Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
FORMATION AND STABILITY OF
OIL-IN-WATER CASEINATE EMULSIONS

A THESIS
PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY IN FOOD TECHNOLOGY AT
MASSEY UNIVERSITY

BY
MAGESH SRINIVASAN
1998
Dedication

To my Parents
ABSTRACT

The main objective of this study was to gain a better understanding of the formation, stability and microstructure of oil-in-water emulsions stabilized by commercial sodium (ALANATE 180) and calcium caseinates (ALANATE 380). The study also determined the effects of heat treatment and NaCl addition on the formation and stability of these emulsions.

Emulsions were prepared using various concentrations of sodium or calcium caseinate solutions (0.5 to 5.0%) and 30% soya oil. Surface protein coverage (mg/m²) in freshly prepared emulsions was determined from analysis of the aqueous phase after centrifugation of emulsions at 45,000 g for 40 minutes, using the Kjeldahl method. SDS-PAGE was used to identify the adsorbed protein components in the cream phase. Creaming stability was determined after storage of emulsions for 24 hours at 20°C by a low speed centrifugation method. The microstructure of these emulsions was determined using confocal laser scanning microscopy. The aggregation state of caseins in sodium and calcium caseinate solutions was determined by successive centrifugation, gel permeation chromatography and multi-angle laser light scattering techniques.

For emulsions stabilized with sodium caseinate, the surface protein concentration increased gradually with protein concentration up to 3%, but the increase was much smaller at higher concentrations. By comparison, the surface protein coverage in emulsions stabilized with calcium caseinate showed an almost linear increase with protein concentration (0.5 to 5.0%). At all protein concentrations, the surface protein coverage of emulsions stabilized with calcium caseinate was higher than that of sodium caseinate emulsions. β-Casein was adsorbed in preference to other caseins in emulsions made using ≤ 2.0% sodium caseinate, but αs-casein (αs1- + αs2-) appeared to adsorb in preference to other caseins when emulsions were made using > 2.0% sodium caseinate. In calcium caseinate-stabilized emulsions, αs-casein was found to
adsorb in preference to other caseins at all protein concentrations used.

Heat treatment (121°C for 15 min) of sodium caseinate emulsions or heat treatment of sodium caseinate solutions prior to emulsion formation, at all caseinate concentrations, resulted in an increase in surface protein coverage and altered the proportions of individual caseins at the droplet surface. The surface protein coverage of emulsions formed with calcium caseinate solutions increased markedly when the emulsions were heated (121°C for 15 min) or when calcium caseinate solutions were heated prior to emulsion formation. The preferential adsorption of α_s-casein, observed in the unheated calcium caseinate emulsions, diminished after heating, which was due to polymerization of α_s-casein during heating and/or degradation of this casein.

In sodium caseinate emulsions, the surface protein coverage and the composition of emulsion droplets were influenced by the presence of NaCl prior to emulsion formation. The surface protein coverage in emulsions made with 1 and 3% sodium caseinate increased with an increase in NaCl concentration up to 40 mM, with a large increase in the adsorption of α_s-casein at the droplet surface. Addition of NaCl beyond 40 mM had no further effects on surface coverage and composition. Similar trends were observed when NaCl was added to the emulsions after they were formed. By contrast, in calcium caseinate emulsions, the surface protein coverage decreased with increase in NaCl concentration up to 40 mM, but with further increase in NaCl concentration the surface protein coverage increased slightly. In these emulsions, the composition of the interface remained largely unaffected by NaCl addition; α_s-casein was adsorbed in preference to other caseins.

Creaming stability of calcium caseinate emulsions, after storage at 20°C for 24 hours, increased with an increase in protein concentration. However, the creaming stability of sodium caseinate emulsions decreased markedly as the protein concentration was increased above 2%. This decrease in stability was attributed to the reversible flocculation arising from a 'depletion flocculation'
mechanism. This flocculation in turn resulted in enhanced creaming at high caseinate concentrations. In sodium caseinate emulsions, the appearance of the droplets in the confocal micrographs was dependent on the concentration of protein used for making emulsions. Emulsions formed with low concentrations of sodium caseinate (0.5 and 1.0%) appeared to be homogenous with no sign of flocculation. However, the emulsions made with >2% sodium caseinate showed some irregular flocs, which appeared to be forming a network structure at higher concentrations of protein. In contrast, confocal micrographs of emulsions formed with calcium caseinate at all protein concentrations showed individual droplets. The creaming stability of these emulsions improved, when the emulsions were heated or when emulsions were made using heated sodium or calcium caseinate solutions. The presence of 200 mM NaCl prior to emulsion formation resulted in improved creaming stability and a reduced degree of flocculation.
ACKNOWLEDGMENTS

I wish to thank my supervisor Associate Professor Harjinder Singh for introducing me to this field and his continuous encouragement and his guidance in all aspects of this project. He has shown a never ending enthusiasm and patience in the preparation of this manuscript.

I am also thankful to my co-supervisor Dr. Peter Munro for providing his timely suggestions and valuable advice during the course of this work and for help in the preparation of the thesis.

I am thankful to Dr. D.G. Dalgleish for useful discussions on the project during his visits to New Zealand. I am also thankful to Dr. Samson Agboola, for his valuable suggestions and advice during the course of this project. I am also thankful to Dr. John Lucey, for his valuable help in using MALLS.

I am grateful to Mr. Micheal Sohn and Mr. Aiqian Ye, for their help in some of my experimental work.

I owe my thanks to Ms. Liz Nickless and Dr. Rowland for their valuable help in using confocal microscopy. I wish to thank Mr. Paul Mason at the New Zealand Dairy Research Institute for assisting me during the MasterSizer work.

In addition, I would like to thank Mr. Byron McKillop, Ms. June Latham, Mr. Steve Glasgow, Mr. Hank van Til, Mr. Alistair Young, Mr. Garry Radford, Mr. Mike Sahayam, Mr. Mark Dorsey, Mr. John Dawber and Mr. Cheng Tet Teo for their technical assistance during experimental work.

Several members of the staff in the Food Technology Department, Massey University, provided valuable assistance during the course of this project. In particular, I would like to thank Prof. Ken Kirkpatrick, Prof. Ray Winger, Mr.
Acknowledgments

Selwyn Jebson, Miss. Leeann Wojtal, Mrs. Lesley James, Mrs. Toni SnowBall-Kui, Mrs. Katherine Limswotin, Ms. Karen Ralph and Ms. Miria Busby.

I am very thankful to Steve and Inge Flint, Ranjan and Mary Sharma, Erix Schokker, Alistair Carr, Palatasa Havea and Geeda Sivalingam-Reid for their friendship throughout my degree and their friendly advice is greatly appreciated. I am also grateful to Ms. Christine L. Craigg for her friendship and support throughout my degree.

My thanks are also due to my fellow graduates, researchers and all others for their friendship and help throughout this course.

I wish to thank the New Zealand Dairy Board for awarding me a post-graduate research fellowship and providing funding for the project.

Finally, I would like to express my sincere gratitude towards my parents who provided me with a conducive environment, my brothers, and my sister and her family, who have been a constant source of inspiration always.

Finally and most importantly, I thank Almighty God for all His blessings especially the good health needed to carry out this research.
TABLE OF CONTENTS

DEDICATION

ABSTRACT

ACKNOWLEDGMENTS

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction
2.2 General characteristics of milk proteins
2.3 Association properties of caseins
2.4 General methods of casein manufacture
2.5 General methods of caseinate manufacture
2.6 Effect of heat processing on caseinate solutions
2.7 Emulsion formation
2.8 Adsorption behaviour of proteins at the oil-in-water interface
2.9 Emulsion stability
2.10 Factors affecting emulsion stability

CHAPTER 3: MATERIALS AND METHODS

3.1 Materials
3.2 Preparation of emulsions
3.3 Emulsion characterization
3.4 Determination of surface protein concentration and composition
3.5 Turbidity measurements
3.6 Sedimentation of calcium caseinate dispersions
3.7 Chemical analysis
3.8 Determination of viscosity
3.9 Determination of microstructure
3.10 Size exclusion chromatography
Table of Contents

3.11 Electrophoresis 62
3.12 Multi-angle laser light scattering (MALLS) 65
3.13 Creaming stability 70

CHAPTER 4: CHARACTERIZATION OF PROTEINS IN COMMERCIAL SODIUM AND CALCIUM CASEINATES
4.1 Introduction 71
4.2 Results 72
 4.2.1 Composition of commercial sodium and calcium caseinates 72
 4.2.2 Characterization of proteins in commercial sodium and calcium caseinates 73
 4.2.3 Effect of protein concentration on the aggregation state of protein in sodium or calcium caseinate solutions 77
4.3 Discussion 87

CHAPTER 5: ADSORPTION BEHAVIOUR OF SODIUM AND CALCIUM CASEINATES IN OIL-IN-WATER EMULSIONS
5.1 Introduction 91
5.2 Results and discussion 92
 5.2.1 Emulsion formation 92
 5.2.2 Particle size distribution 92
 5.2.3 Surface protein coverage 98
 5.2.4 Composition of caseins at the oil/water interface (cream phase) 100
 5.2.5 Competitive adsorption: analysed by size exclusion chromatography (SEC) 109
 5.2.6 Adsorption behaviour of mixtures of calcium and sodium caseinates in emulsions 115
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Sections</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Stability of Oil-in-Water Emulsions Formed with Sodium and Calcium Caseinates</td>
<td>6.1 Introduction, 6.2 Results and discussion, 6.2.1 Confocal microscopy, 6.2.2 Viscometry, 6.2.3 Creaming stability of mixtures, 6.3 General Discussion</td>
<td>125</td>
</tr>
<tr>
<td>7</td>
<td>Effect of Heat Treatment (Retort Conditions) on the Formation and Stability of Caseinate Emulsions</td>
<td>7.1 Introduction, 7.2 Emulsion formation, 7.3 Results and discussion, 7.3.1 Particle size distribution and droplet diameter, 7.3.2 Surface protein coverage, 7.3.3 SDS-PAGE, 7.3.4 Stability of emulsions</td>
<td>159</td>
</tr>
<tr>
<td>8</td>
<td>The Effect of Addition of NaCl on the Formation and Stability of Caseinate Emulsions</td>
<td>8.1 Introduction, Part A: The effect of addition of NaCl on the formation and stability of sodium caseinate emulsions, 8.2 Results, 8.2.1 Emulsion formation, 8.2.2 Particle size distribution and droplet diameter, 8.2.3 Surface protein coverage, 8.2.4 Composition of caseins at the oil/water interface (cream</td>
<td>195</td>
</tr>
</tbody>
</table>
Table of Contents

- 8.2.5 Surface concentration 204
- 8.2.6 Stability of emulsions 207
- 8.3 Effect of NaCl on the adsorption behaviour of caseins in emulsions made with varying concentrations. 213
 - 8.3.1 Droplet diameter 213
 - 8.3.2 Surface protein coverage 213
 - 8.3.3 Composition of caseins at the oil/water interface (cream phase) 216
 - 8.3.4 Estimated surface concentrations 218
 - 8.3.5 Stability of emulsions 220
- 8.4 Discussion 225

Part B: The effect of addition of NaCl on the formation and stability of calcium caseinate emulsions.

- 8.5 Results 229
 - 8.5.1 Emulsion formation 229
 - 8.5.2 Particle size distribution and droplet diameter 229
 - 8.5.3 Surface protein coverage 229
 - 8.5.4 Composition of caseins at the oil/water interface (cream phase) 232
 - 8.5.5 Stability of emulsions 232
- 8.6 Effect of NaCl on the emulsions made with various calcium caseinate concentrations 232
 - 8.6.1 Particle size distribution and droplet diameter 234
 - 8.6.2 Surface protein coverage 237
 - 8.6.3 Stability of emulsions 237
- 8.7 Discussion 240

CHAPTER 9: General Conclusions and recommendations 243

REFERENCES 249