-ELISA absorbances from serially diluted *B. cinerea* extract in PBS and anti-mouse antibody conjugated to biotin in PBST ... 160

Fig. 8.2. Indirect PTA-ELISA absorbances from serially diluted *B. cinerea* extract in bicarbonate buffer and anti-mouse antibody conjugated to biotin in PBST ... 160

Fig. 8.3. a-d. *B. cinerea* antigen detection by indirect PTA-ELISA using 0.1M CuSO4 + 0.1M KCl + 0.1M NaCl as the antigen extractant from inoculated tomato stem pieces ... 166

Fig. 8.4. Indirect PTA-ELISA detection of *B. cinerea* antigen in the presence of bacterial BCA’s co-inoculated onto tomato stem pieces ... 170

Fig. 8.4. Indirect PTA-ELISA detection of *B. cinerea* antigen in the presence of yeast BCA’s co-inoculated onto tomato stem pieces ... 171

Fig. 8.5. Reduction in *B. cinerea* antigen detection with the addition of copper or PBS extract from tomato tissue in a competitive ELISA format ... 175

Fig. 8.6. Reduction in *B. cinerea* antigen detection with the addition of bacterial antigen extracted in copper extractant or PBS in a competitive ELISA format ... 176

Fig. 8.6. Reduction in *B. cinerea* antigen detection with the addition of yeast antigen extracted in copper extractant or PBS in a competitive ELISA format ... 177

Fig. 8.7a. Immunofluorescent labelling for *B. cinerea* hyphae on pathogen-only inoculated tomato stem pieces showing labelled hyphae ... 179

Fig. 8.7b. Immunofluorescent labelling for *B. cinerea* hyphae on tomato stem pieces co-inoculated with isolate 35a showing unlabelled conidia ... 180

Fig. 8.7c. Immunofluorescent labelling for *B. cinerea* hyphae on tomato stem pieces co-inoculated with isolate 532 showing unlabelled conidia ... 180

Fig. 8.7d. Immunofluorescent labelling for *B. cinerea* hyphae on tomato stem pieces co-inoculated with isolate 622b showing unlabelled conidia ... 180

Fig. 9.1. Mean spore density deposited onto 5 mm diameter PDA disks using camel hair brush ... 190

Fig. 9.2. Disease incidence in postharvest coolstored kiwifruit (square-root transformed) inoculated with yeast isolates and bacteria mixtures. ... 191
Fig. 9.3. Disease incidence of stem end rot in coolstored kiwifruit treated with yeast BCA isolates and post-inoculation fruit curing... 194

Fig. 9.4. Disease incidence of stem end rot in non-cured coolstored kiwifruit treated with yeast BCA isolates applied simultaneously, 24 h after pathogen inoculation or 48 h after pathogen inoculation... 194

Fig. 9.5. Randomised block design - layout plan of tomato plant positions and treatments.............. 197

Fig. 9.6. Biocontrol activity of bacterial and yeast isolates against B. cinerea inoculated on glasshouse tomato plant lateral wounds .. 199

Fig. 9.7. Relative humidity and air temperature within the canopy of the tomato plants.............. 200

Fig. 9.8. Lesion created in the pathogen only treated lateral stump (Top) and a typical biocontrolled lesion on a lateral stump with an effective BCA added (Bottom) (Bar=1 cm) 202

Fig. A2.1. The complete assembly of the Potter Tower and compressor used in the laboratory ... 249

Fig. A2.2. Vertical section view of the Potter Tower.. 250

Fig. A2.3. The deposition of SDW onto nine coverslips (22mm x 22mm) arranged into a 3x3 grid on the spray table in the Potter Tower using three nozzle pressure settings .. 252

Fig. A2.4. Yeast cell density (S. cerevisae) applied to NYDA using the Potter Tower electrostatically charged... 255

Fig. A2.5. Log_{10} of bacterial (Pseudomonas sp.) cfu density applied to spray table using the Potter Tower, earthed or charged.. 256

Fig. A2.6. Log_{10} of yeast (S. cerevisae) cfu density applied to the spray table using the Potter Tower, earthed or charged... 256

Fig. A3.1. B. cinerea antigen detection by indirect PTA-ELISA using BC-KH4 Mab of B. cinerea conidia germinated in microtitre wells containing tomato tissue extract or Sterile Distilled Water (SDW) at 15°C for 16h .. 260

Fig.A3.2. Indirect PTA-ELISA detection of B. cinerea antigen as a measure of pathogen biomass in the presence of yeast and bacteria BCA’s on excised tomato stem pieces 265
Table of tables

Table 3.1. Mean number of *D. hansenii* cells washed from nylon mesh disks in 2 ml SDW29

Table 3.2. Summary of experiments (A to E) examining modifications to wash protocols and mesh holder... 35

Table 3.3. The wash efficiency of SDW or 0.1% Tween 20 for the removal of test microbes from nylon mesh pre-treated and not pre-treated with Fe(NO₃)₃... 42

Table 3.4. The removal of bacteria and yeasts from nylon mesh using McIlvaines buffer at pH 4.0 to 7.6 ... 43

Table 4.1. The concentration of viable cells (cfu) in SDW suspension prior to inoculation through the Potter Tower... 67

Table 5.1. Isolates of filamentous fungi, yeast and bacteria reported for biocontrol of pre-harvest diseases caused by *B. cinerea* .. 74

Table 5.2. Isolates of yeast and bacteria reported for biocontrol of post-harvest diseases caused by *B. cinerea* .. 75

Table 5.3. List of the plant hosts from which leaf, fruit and soil samples were removed to obtain candidate microbes for BCA selection... 77

Table 5.4a. Samples of leaves, fruitlets and the soil beneath kiwifruit, apple, nashi and peach trees in an organic orchard located at Crop & Food Research Institute, Levin......................... 84

Table 5.4b. Samples of leaves from native flora from Turitea Valley located beside Massey University campus.. 84

Table 5.4c. Samples of leaves (L), fruitlets (F) and soil (S) from beneath kiwifruit, apples, nashi and peach trees in an organic orchard located at Crop & Food Research Institute, Levin .. 85

Table 5.5. Identification by the Ministry of Agriculture and Fisheries Plant Protection Laboratory of the bacterial isolates that showed high biocontrol activity ... 95

Table 5.6 Identification by the Centraalbureau voor Schimmelcultures of all yeast candidates tested in the *in vivo* tomato stem piece bioassay.. 96

Table 7.1. Endochitinase activity in BCA isolates using the calcofluor assay (modified from Trudel and Asselin 1989) ... 135

Table 7.2. The number of days at 15°C before siderophore production was first detected from the yeast and bacterial isolates using the method of Kloepper *et al.* (1980) ... 136

Table 7.3. Diameter of zones of inhibition of *B. cinerea* due to anti-fungal metabolite from bacterial and yeast BCA isolates tested on PDA, MEA, NYDA and Minimal media 137
Table 7.4 Presence or absence of bacteria (ox4, ox5, ox6, ox7, ox9) and yeast (561, 532) attachment to hyphae of \textit{B. cinerea} on tomato tissue extract agar with SDW or BC-KH4 added to the interaction mixture. ... 140

Table 7.5 Mean germ tube length after 16 h growth at 15\degree C of \textit{B. cinerea} spores germinating in the presence of bacteria or yeast BCAs on a tomato extract agar with SDW or BC-KH4 added. 141

Table 7.6 Presence or absence of bacteria (ox4, ox5, ox6, ox7, ox9) or yeast BCA (561, 532) isolates attached to hyphae of \textit{B. cinerea} in the presence of RPMI+FBS .. 143

Table 7.7 Adhesion of bacterial and yeast BCA isolates to \textit{B. cinerea} on tomato tissue extract agar with SDW, BC-KH4 or PI-01 added to the interaction. ... 143

Table 8.1. \textit{B. cinerea} antigen detection by indirect PTA-ELISA using BC-KH4 and biotinylated antibody .. 162

Table 8.2. Indirect PTA-ELISA detection of \textit{B. cinerea} antigen \textit{in vitro} and from inoculated tomato tissue using copper, bicarbonate and EDTA based extractants with and without PVP .. 164

Table 8.3. Indirect PTA-ELISA detection of \textit{B. cinerea} and BCA isolate antigens using the copper-based extractant and BC-KH4 ... 167

Table 9.1. Yeast BCA application densities calculated from spray gun total discharge data divided by area of spray zone ... 193

Table 9.2. Yeast and bacterial isolates used for biocontrol experiments on glasshouse tomato plants ... 196

Table 9.3. Yeast BCA densities (colony forming units (cfu)) inoculated onto tomato lateral stumps using Badger Airbrush® ... 198

Table A3.1. Indirect PTA-ELISA detection of \textit{B. cinerea} antigen from inoculated PDA disks incubated at 15\degree C for 10 h or 24 h .. 262

Table A3.2. Indirect PTA-ELISA detection of \textit{B. cinerea} isolate Pezet or IPO 700 applied to tomato stem pieces and incubated for 24 h at 15\degree C followed by antigen extraction in either PBS or bicarbonate buffer ... 263

Table A3.3. Indirect PTA-ELISA detection of \textit{B. cinerea} conidia and bacterial or yeast BCA cells in SDW .. 264