Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE INVOLVEMENT OF *Fusarium*, AUTOXINS AND HERBICIDE RESIDUES IN THE ASPARAGUS (*Asparagus officinalis* L.) REPLANT PROBLEM.

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Science at Massey University.

Phillip E Schofield
1997
Abstract.

In temperate climates, asparagus reaches peak production five to eight years after planting and thereafter yield declines until production is no longer economically viable, normally between years 12 to 15. In many of the asparagus producing areas of the world the availability of land suitable for asparagus production is limited, therefore, replanting of old asparagus beds is undertaken. Replanted asparagus often has poor establishment and a short commercial life compared with planting on sites that have no history of asparagus production.

In this research, field trials indicated that replanted stands will yield 20% to 30% less marketable asparagus than those on similar sites with no previous asparagus cropping history. Pre-planting treatments with the fungicides thiabendazole and/or metalaxyl did not alleviate the problem but may improve establishment in replant sites. Treatment of plants or field soils with *Trichoderma viride* did not improve establishment or plant performance in old asparagus soils. The replant problem was common to all asparagus cultivars evaluated with the most vigorous varieties in a replant site also performing best in virgin soils.

Plants that died out in replant soil field trials exhibited symptoms typical of *Fusarium* spp. infections and isolations confirmed the involvement of both *F. oxysporum* and *F. moniliforme* in the early decline of replanted asparagus stands.

Greenhouse studies confirmed the importance of *Fusarium* inoculum level in inciting disease in asparagus plants. As inoculum levels increased the disease levels on roots and crowns of developing seedlings also increased and the plant vigour decreased. A Root Necrosis Potential bioassay which measured the infectivity of *Fusarium* propagules in field soils proved to be useful in separating soils with a previous history of asparagus production from virgin soils.

Residual herbicides commonly used in asparagus production significantly reduced asparagus seedling growth at levels likely to be found after several years of asparagus cropping demonstrating the importance of planning for the removal of an old asparagus planting some years before the crop is terminated.
Evaluation of soil with and without asparagus cropping history showed that an abiotic cause to the replant problem may also be important. The presence of autotoxic material in asparagus storage roots was confirmed in laboratory experiments and the toxic material reduced growth of asparagus. Bioassays using pre-germinated asparagus seed on blotting paper demonstrated that the toxin was water soluble and heat stable. The toxins were present in roots of all ages and all asparagus cultivars tested. All asparagus cultivars tested were inhibited by the toxin. A range of other plant species were shown to be suppressed by asparagus storage root extract and some species were unaffected.

The level of toxicity in replant soils at two sites was monitored over a twelve month period using a lettuce seed, paper bioassay procedure. The toxin levels found in asparagus soils after the termination of the asparagus crop by cultivation was probably only high enough to directly inhibit replanted asparagus for a short time (up to five or six months) after terminating the crop. Autotoxins are likely to be present in old asparagus soils for many years following the termination of the asparagus crop and their importance in the replant problem is most likely to be as a result of an interaction with the pathogenic *Fusarium* spp. present.

Fusarium appeared to be the main factor involved in the replant problem and inoculum levels of pathogenic *Fusarium* spp. in soils are likely to be high for many years after asparagus cropping has ceased. In most cases the asparagus replant problem is therefore a replant disease that is likely to persist for many years.
Acknowledgments.
Completion of this thesis would not have been possible without the encouragement, support and advice of many others. In particular I would like to thank the following:

my supervisors Dr M. A. Nichols and Dr P. G. Long for their guidance and useful criticism;

Dr K. G. Tate and the staff at Hort. Research and Crop & Food Research at Lawn Rd. Hastings for their help and the use of their facilities;

my employers Lance and Kay Peterson for their encouragement and financial support throughout the course of this project;

the Hawkes Bay Asparagus Growers Association and the New Zealand Asparagus council for their financial support;

the management and staff at the Plant Growth Unit for their assistance;

Dr B. R. MacKay for his assistance and advice;

Dr P. G. Falloon for his advice and support;

my parents and family for their encouragement and moral support;

And finally my wife, Margaret and children Max and Henry for their patience and constant encouragement;
Table of Contents

Abstract

Acknowledgments

Table of contents

List of tables

List of figures

List of plates

Section One : Review of literature.

1 The Asparagus Plant.
 1.1 Introduction. 1
 1.2 Botany.
 1.2.1 Seedling Structure and Development. 4
 1.2.2 Root Structure and Development. 5
 1.2.3 Stem Structure and Development. 6
 1.3 Commercial Production.
 1.3.1 Establishment.
 1.3.1.1 Crown transplants. 6
 1.3.1.2 Seedling transplants. 6
 1.3.1.3 Direct seeding. 7
 1.3.2 Replanting Asparagus Soils.
 1.3.2.1 Introduction.
 1.3.2.2 Asparagus Decline. 7
 1.3.2.3 Resistance to Fusarium. 14
 1.3.2.4 Rock Salt. 16
 1.4 The Replant Problem.
 1.4.1 Introduction. 11
 1.4.2 Potential major causes of replant problems.
 1.4.2.1 Autotoxins. 12
 1.4.2.2 Herbicide residues. 13
 1.4.2.3 Fusarium.
 1.4.2.3.1 Chemical Control. 14
 1.4.2.3.2 Disinfestation. 14
 1.4.2.3.3 Resistance/Tolerance to Fusarium. 15
 1.4.2.3.4 Rock Salt. 16
1.4.2.3.5 Biological Control.

1.4.3 Potential minor causes of replant problems.
 1.4.3.1 Phytophthora.
 1.4.3.2 Asparagus Virus 2.
 1.4.3.3 Soil structure.

1.5 Replant problems in other crops.
 1.5.1 Replant problems of apples.
 1.5.2 Replant problems of stonefruit.

1.6 Summary of the asparagus replant problem.

1.7 Objectives.

Section Two: Field Trials

2.1 Introduction.

2.2 Field Trial No. 1.
 2.2.1 Objectives.
 2.2.2 Materials and Methods.
 2.2.2.1 Ground preparation.
 2.2.2.2 Planting Material.
 2.2.2.3 Experimental Design.
 2.2.2.4 Trial Planting.
 2.2.2.5 Fungicide treatments.
 2.2.2.6 Trial site management.
 2.2.2.7 Harvesting.
 2.2.2.8 Assessments and analysis.
 2.2.2.10 Isolations.
 2.2.2.11 Culture Media.
 2.2.2.12 Isolating procedure.
 2.2.2.13 Identification and Storage of Isolates.
 2.2.2.14 Pathogenicity Test Method.
 2.2.2.15 Pathogenicity test assessment and analysis.
 2.2.3 Results.
 2.2.3.1 Field trial results.
 2.2.3.2 Pathogenicity test results.
 2.2.4 Discussion.
 2.2.4.1 Cultivating the old plants or leaving them intact.
 2.2.4.2 Survival and Vigour comparisons.
 2.2.4.3 Spear numbers and Yield comparisons.
2.3 Field Trial No. 2.
 2.3.1 Objectives.
 2.3.2 Materials and Methods.
 2.3.2.1 Ground preparation.
 2.3.2.2 Planting.
 2.3.2.3 Plant Material.
 2.3.2.4 Treatments.
 2.3.2.5 Experimental design.
 2.3.2.6 Trial site management.
 2.3.2.7 Harvesting.
 2.3.2.8 Assessments and analysis.
 2.3.3 Results.
 2.3.3.1 Survival and vigour comparisons.
 2.3.3.2 Spear yield comparisons.
 2.3.4 Discussion.

2.4 Field Trial No. 3.
 2.4.1 Objective.
 2.4.2 Materials and Methods.
 2.4.2.1 Ground preparation and planting.
 2.4.2.2 Planting Material.
 2.4.2.3 Treatments.
 2.4.2.4 Trial Design.
 2.4.2.5 Trial site management.
 2.4.2.6 Assessments and analysis.
 2.4.3 Results.
 2.4.4 Discussion.

2.5 Field Trial No. 4.
 2.5.1 Objective.
 2.5.2 Materials and Methods.
 2.5.2.1 Plant Material.
 2.5.2.2 Ground preparation.
 2.5.2.3 Experimental Design and Treatments.
 2.5.2.4 Trial site management.
 2.5.2.5 Assessments and data analysis.
 2.5.4 Results.
 2.5.5 Discussion.
2.6 Field Trial No. 5.

2.6.1 Objective.

2.6.2 Materials and Methods.

2.6.2.1 Treatments.

2.6.2.2 Trial design and management.

2.6.2.3 Assessments and Analysis.

2.6.3 Results.

2.6.4 Discussion.

Section Three: Greenhouse experiments.

3.1 Introduction.

3.2 Greenhouse Trial No. 1.

3.2.1 Objectives.

3.2.2 Materials and Methods.

3.2.2.1 Soils.

3.2.2.2 Seedlings.

3.2.2.3 Asparagus storage root additions.

3.2.2.4 Herbicide.

3.2.2.5 Fusarium inoculum.

3.2.2.6 Experimental design and Treatments.

3.2.2.7 Management.

3.2.2.8 Assessment Procedure and analysis.

3.2.2.9 Isolations.

3.2.3 Results.

3.2.4 Discussion.

3.2.4.1 Herbicide.

3.2.4.2 Fusarium.

3.2.4.3 Storage Roots.

3.3 Greenhouse Trial No. 2.

3.3.1 Objectives.

3.3.2 Materials and Methods.

3.3.2.1 Soil.

3.3.2.2 Seedlings.

3.3.2.3 Fusarium inoculum.

3.3.2.4 Experiment design and management

3.3.2.5 Assessment procedure.

3.3.3 Results.

3.3.4 Discussion.
3.4 Greenhouse Trial No. 3.

3.4.1 Introduction.

3.4.2 Objective.

3.4.3 Materials and Methods.

3.4.3.1 Field trial.

3.4.3.2 Soil Sampling.

3.4.3.3 RNP Bioassay arrangement.

3.4.3.4 RNP Bioassay Treatments.

3.4.3.5 Growing conditions.

3.4.3.6 Assessment procedure and analysis.

3.4.4 Results.

3.4.5 Discussion.

3.5 Greenhouse Trial No. 4.

3.5.1 Introduction.

3.5.2 Objective.

3.5.3 Materials and Methods.

3.5.3.1 Soils.

3.5.3.2 Cell Trays.

3.5.3.3 Seedlings.

3.5.3.4 Asparagus storage root additions.

3.5.3.5 Herbicide.

3.5.3.6 Fusarium.

3.5.3.7 Experimental design.

3.5.3.8 Management.

3.5.3.9 Assessment procedure and analysis.

3.5.4 Results and Discussion.

3.5.5 Conclusions.

Section Four: Laboratory Experiments.

4.1 Introduction.

4.2 Seedling bioassays to assess the toxicity of Asparagus officinalis L. root extract using pregerminated Asparagus officinalis L. seeds.

4.2.1 Objectives.

4.2.2 Materials and Methods.

4.2.2.1 Root Extract.

4.2.2.2 Seed.
4.2.2.3 Containers. 100
4.2.2.4.1 Experiment 1 design and Treatments. 100
4.2.2.4.2 Experiment 2 design and Treatments. 100
4.2.2.5 Assessment and Data Analysis. 101
4.2.3 Results. 101
4.2.4 Discussion. 104

4.3 Seedling bioassays to assess the sensitivity of different crop species to *Asparagus officinalis* L. root extract. 106
4.3.1 Introduction. 106
4.3.2 Objectives. 106
4.3.3 Materials and Methods.
 4.3.3.1 Root Extract. 106
 4.3.3.2 Seed. 107
 4.3.3.3 Containers. 107
 4.3.3.4 Experimental design and Treatments. 107
 4.3.3.5 Assessment and Data Analysis. 108
4.3.4 Results. 108
4.3.5 Discussion. 110

4.4 Bioassays to assess the toxicity of asparagus root extract from asparagus storage roots of different ages. 112
4.4.1 Introduction. 112
4.4.2 Objective. 112
4.4.3 Materials and Methods.
 4.4.3.1 Root Extracts. 112
 4.4.3.2 Seed. 113
 4.4.3.3 Containers. 113
 4.4.3.4 Experimental design and Treatments. 113
 4.4.3.5 Assessment and Data Analysis. 113
4.4.4 Results. 114
4.4.5 Discussion. 114

4.5 Bioassays to assess the toxicity of asparagus storage root extract from intact roots compared with pulverised roots. 116
4.5.1 Introduction. 116
4.5.2 Objectives. 116
4.5.3 Materials and Methods.
 4.5.3.1 Root Extracts. 116
 4.5.3.2 Seed. 116
 4.5.3.3 Containers. 116
4.5.3.4 Experimental design and Treatments. 117
4.5.3.5 Assessment and Data Analysis. 117
4.5.4 Results. 117
4.5.5 Discussion. 117

4.6 Bioassays to assess the toxicity of root extracts from five green and one purple asparagus cultivars.
4.6.1 Introduction. 121
4.6.2 Objective. 121
4.6.3 Materials and Methods.
 4.6.3.1 Root Extracts. 121
 4.6.3.2 Seed. 121
 4.6.3.3 Containers. 121
 4.6.3.4 Experimental design and Treatments. 122
 4.6.3.5 Assessment and Analysis. 122
4.6.4 Results. 123
4.6.5 Discussion. 124

4.7 Bioassays to assess the susceptibility of different asparagus cultivars to asparagus storage root extract.
4.7.1 Introduction. 125
4.7.2 Objective. 125
4.7.3 Materials and Methods.
 4.7.3.1 Root Extract. 125
 4.7.3.2 Seed. 125
 4.7.3.3 Containers. 125
 4.7.3.4 Experimental design and Treatments. 126
 4.7.3.5 Assessment and Analysis. 126
4.7.4 Results. 126
4.7.5 Discussion. 128

4.8 Bioassays to assess the toxicity of storage organ extracts from four different plant species.
4.8.1 Introduction. 129
4.8.2 Objective. 129
4.8.3 Materials and Methods.
 4.8.3.1 Storage organ Extracts. 129
 4.8.3.2 Seed. 130
 4.8.3.3 Containers. 130
 4.8.3.4 Experimental design and Treatments. 130
 4.8.3.5 Assessment and Analysis. 130
4.8.4 Results.

4.8.5 Discussion.

4.9 Bioassays to monitor the toxicity of soil over a twelve month period following the removal of an old asparagus crop.

4.9.1 Introduction.

4.9.2 Objectives.

4.9.3 Materials and Methods.

4.9.3.1 Soil samples.

4.9.3.2 Soil Water extracts.

4.9.3.3 Containers / Seeds.

4.9.3.4 Experimental design and Treatments.

4.9.3.5 Assessment and Data Analysis.

4.9.4 Results.

4.9.5 Discussion.

4.9.5.1 Phytotoxins in virgin soil.

4.9.5.2 Phytotoxins in replant soil.

4.9.5.3 Influence of sample date, temperature and rainfall on asparagus toxicity.

4.9.5.4 Level of asparagus toxicity relative to the asparagus crop residue.

4.9.5.5 Level of asparagus toxins measured by the different extract concentrations.

4.9.5.6 Importance of autotoxins in replant soils.

4.9.6 Conclusions.

Section Five: General Discussion & Conclusions.

5.1 Importance of herbicide residues in the Asparagus Replant Problem.

5.2 Importance of autotoxins in the Asparagus Replant Problem.

5.2.1 Interactions between autotoxins and Fusarium spp.

5.3 Importance of Fusarium spp. in the Asparagus Replant Problem.

5.4 Conclusions.

5.5 Recommendations for Growers.

5.6 Research Directions.

Appendices.

References.
List of Tables

Table 2.1 Source, cultural characteristics and identification of fourteen *Fusarium* isolates grown on Difco PDA at 25°C with 12 hours light and 12 hours dark. 31

Table 2.2 Mean fern height (cm) and survival (%) during the first two growing seasons of a replant site where old plants were left intact or cultivated into the soil. 33

Table 2.3 Mean spear numbers (,000s/ha) and weight (t/ha) over three harvest seasons from a replant site where old plants were left intact or cultivated into the soil. 34

Table 2.4 Fern height (cm) and survival (%) for all treatments after the first and second growing seasons in Field Trial No. 1. (SE 37df in brackets). 35

Table 2.5 Total spear numbers (,000s/ha) and total yield (t/ha) from 1991, 1992, 1993 harvests of Field Trial No. 1 (SE 37df in brackets). 37

Table 2.6 Accumulated total spear numbers and 1st grade spears (,000s/ha), Total yield and 1st grade yield (t/ha), from three harvests (1991-1993) of Field Trial No. 1 (SE 37df in brackets). 38

Table 2.7 Pathogenicity Test score (1=healthy to 5=more than 75% of roots affected) and ranking for thirteen *F. oxysporum* isolates and one *F. moniliforme* isolate from Field Trial No. 1. 39

Table 2.8 Mean fern height (cm) and survival (%) of replant or virgin site crowns or crowns with four possible fungicide treatments after the first and second growing seasons in Field Trial No. 2. 47

Table 2.9 Total spear numbers (,000s/ha) and total yield (t/ha) from three spear harvests of Field Trial No. 2 (Mean spear weight (g) in brackets). 48

Table 2.10 No. of ferns per plant, mean fern height (cm), survival (%) in 1992 and 1993, spear number (,000s/ha) and total yield (kg/ha) from a four week harvest of crowns grown in an old asparagus soil with three pre-planting treatments. 54
Table 2.11 Treatment numbers and Cultivars evaluated in Field Trial No. 4.

Table 2.12 Total yield (kg/ha), Total spear number (,000s/ha) and Survival (%) from a four week harvest of twenty asparagus cultivars grown in a replant site.

Table 2.13 Total spear yield (t/ha) from an old asparagus bed following pre-harvest applications of rock salt, fungicide, BCA or nothing for two seasons.

Table 3.1 Treatment combinations of soil, roots, herbicide and Fusarium in Greenhouse Trial No. 1.

Table 3.2 Mean shoot number, root number, crown rot score and total dry weight (g) for the soil x herbicide and root x herbicide interactions in Greenhouse Trial No. 1.

Table 3.3 Treatment, type of material, presence of inoculum or roots and identity of Fusarium isolate for eleven isolates obtained from disease lesions in Greenhouse Trial No. 1.

Table 3.4 Treatment numbers, soil treatments and inoculum combinations for Greenhouse Trial No. 2.

Table 3.5 Lesion scores (1=low, 5=high) for seedlings grown in four soils with six inoculum treatments in Greenhouse Trial No. 2.

Table 3.6 Root Necrosis Potential and mean seedling dry weight for six field soils tested in Greenhouse Trial No. 3.

Table 3.7 Conidia numbers, Herbicide (ppm a.i.) and Roots (g) added per 30 ml cell in Greenhouse Trial No. 4.

Table 3.8 Fusarium root lesion scores for seedlings grown in two soils exposed to eight rates of asparagus storage root additions (g/30 ml cell).

Table 3.9 Fusarium root lesion scores for seedlings grown in two soils exposed to eight rates of conidial inoculum (000s of conidia/30 ml cell).
Table 3.10 *Fusarium* root lesion scores for seedlings grown in two soils exposed to eight rates of the herbicide Caragard (ppm a.i./30 ml cell).

Table 4.1. Radicle and shoot length of asparagus germlings exposed to a range of concentrations of untreated asparagus root extract or autoclaved or celite filtered extract or water in experiment 1.

Table 4.2 Radicle and shoot length of asparagus germlings exposed to a range of concentrations of untreated asparagus root extract or nutrient solutions or insoluble material from the extraction or autoclaved extract liquid or autoclaved extract solid or water in experiment 2.

Table 4.3 Regression analysis data (SE in brackets) of log asparagus germling radicle lengths exposed to two dilution series of asparagus root extract.

Table 4.4 Radicle length, shoot length and number of days to complete the bioassay for ten plant genera grown in the presence of four concentrations of asparagus root extract. (SE 4df in brackets)

Table 4.5 \textit{I}s\textsubscript{50} values for root and shoot growth of ten genera exposed to asparagus storage root extract.

Table 4.6 Radicle lengths of lettuce seedlings exposed to seven concentrations of extracts from pulverised or intact asparagus storage roots or water.

Table 4.7 Radicle length (mm) of lettuce seedlings exposed to four concentrations of root extract from six asparagus cultivars or water.

Table 4.8 Slope coefficient (β_1) of regression lines of radicle lengths of lettuce seedlings exposed to four concentrations of root extracts from six asparagus cultivars.

Table 4.9 Slope coefficient (β_1) of the regression lines of radicle lengths of four cultivars of asparagus germlings exposed to five concentrations of asparagus RE. (Transformation: $\log y = \beta_0 + \beta_1 \log x$)
Table 4.10 Radicle length (mm) of lettuce seedlings exposed to two concentrations of extracts from the storage organs of four plant species and water.

Table 4.11 Sampling dates and number of days since the asparagus crop was destroyed at the two sampling sites.

List of Figures

Figure 1.1 Diagram of A. officinalis above and below ground parts.

Figure 1.2 Diagram of male, female and hermaphroditic flowers (Ellison 1986).

Figure 1.3 Diagram of bud cluster and pattern of bud development (Ellison 1986).

Figure 2.1 Field trial No. 1 plot layout and treatment randomisation.

Figure 2.2 Pattern of progression of Phytophthora infection across Virgin soil plots in Field Trial No. 1.

Figure 2.5 Plot layout and treatment randomisation of Field Trial No. 2.

Figure 3.1 Mean total dry weight/plant (g) grown in fumigated or non-fumigated, replant or virgin soil in Greenhouse Trial No. 2.

Figure 3.2 Mean total dry weight/plant (g) grown in presence of two rates of conidia or oatseed inoculum or no inoculum or oatseed in Greenhouse Trial No. 2.

Figure 3.3 Mean Crown Rot scores (1=low, 5=high) for plants grown in fumigated or non-fumigated, replant or virgin soil in Greenhouse Trial No. 2.

Figure 3.4 Mean crown rot scores (1=low, 5=high) for plants grown in presence of two rates of conidia or oatseed inoculum or no inoculum or oatseed in Greenhouse Trial No. 2.
Figure 3.5 Eight rates of asparagus storage root additions to two soils regressed against total plant dry weight. 93

Figure 3.6 Eight rates of conidial inoculum additions to two soils regressed against total plant dry weight. 95

Figure 3.7 Eight rates of herbicide additions to two soils regressed against log of total plant dry weight. 96

Figure 4.1 Log mean radicle length of asparagus germlings exposed to two dilution series of asparagus storage root extract. 103

Figure 4.2 Log lettuce seedling radicle length plotted against log RE concentration for extracts from different ages of asparagus storage roots. 114

Figure 4.3 Log radicle length plotted against log root extract concentration for lettuce seedlings exposed to extracts from pulverised or intact asparagus storage roots. 118

Figure 4.4 Log mean radicle length of four asparagus cultivars plotted against Log RE concentration. 127

Figure 4.5(a) Radicle Inhibition plotted against time (days from destruction of the old asparagus crop) for soil water extracts from Site 1. Extract concentration given on each plot. Bars represent Standard Error. 137

Figure 4.5(b) Radicle Inhibition plotted against time (days from destruction of the old asparagus crop) for soil water extracts from Site 2. Extract concentration given on each plot. Bars represent Standard Error. 138

Figure 4.6 Daily rainfall over the twelve month sampling period with sampling dates plotted. 142

Figure 4.7 Mean 24 h air temperature (°C) over the twelve month sampling period. Sampling dates plotted. 143
List of Plates

Plate 1. Plants from Field Trial no. 1 showing severe chlorosis and necrosis. 28

Plate 2. Cross section of healthy crown 3 months after planting. 28

Plate 3. Cross section of crown showing symptoms of *Fusarium* infection 3 months after planting. 29

Plate 4. Cross section of fern stalk showing symptoms of *Fusarium* infection. 29

Plate 5. Patchy survival and growth in replant area of Field Trial No. 1. 35