Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Molecular characterisation of PHA synthase and the \textit{in vivo} synthesis of functionalised PHA beads with surface immobilised proteins

A thesis presented in partial fulfilment of the requirements of the degree of Master of Science in Microbiology at Massey University, Palmerston North, New Zealand.

Jason Wong Lee
2011
Abstract

Polyhydroxyalkanoates (PHAs) are naturally occurring biopolymers, synthesized by a large range of bacteria and deposited as small spherical water-insoluble cytoplasmic inclusion bodies containing hydrophobic polyester core surrounded by a phospholipid monolayer and associated embedded proteins. The most common form of PHA identified in bacteria is polyhydroxybutyrate (PHB).

Formation of PHA beads requires three important enzymes with PHA synthase (PhaC) being the most important, catalysing the final stereo-selective conversion of (R)-3-hydroxyacyl-CoA thioesters into PHA. Increasingly beads are used as microbeads, which display surface immobilised proteins for a range of applications in biotechnology and medicine.

However, functionalised PHA beads are largely produced in Gram-negative bacteria which contain endotoxins that are known to co-purify with the beads and are considered undesirable in medical applications. In addition, despite extensive research towards understanding PHA synthases, to date no structural data is currently available.

Here it was shown that functionalised PHB beads can be produced in vivo for both the purification of antibodies and the display of medically relevant antigens (e.g. Hepatitis C) on the surface of PHB beads from the Gram-positive bacterium L. lactis. In addition, it was shown that PHA synthase from R. eutropha can be highly overproduced, remains largely soluble and can be purified to greater than 90% purity.

The results demonstrated and supported the use of PHB beads as a platform for the production of functionalised PHA beads suitable for a large range of biotechnological or medical applications. Although no structural data for PHA synthases are currently available, our results demonstrate progress towards obtaining a three-dimensional protein structure for PHA synthase (PhaC).
Acknowledgement

“Success, 100% persistence and a bit of luck”

I would like to first of all give special thanks to my supervisor Professor Bernd Rehm for allowing me the opportunity to do my Masters qualification under his supervision. I would also like to thank Bernd and a special mention to Zoe Jordens for their time, guidance and encouragement during my postgrad years.

Special thanks goes out to Jane Mullaney for her encouragement, support and technical know how at the start of my postgrad year. Also, special thanks to Anika Jahns and Ian Hay for their endless expertise and help when required. In addition, special thanks to Andrew Sutherland-Smith, Greg Sawyer and everyone else in the protein engineering lab for their time, advice, and help with things protein related.

Thanks to my all my colleges in the Rehm lab, Paul Blatchford for all those coffee breaks and to everyone at IMBS.

This would not have been possible if it wasn’t for Tracy Thompson and Polybactics who provided financial assistance during my final year of postgrad.

And last but not least, thanks to my wonderful girlfriend Yifang Tay for her endless encouragement and support.
Table of contents

Abstract I
Acknowledgements II
Table of contents III
Abbreviations VI
List of Figures VII
List of tables X

Chapter 1: Introduction 1
1.1 Polyhydroxyalkanoates (PHAs): Bacterial polyesters 1
1.2 PHA synthases 3
 1.2.1 Classification of PHA synthases 3
 1.2.2 Catalytic mechanism 6
1.3 a/β-hydrolase superfamily 7
1.4 Lactococcus lactis as a production host 11
1.5 Biogenesis and structure of PHA inclusions 14
 1.5.1 In vitro PHA bead formation 18
 1.5.2 Structure of PHA beads and their bead associated proteins 19
1.6 Applications of PHA granules as bio-beads 21
1.7 Aim and objectives of the study 28

Chapter 2: Materials and Methods 32
2.1 Strains and plasmids 32
 2.1.1 Strains 32
 2.1.2 Plasmids 32
2.2 Primers 34
2.3 Liquid media 35
 2.3.1 Luria-Bertani (LB) media 35
 2.3.2 M17 and GM17 media 35
2.4 Solid media 35
 2.4.1 X-Gal medium 35
 2.4.2 Nile-red medium 36
2.5 Antibiotic stock solution and final concentrations 36
2.6 Cultivation conditions 37
 2.6.1 PHA accumulating conditions 37
 2.6.2 Protein production 37
2.7 Selection on solid media 38
 2.7.1 Blue/white selection 38
 2.7.2 Nile-red selection 38
2.8 Long term storage of bacterial strains 38
 2.8.1 Strain revival 39
2.9 Preparation of competent cells 39
 2.9.1 Competent E. coli 39
 2.9.2 Electro-competent L. lactis 40
2.10 Transformation and electroporation 40
 2.10.1 Transformation of E. coli 40
 2.10.2 Electroporation of L. lactis 41
2.11 DNA manipulation

2.11.1 Plasmid isolation and concentration
 2.11.1.1 Alkaline lysis
 2.11.1.2 High Pure Plasmid isolation kit (Roche)
 2.11.1.3 Plasmid isolation from L. lactis
 2.11.1.4 Clean and concentrator kit (Zymo)

2.11.2 PCR

2.11.3 Determination of DNA concentration

2.11.4 DNA hydrolysis with restriction endonucleases
 2.11.4.1 Isopropanol precipitation of DNA

2.11.5 Agarose gel electrophoresis (AGE)
 2.11.5.1 DNA molecular size standards

2.11.6 Agarose gel DNA fragment recovery

2.11.7 Dephosphorylation of 5’ ends (Antarctic phosphatase)

2.11.8 DNA A-tailing and ligation (pGEM T-easy system)

2.11.9 DNA ligation (T4 DNA ligase)

2.11.10 DNA sequencing

2.12 PHA extraction, preparation and analysis of compounds and lower molecular weight products

2.12.1 Cell disruption
 2.12.1.1 Bugbuster® Protein Extraction Reagent
 2.12.1.2 Cell disruptor
 2.12.1.3 French press

2.12.2 Isolation of PHA from crude extracts (Ultracentrifugation)

2.12.3 Nile-red detection

2.12.4 Gas chromatography-mass spectrometry (GC/MS)

2.12.5 Transmission electron microscopy (TEM)

2.12.6 Analysis of Lactate and Acetate
 2.12.6.1 Lactate assay
 2.12.6.2 Acetate assay

2.13 General methods for protein analysis

2.13.1 Protein determination
 2.13.1.1 Bradford protein assay
 2.13.1.2 UV measurement at 280nm

2.13.2 Sodium dodecylsulfate gel electrophoresis (SDS-PAGE)
 2.13.2.1 Preparation of protein samples and running conditions
 2.13.2.2 Protein Marker Broad Range
 2.13.2.3 Protein staining with Coomassie brilliant blue

2.13.3 Maldi-TOF mass spectrometry

2.13.4 Determination of fusion protein activity on PHA beads
 2.13.4.1 Enzyme-linked immunosorbent assay (ELISA)
 2.13.4.2 IgG binding assay

2.13.5 Cleavage of fusion protein

2.13.6 Protein affinity purification
 2.13.6.1 His-Spin protein Miniprep
 2.13.6.2 His-Trap HP (5ml)

2.13.7 Analytical gel filtration chromatography

2.13.9 Hanging drop/Sitting drop technique
Chapter 3: Results

3.1 Molecular characterisation of PHA synthase (phaC)

3.1.1 Construction of pET16b-His$_{10}$ZZC and pET16b-His$_{10}$C
3.1.2 Construction of pET14b-His$_{10}$GB1TEVΔ1-93C
3.1.3 Construction of pET14b-His$_{9}$ZZTEVΔ1-93C
3.1.4 Plasmid expression and protein production
3.1.5 Purification and analysis
3.1.6 Proteolytic digest
3.1.7 Up scaling purification
3.1.8 Gel filtration chromatography
3.1.9 Crystal screening trials

3.2 In vivo polyhydroxyalkanoate inclusions

3.2.1 Construction of pET14b-ZZTEVΔ1-93C
3.2.2 Plasmid expression and PHA bead biogenesis
3.2.3 Microscopy (FM and TEM) and GC/MS analysis
3.2.4 Functional assessment of the IgG binding domain

3.3 In vivo production of PHA in L. lactis

3.3.1 Construction of pNZ-HAAB and pNZ-HepCCAB
3.3.2 Plasmid expression and PHA bead biogenesis
3.3.3 FM and TEM analysis of PHB bead formation
3.3.4 Functional assessment of Hepatitis C beads in a mouse model

3.4 Phenotypic characterisation of L. lactis LDH mutants

3.4.1 Growth and pH analysis of recombinant L. lactis
3.4.2 Lactate and Acetate formation by recombinant L. lactis
3.4.3 Quantification of PHB in NZ strains under PHA accumulating conditions

Chapter 4: Discussion

4.1 Molecular characterisation of class I PHA synthase (PhaC)
4.2 Production of PHA inclusions in vivo
4.3 L. lactis as a production host for PHAs displaying surface immobilised antigens
4.4 Characterisation of PHB biogenesis in LDH deficient L. lactis

Chapter 5: Conclusion and future work

Chapter 6: References
Abbreviations

°C

Degree Celsius

3HA_{MCL}

Medium chain length (R)-3-hydroxy fatty acids

3HA_{SCL}

Short chain length (R)-3-hydroxy fatty acids

3HB

3-hydroxybutyrate

AGE

Agarose Gel Electrophoresis

BSA

Bovine serum albumin

DMSO

Dimethyl sulfoxide

FM

Fluorescent Microscopy

GAP

Bead Associated Proteins

GC/MS

Gas chromatography mass spectrometry

HRP

Horse radish peroxidise

IgG

Immunoglobulin G

IMAC

Immobilised Metal Affinity Chromatography

kDa

Kilo Daltons

LDH

Lactate dehydrogenase

Maldi-TOF_{MS}

Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry

PBS

Phosphate buffered saline

PHA

Polyhydroxyalkanoate

phaC_{CAB}

PHA operon

PhaC

PHA synthase

PhaE

Type II PHA synthase subunit

PhaP

Phasin regulatory protein

PhaZ

PHA intracellular depolymerase

PHB

Polyhydroxybutyrate

RBS

Ribosome binding site

RE

Restriction endonuclease

SDS-PAGE

Sodium dodecyl sulfate gel electrophoresis

TEM

Transmission Electron Microscopy

TEV

Tobacco Etch Virus protease

WT

Wildtype
List of Figures

Figure 1 Primary structure of the PHA synthase from C. necator 5
Figure 2 Proposed chain elongation mechanism based on the α/β-hydrolase catalytic mechanism of the P. aeruginosa class II PHA synthase 7
Figure 3 Secondary structure representation of a typical α/β-hydrolase fold 8
Figure 4 Threading models for PHA synthases 10
Figure 5 Schematic representation of the metabolism of glucose in L. lactis 13
Figure 6 Metabolic routes towards PHA biogenesis 15
Figure 7 Models for polyester bead self-assembly 17
Figure 8 Schematic representation of a PHA bead and its associated proteins. 19
Figure 9 Potential applications of PHA beads produced in vivo and in vitro 26
Figure 10 Schematic representation of the PHA bead extraction process 50
Figure 11 Vapour diffusion 61
Figure 12 Construction of intermediate cloning plasmid pET16b-His$_{10}$phaC for the generation of pET16b-His$_{10}$ZZC. 64
Figure 13 Construction of pET16b-His$_{10}$ZZC 65
Figure 14 Construction of pET14b-His$_{10}$GB1TEVΔ1-93C 67
Figure 15 Construction of intermediate cloning plasmid pGEM-T His$_{9}$ZZTEV for generation of pET14b-His$_{9}$ZZTEVΔ1-93C 69
Figure 16 Construction of pET14b-His$_{9}$ZZTEVΔ1-93C 70
Figure 17 SDS-PAGE gel demonstrating solubility using the ZZ domain of protein A 72
Figure 18 SDS-PAGE gel of recombinant His-tagged PhaC production 73
Figure 19 SDS-PAGE PAGE gel of recombinant His-tagged PhaC cell lysis 74
Figure 20 SDS-PAGE gel of affinity purification fractions for His-tagged PhaC plasmids 76
Figure 21 SDS-PAGE gel of TEV protease digestion of purified His$_{9}$ZZTEVΔ1-93C, and His$_{10}$GB1TEVΔ1-93C. 78
Figure 22 Affinity purification of protein His$_{10}$ZZC and His$_{10}$GB1TEVΔ1-93C using HisTrap HP on an AKTA explorer 80
Figure 23 Analytical gel filtration chromatography on an AKTA explorer 100 for protein His_{10}ZZC

Figure 24 Gel filtration chromatography on an AKTA explorer 100 for protein His_{10}GB1TEVΔ1-93C

Figure 25 Gel filtration chromatography on an AKTA explorer 100 for protein His_{9}ZZTEVΔ1-93C

Figure 26 Construction of intermediate cloning plasmid pGEM-T ZZTEV for the generation of pET14b-ZZTEVΔ1-93C

Figure 27 Construction of pET14b-ZZTEVΔ1-93C

Figure 28 SDS-PAGE gel of isolated PHA beads produced in vivo from E. coli

Figure 29 Fluorescence microscopy images of PHA beads produced in E. coli

Figure 30 TEM analysis of His-tag fusion on PHA beads formed in vivo

Figure 31 His-tag effect on bead size distribution

Figure 32 Functional assessment of the ZZ domain on PHB beads produced in vivo from E. coli by ELISA.

Figure 33 Functional assessment of the GB1 domain on PHB beads produced in vivo from E. coli by ELISA.

Figure 34 IgG binding assay for in vivo PHA beads from E. coli

Figure 35 SDS-PAGE gel of the IgG binding assay elution fraction from PHA beads produced in vivo by recombinant E. coli

Figure 36 XbaI + SpeI double digest of pNZ-HACAB and pNZ-HepCCAB

Figure 37 Construction of plasmid pNZ-HACAB

Figure 38 Construction of plasmid pNZ-HepCCAB

Figure 39 SDS-Page gel of L. lactis isolated beads harbouring pNZ plasmids

Figure 40 Fluorescence microscopy images of L. lactis harbouring pNZ-HACAB and pNZ-HepCCAB expressed under PHB accumulating conditions

Figure 41 TEM analysis of L. Lactis NZ9000 expressing plasmid pNZ-HepCCAB
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>Restriction analysis of pNZ-CAB from NZ9000, NZ9010 and NZ9020 transformants</td>
<td>107</td>
</tr>
<tr>
<td>43</td>
<td>Growth curves of L. lactis NZ9000, NZ9010, & NZ9020 harbouring plasmids pNZ-CAB & pNZ-8148</td>
<td>109</td>
</tr>
<tr>
<td>44</td>
<td>Lactate production by recombinant L. lactis NZ9000, NZ9010 and NZ9020 under PHB accumulating conditions</td>
<td>110</td>
</tr>
<tr>
<td>45</td>
<td>Acetate production by recombinant L. lactis NZ9000, NZ9010 and NZ9020 under PHB accumulating conditions</td>
<td>111</td>
</tr>
</tbody>
</table>
List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>46</td>
</tr>
<tr>
<td>8</td>
<td>46</td>
</tr>
<tr>
<td>9</td>
<td>55</td>
</tr>
<tr>
<td>10</td>
<td>89</td>
</tr>
<tr>
<td>11</td>
<td>91</td>
</tr>
<tr>
<td>12</td>
<td>112</td>
</tr>
</tbody>
</table>

- **Table 1**: The four classes of PHA synthase
- **Table 2**: Bacterial strains used in this study
- **Table 3**: *E. coli* plasmids used in this study
- **Table 4**: *L. lactis* plasmids used in this study
- **Table 5**: Primers used in this study
- **Table 6**: Antibiotic stocks and final concentrations
- **Table 7**: λ-DNA molecular size standard
- **Table 8**: GeneRuler 100 bp DNA ladder plus
- **Table 9**: Protein Markers
- **Table 10**: Theoretical molecular weight of the PHA synthase fusion proteins as predicted by ProtParam
- **Table 11**: GC/MS results for PHB accumulation *in vivo* synthesised beads
- **Table 12**: Effects of aerobic and anaerobic cultivation conditions on PHB accumulation in *L. lactis* NZ9000, NZ9010 & NZ9020