Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
NUTRITIVE VALUE OF CHICORY
(Cichorium intybus) AS A SPECIAL PURPOSE FORAGE FOR DEER PRODUCTION

A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Doctoral of Philosophy in Animal Science at Massey University

KUSMARTONO

1996
DECLARATION

The studies presented in this thesis were completed by the author whilst a postgraduate student in the Department of Animal Science, Massey University, Palmerston North, New Zealand. This is all my own work and the views presented are mine alone. Any assistance received is acknowledged in the thesis. All references cited are included in the bibliography.

I certify that the substance of the thesis has not been already submitted for any degree and is not being currently submitted for any other degree. I certify that to the best of my knowledge any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Kusmartono
PhD candidate

Professor T.N. Barry
Chief Supervisor

Associate Professor P.R. Wilson
Co-supervisor

Dr K.J. Stafford
Co-supervisor

Dr P.D. Kemp
Co-supervisor

March 1996
ABSTRACT

(Kusmartono, Department of Animal Science, Massey University, Palmerston North, NEW ZEALAND. Nutritive value of chicory (Cichorium intybus) as a special purpose forage for deer production)

A series of grazing and indoor experiments were conducted at Massey University Deer Research Unit and Nutrition Laboratory, Palmerston North, New Zealand, to study the effects of grazing chicory (Cichorium intybus) and perennial ryegrass (Lolium perenne)/white clover (Trifolium repens) upon the growth, voluntary feed intake (VFI) and venison production of red and hybrid deer, and to study rumen digestion in deer fed either diet, to define factors responsible for the difference in feeding value (FV) between the two forages. Half of the animals in each experiment (Chapter 2) were grazed on either chicory or perennial ryegrass using a rotational grazing system, whilst for the indoor experiments (Chapter 3 & 4), rumen fistulated red deer individually kept in metabolism crates were fed fresh chicory or perennial ryegrass using automatic feeders at hourly intervals. In the last grazing Experiment (Chapter 5), to investigate the effect of condensed tannin (CT) in chicory and perennial ryegrass upon protein degradation, half of the animals were supplemented with polyethylene glycol (PEG; MW 3350) to inactivate CT and effects of CT were defined by comparing unsupplemented deer (CT acting) with PEG supplemented deer (CT inactivated).

1. The effects of grazing chicory or perennial ryegrass/white clover pasture upon growth and VFI of red and hybrid calves were compared both during lactation in summer of 1993 (Experiment 1; Chapter 1) and during post-weaning growth in autumn, winter and spring of 1993 (Experiment 2; Chapter 2). Relative to pasture, chicory had a higher ratio of readily fermentable:structural carbohydrate in all seasons and had higher organic matter digestibility (OMD) in summer and autumn but not in spring. Deer grazing chicory had higher VFI, bite weight, liveweight gain (LWG), and greatly reduced ruminating time than deer grazing pasture. Carcass dressing percentage and carcass weight of deer grazing chicory were higher than those grazing pasture. Hybrid deer grew better than red deer.
and there were forage x genotype interactions in Experiment 2, with LWG and carcass weight of hybrid deer (especially stags) being much greater when grazed on chicory. Carcass weight for red deer and hybrid stags was 64.9 and 73.0 kg when grazed on chicory and 56.6 and 57.0 kg when grazed on pasture. Grazing chicory advanced the date of first cut velvet antler by 28 days and increased the weight of total harvestable (first cut+regrowth) velvet antler. It was concluded that grazing chicory increased carcass weight, especially in hybrid stags with increased growth potential, and increased velvet antler production. This was achieved by increased VFI in all seasons and increased OMD of chicory in summer and autumn relative to deer grazing pasture.

2. Intra-ruminal particle size reduction in rumen fistulated castrate red deer (Cervus elaphus) fed fresh chicory was compared with that in deer fed fresh perennial ryegrass in a two-period each of 12 days indoor experiment, with each period being 15 days long. Measurements included the efficiency of particle breakdown during the time allowed for rumination (<C.PART>) to below the critical size required to leave the rumen (passage through a 1mm sieve) and jaw activities (ie. eating and ruminating). Total eating time and the number of eating bouts were similar for deer fed each forage, but deer fed chicory had a greater chewing rate during eating (97.4 v. 81.0 chews/min), and a higher number of chews/g DM eaten (36.2 v. 31.5). Deer fed chicory had lower total ruminating time (30 v. 257 min/22.5h), lower number of boli ruminated (38 v. 440/22.5h), lower number of ruminating bouts (5.4 v. 16.2/22.5h) and less chews per minute ruminating (16.5 v. 44.3) than those fed perennial ryegrass. Of the ten deer used to measure (<C.PART>), only four ruminated when fed chicory compared with nine when fed perennial ryegrass. Deer fed chicory had a higher efficiency of particle breakdown (<C.PART>; 0.64 v. 0.42), higher fractional degradation of particles >1mm to <1mm (9.2 v. 5.1%/h) and faster fractional disappearance of total DM from the rumen (10.2 v. 5.3%/h). All three measurements for chicory were similar in deer that did or did not ruminant, but with perennial ryegrass all values were considerably reduced in the deer that did not ruminant. It was concluded that chicory can be broken down faster in the rumen, with less
rumination being required than perennial ryegrass, and that some deer (60%) could break down swallowed chicory to below the critical particle size without ruminating at all. The faster clearance of DM from the rumen explains the high VFI of deer grazing chicory.

3. The effects of feeding chicory and perennial ryegrass indoors on apparent digestibility, rumen fractional disappearance rate (FDPR), rumen fractional degradation rate (FDR), rumen fractional outflow rate (FOR) and mean retention time (MRT; 1/FOR) were measured in deer fed at hourly intervals. The ratio of readily fermentable carbohydrate to structural carbohydrate was c. three times higher in chicory than in perennial ryegrass. Apparent digestibility of DM was higher in deer fed chicory than in deer fed perennial ryegrass (0.785 v. 0.727), whilst apparent digestibility of neutral detergent fibre (NDF) was lower in deer fed chicory (0.679 v. 0.755), due only to reduced hemicellulose digestibility (0.667 v. 0.783). Relative to deer fed perennial ryegrass, those fed chicory had higher rumen FDPR values for DM (14.5 v. 8.6%/h), soluble carbohydrate (69.9 v. 54.7%/h), cellulose (15.5 v. 9.8%/h) and lignin (6.8 v. 3.8%/h). Rumen FDR in deer fed chicory was higher than those fed perennial ryegrass for cellulose (11.4 v. 7.0%/h) and lignin (2.7 v. 1.0%/h), but tended to be lower for hemicellulose. Rumen FOR was higher and MRT was lower for both liquid and particulate matter in deer fed chicory compared to deer fed perennial ryegrass. It was concluded that rumen FDPR and apparent digestibility were much higher in deer fed chicory than in deer fed perennial ryegrass, due to faster degradation rates of most constituents in the rumen and faster outflow rates from the rumen. An exception was hemicellulose, where reduced rumen degradation rates and shorter rumen particulate MRT contributed to reduced apparent digestibility. Faster clearance from the rumen, due to both faster degradation and outflow rates may be used to explain the greater VFI, as well as faster growth rate in deer grazing chicory compared to those grazing perennial ryegrass. Faster rates of lignin solubility (as in the rumen (as measured by FDR) probably contributed to the more rapid breakdown of chicory in the rumen.
4. A laboratory and a grazing experiment were conducted to study the effects of CT in chicory and perennial ryegrass upon protein solubility and protein degradation. Nitrogen (N) solubility was measured \textit{in vitro} in mineral buffer, using freeze dried samples of forages cut at the vegetative stage. Rumen ammonia concentration in rumen fistulated castrate red deer stags grazing either on perennial ryegrass or chicory was used as an index of protein degradation. Samples of rumen fluid were taken every 4 h for 24 h for ammonia concentration and pH. In both experiments, the effects of CT were deduced from responses to supplementation with PEG which binds and activates CT. PEG was given three times daily (total 20 g/day) in the grazing experiment. Small concentrations of CT were measured in both forages (0.3-2.5 g/kg DM), with chicory containing slightly higher total CT concentration than perennial ryegrass. Protein solubility was lower for chicory than for perennial ryegrass but was not affected by PEG addition for either forage. Rumen ammonia concentration was consistently higher for PEG-supplemented than for unsupplemented deer grazing each forage, suggesting that the low CT concentration in both forages was slowing protein degradation to ammonia without affecting protein solubility. Rumen pH tended to be slightly higher in PEG supplemented animals than in unsupplemented animals grazing either forage and mean rumen pH over all sampling times was much lower for deer grazing chicory, either with (5.81 v. 6.62) or without PEG supplementation (5.63 v. 6.44). It was concluded that action of CT contained in perennial ryegrass and chicory reduced protein breakdown in the rumen of deer grazing both forages, and that the low rumen pH found in deer grazing chicory may explain the low fibre digestibility of this forage.

5. Overall it was concluded that chicory was of very high FV and had excellent nutritional attributes for increasing deer production. However, its adoption as a forage by the NZ deer industry is likely to depend upon agronomic aspects, in particular devising grazing systems and breeding new chicory cultivars that have increased persistency and less tendency to go into a lignified reproductive state during summer. Chicory should be either sown alone or in a mixture with a legume such as white clover and should not be grazed in winter. Chicory should
not be grazed using accepted practices for perennial ryegrass/white clover pastures (ie including a grass component and grazing it in winter); rather special grazing systems as used in this thesis should be used to prolong the life of chicory stands to 5 or 6 years.
ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful

My sincere thanks go to my chief supervisor, Professor T.N. Barry, Department of Animal Science, Massey University, for his valuable guidance, patience and encouragement throughout this study.

I also give my special thanks to my co-supervisors, Associate Professor P.R. Wilson and Dr. K.J. Stafford, Department of Veterinary Clinical Sciences, and Dr. P.D. Kemp, Department of Plant Science, Massey University for their guidance, criticism and contribution of knowledge.

I wish to thank Professor S.N. McCutcheon and Professor H.T. Blair, Heads of Department of Animal Science, and the Doctoral Research Committee of Massey University for allowing me to study at the Department of Animal Science, Massey University. The guidance of Massey University Animal Ethics Committee in approving the experimental protocols involving the use of animals is acknowledged.

The advice of Professor D.J. Garrick and Dr. P.C.H. Morel, Department of Animal, Massey University, on statistical analysis is appreciated. Dr. R.W. Purchas, Department of Animal Science, Massey University, is acknowledged for his advice on carcass measurement and Dr. G.C. Waghorn, AgResearch Grasslands, for nutritional advice.

Thanks are extended to the Rector of Brawijaya University and the Dean of Faculty of Animal Husbandry, Brawijaya University, Malang, Indonesia for giving me permission to go on study leave for four years in New Zealand.
I sincerely acknowledge the technical assistance in various ways from:
Mr G.S. Purchas; Mr C.W.H. Howell; Mr W.B. Parlane; Mr Wallace Wong;
Dr Yuxi Wang; Dr Feng Yu; Dr G. Semiadi; Mr E. Widodo; Mr Mashudi; Mr
M.H. Hussain; Mr D.A. Hamilton; Mr J.A. Anderson; Ms F.S. Jackson; Miss
M.L. Zou; Miss M.F. Scott; Miss Y.H. Cottam, Department of Animal
Science, Massey University; Mr. I.D. Shelton, AgResearch Grasslands.

I would also like to thank Professor A. Shimada, a sabbatical visitor and ruminant
nutritionist from the National University of Mexico, for his considerable help and
criticism in part of this study.

The Ministry of Foreign Affairs and Trade (MFAT) is also acknowledged for
providing a Scholarship towards my stipend and tuition fees. Financial support
from Wrightson Seeds towards my research costs is very much appreciated.

I would like to express my appreciation to Mrs B.J. Purchas, Mrs Annette Barry
and Mrs P. Shimada for their friendship to my family and me.

I would like to offer my sincere thanks to my late father and my mother who
educated me to the present level with a lots of self denial, and to my brothers
and sister, and my brothers and sisters in law for their help in looking after my
family during my absence.

Finally, I would like to express my special thanks to my wife, Deasy Retnani, my
sons, Firman Agustian and Ichsan Atamaja, for their patience, encouragement
and support during my PhD candidature. I dedicate this thesis to them.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES AND DIAGRAM</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>3</td>
</tr>
<tr>
<td>Chapter 1</td>
<td></td>
</tr>
<tr>
<td>Review of literature</td>
<td>5</td>
</tr>
<tr>
<td>1.1. INTRODUCTION</td>
<td>6</td>
</tr>
<tr>
<td>1.1.1. The commencement of deer farming in NZ</td>
<td>6</td>
</tr>
<tr>
<td>1.1.2. Species of deer and those farmed in NZ</td>
<td>7</td>
</tr>
<tr>
<td>1.2. SEASONALITY IN TEMPERATE DEER</td>
<td>7</td>
</tr>
<tr>
<td>1.2.1. Seasonality in voluntary feed intake</td>
<td>7</td>
</tr>
<tr>
<td>1.2.2. Seasonality in growth</td>
<td>9</td>
</tr>
<tr>
<td>1.2.3. Seasonality in digestion</td>
<td>10</td>
</tr>
<tr>
<td>1.3. DEER INDUSTRY IN NZ</td>
<td>12</td>
</tr>
<tr>
<td>1.3.1. Deer population</td>
<td>12</td>
</tr>
<tr>
<td>1.3.2. Venison production and carcass quality</td>
<td>13</td>
</tr>
<tr>
<td>1.3.3. Velvet antler production</td>
<td>15</td>
</tr>
<tr>
<td>1.3.4. Export market requirements and seasonal fluctuations</td>
<td>16</td>
</tr>
<tr>
<td>in price schedule of venison</td>
<td></td>
</tr>
<tr>
<td>1.3.5. Deer feed requirements</td>
<td>18</td>
</tr>
<tr>
<td>1.3.6. Seasonal feed supply and its relationship to deer feed requirements</td>
<td>20</td>
</tr>
<tr>
<td>1.4. THE NEED FOR SPECIAL PURPOSE FORAGES IN DEER PRODUCTION</td>
<td>21</td>
</tr>
</tbody>
</table>
1.4.1. Requirements of a special purpose forage crop 21
1.4.2. Historical use of chicory in NZ farming systems 22
1.4.3. Agronomic merits of Puna chicory 22
1.4.4. The use of chicory for animal production 25

1.5. BASIC PRINCIPLES OF FORAGE FEEDING VALUE 27
1.5.1. Definition of feeding value 27
1.5.2. Differences between forages in FV 27
1.5.3. Nutritive value of forages 28
 1.5.3.1. Stage of growth 28
 1.5.3.2. Chemical composition 29
 1.5.3.3. Digestibility and site of digestion 30
 1.5.3.4. Efficiency of utilisation of digested nutrients .. 33
 1.5.3.5. The role of CT in forages for increasing protein absorption 34
1.5.4. Herbage intake by grazing animals 36
 1.5.4.1. Nutritional and non-nutritional components ... 37
 1.5.4.2. Grazing management 40
1.5.5. Methods of measuring feed intake on grazing animals 40
 1.5.5.1. Indirect method using chromium oxide 40
 1.5.5.2. Sward technique 41

1.6. CLEARANCE OF DIGESTA FROM THE RUMEN 42
 1.6.1. The efficiency of particle size breakdown 42
 1.6.2. Disappearance, degradation and outflow from the rumen 43

1.7. METHODS OF MEASURING RUMEN OUTFLOW RATE (FOR) 44
 1.7.1. Attributes required for a digestion marker 44
 1.7.2. Methods for determining rumen FOR 45

1.8. THE EFFECTS OF NUTRITION ON VELVET ANTLER GROWTH 45
Chapter 2

The effects of grazing chicory (*Cichorium intybus*) and perennial ryegrass (*Lolium perenne*)/white clover (*Trifolium repens*) pasture upon the growth and voluntary feed intake of red hybrid deer during lactation and post-weaning growth

2.1. ABSTRACT

2.2. INTRODUCTION

2.3. MATERIALS AND METHODS

2.3.1. Experimental design

2.3.2. Forages

2.3.3. Animals

2.3.4. Grazing Management

2.3.5. Pasture Measurements

2.3.6. Animal Measurements

2.3.7. Velvet antler removal

2.3.8. Slaughter procedure

2.3.9. Laboratory Analysis

2.3.10. Data calculation and statistical analysis

2.4. RESULTS

2.4.1. Herbage mass and botanical composition

2.4.2. Nutritive value of forages

2.4.3. Liveweight change

2.4.4. Effects of treatments on carcass production

2.4.5. Effects of treatments on stomach characteristics

2.4.6. Voluntary feed intake (VFI) and grazing behaviour
2.4.7. Velvet antler production ... 95
2.5. DISCUSSION .. 96
2.6. REFERENCES .. 101

Chapter 3
Intra-ruminal particle size reduction in deer fed fresh perennial ryegrass (Lolium perenne) or chicory (Cichorium intybus) .. 106
3.1. ABSTRACT .. 107
3.2. INTRODUCTION ... 108
3.3. MATERIALS AND METHODS .. 108
 3.3.1. Experimental design .. 108
 3.3.2. Forages .. 109
 3.3.3. Animals, housing and diets ... 109
 3.3.4. Measurement of efficiency of particle breakdown 110
 3.3.5. Laboratory methods .. 111
 3.3.6. Calculation of data and statistical analysis 112
3.4. RESULTS ... 113
3.5. DISCUSSION ... 119
3.6. REFERENCES .. 121

Chapter 4
Rumen digestion and rumen outflow rate in deer fed fresh chicory (Cichorium intybus) or perennial ryegrass (Lolium perenne) .. 122
4.1. ABSTRACT .. 123
4.2. INTRODUCTION ... 124
4.3. MATERIALS AND METHODS .. 124
 4.3.1. Experimental design .. 124
 4.3.2. Forages .. 124
 4.3.3. Animals and diets ... 124
4.3.4. Digestibility trial ... 126
4.3.5. Measurement of rumen outflow rate 127
 4.3.5.1. Marker infusion .. 127
 4.3.5.2. Rumen contents baling 127
4.3.6. Laboratory methods ... 127
4.3.7. Calculation of data and statistical analysis 128
4.4. RESULTS ... 129
4.5. DISCUSSION .. 134
4.6. REFERENCES ... 140

Chapter 5
The effects of condensed tannins in chicory (Cichorium intybus) and perennial ryegrass (Lolium perenne) on protein solubility and protein degradation .. 144
5.1. ABSTRACT .. 145
5.2. INTRODUCTION .. 146
5.3. MATERIALS AND METHODS .. 147
 5.3.1. Experimental design .. 147
 5.3.2. Forages ... 147
 5.3.2.1. Experiment 1 .. 148
 5.3.2.2. Experiment 2 .. 148
 5.3.2.2.1. Animals and diet 148
 5.3.3. Laboratory methods .. 149
 5.3.4. Statistical analysis ... 150
5.4. RESULTS .. 150
 5.4.1. Experiment 1 .. 150
 5.4.2. Experiment 2 .. 152
5.5. DISCUSSION .. 154
5.6. REFERENCES ... 158

Chapter 6
General Discussion .. 162
6.1. INTRODUCTION .. 163
6.2. VENISON PRODUCTION FROM CHICORY .. 163
6.3. VELVET PRODUCTION'IN SPIKER STAGS
 GRAZING CHICORY .. 165
6.4. DEER PRODUCTION RESPONSES IN RELATION TO
 FEEDING VALUE .. 169
 6.4.1. Voluntary feed intake (VFI) ... 170
 6.4.2. Apparent digestibility and concentration
 of metabolisable energy (ME) ... 170
 6.4.3. Particle breakdown, rumen degradation
 and rumen outflow rates ... 172
 6.4.4. Rumen protein degradation ... 173
6.5. PERSISTENCY OF CHICORY ... 174
6.6. FUTURE RESEARCH .. 176
6.7. CONCLUSION ... 178
6.8. REFERENCES .. 180
LIST OF TABLES

Table 1.1. Seasonal changes in VFI, apparent digestibility, rumen pool size and rumen fractional outflow rate in castrated male sheep, goats and red deer fed a lucerne chaff diet (From Domingue et al. 1991) .. 11

Table 1.2. Carcass weight (CW) and fatness in lambs, bulls and stags (From Drew 1985) ... 15

Table 1.3. Nutrient composition per 100 g of untrimmed venison meat red deer (From Drew & Seman 1987) 15

Table 1.4. Seasonal ME requirement and target liveweight of red deer (From Fennessy & Milligan 1987) 19

Table 1.5. Chemical composition, in vitro digestibility, energy balance and LWG of sheep fed perennial ryegrass or white clover (From Ulyatt 1970) .. 36

Table 1.6. The effect of CT (22g/kg DM) upon the digestion of amino acids in sheep fed fresh Lotus corniculatus (From Waghom et al. 1987) ... 39

Table 1.7. Mean DMI, chewing behaviour, breakdown of large particles of cattle fed tropical grass (Panicum maximum) and legume (Lablab purpureus) (From McLeod et al. 1990) 46
Table 1.8. Age and weight of red deer calves at pedicle initiation in 3 experiments (From Fennessy & Suttie 1985) 49

Table 1.9. Influence of nutrition on antler development (From Hamilton & Suttie 1983) .. 50

Table 2.1. Pre- and post-grazing herbage mass (kgDM/ha) of perennial ryegrass/white clover pasture and chicory grazed by hinds and their calves during lactation in 1994 and by red and hybrid weaner deer during autumn, winter and spring of 1993. Mean values with their standard errors ... 80

Table 2.2. Experiment 1. Botanical composition (%DM) of perennial ryegrass/white clover pasture and chicory during the summer 1994 lactation trial. Mean values with their standard errors ... 81

Table 2.3. Experiment 2. Botanical composition (%DM+S.E.) of perennial ryegrass/white clover pasture grazed by red and hybrid weaner deer during autumn, winter and spring in 1993 .. 82

Table 2.4. Experiment 2. Botanical composition (%DM+S.E.) of chicory grazed by red and hybrid weaner deer during autumn and spring in 1993 .. 83
Table 2.5. Experiment 1. Chemical composition (%DM+S.E.) of forage on offer and diet selected by red deer hinds during lactation in summer 1994 .. 84

Table 2.6. Experiment 2. Chemical composition (%DM+S.E.) of forage on offer and diet selected by red and hybrid weaner deer grazing either perennial ryegrass/white clover pasture or chicory during autumn, winter and spring in 1993 85

Table 2.7. Experiment 1. Growth of red and elk:red hybrid deer calves grazing on perennial ryegrass/white clover pasture and chicory during lactation in summer 1994 .. 87

Table 2.8. Experiment 2. Liveweight and liveweight gain of red and hybrid weaner deer grazed on either perennial ryegrass/white clover pasture or chicory during autumn, winter and spring of 1993 .. 88

Table 2.9. Experiment 2. Carcass production from stags and hinds grazing either perennial ryegrass/white clover pasture or chicory and attaining slaughter liveweight (92 kg) by one year of age .. 90

Table 2.10. Experiment 2. Volume (l) and weight (kg) of the emptied rumen, omasum and abomasum organs, together with the weight and volume of rumen contents in deer grazing either perennial ryegrass/white clover pasture or chicory. All data are expressed per 100 kg liveweight 92
Table 2.1. Experiment 2. Mean values for the length and width of rumen papillae in stags and hinds grazing either perennial ryegrass/white clover pasture or chicory .. 93

Table 2.12. Experiment 1 and 2. Organic matter intake (OMI), eating and ruminating times of deer grazing either perennial ryegrass/white clover pasture or chicory during summer 1994 (lactating hinds) and during autumn and spring 1993 (weaner deer). Data are mean values for red and hybrid deer of both sexes grazing each forage .. 94

Table 2.13. Velvet antler production from red and hybrid yearling stags grazing either perennial ryegrass/white clover pasture or chicory .. 95

Table 3.1. Chemical composition (g/kgDM) of perennial ryegrass and chicory ... 114

Table 3.2. Eating and ruminating times of red deer fed fresh perennial ryegrass or chicory during period 2, when feed was offered for 13.5 h per day ... 115

Table 3.3. Efficiency of particle breakdown (<C.PART>) by red deer fed fresh perennial ryegrass or chicory. (Mean values with standard error for 5 animals per forage in each period) ... 117

Table 3.4. Rumen pool size and particle size distribution (%DM retained on each sieve) at first baling and second baling in red deer fed perennial ryegrass and chicory for both periods. (Mean values with their standard error) 118
Table 4.1. Chemical composition (g/kg DM) of perennial ryegrass and chicory

<table>
<thead>
<tr>
<th>Table 4.2. Dry matter intake, apparent digestibility, rumen fractional disappearance rate and rumen fractional degradation rate of perennial ryegrass and chicory fed to red deer</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Table 4.3. Rumen pool size, rumen fractional outflow rate and rumen mean retention time for liquid and particulate matter in rumen red deer fed perennial ryegrass and chicory</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Table 4.4. Total water influx, rumen outflow and net water balance of deer fed perennial ryegrass and chicory</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Table 4.5. Fractional outflow rate (FOR; %/h) of liquid and particulate matter in red deer, goats and sheep fed different diets during summer</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Table 5.1. Chemical composition (g/kg DM) of the perennial ryegrass and chicory</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Table 6.1. Liveweight gain of red deer stags grazing perennial ryegrass/white clover pasture, red clover and chicory during lactation and during post-weaning growth. Values in brackets are relative to perennial ryegrass/white clover pasture as 100 and can be regarded as indices of relative FV. The data are compared with that of grazing sheep</th>
</tr>
</thead>
</table>
Table 6.2. Carcass production and dressing percentage of red and hybrid deer stags grazing either perennial ryegrass/white clover pasture or chicory ... 165

Table 6.3. Chemical composition of perennial ryegrass, red clover and chicory .. 167

Table 6.4. Metabolisable energy concentrations (MJ ME/kg OM) of different forages calculated as OMD x 16.3. Values in brackets are relative to perennial ryegrass/white clover pasture as 100 171
Figure 1.1.	Mean monthly dry matter intake (DMI) of hinds and stags fed indoors for 1 year (From Suttie et al. 1987)	9
Figure 1.2.	Mean monthly liveweight of stags and hinds fed indoors for 1 year (Adapted from Suttie et al. 1987). The deer were 5 months old at the start of the experiment and 17 months of age at the end	10
Figure 1.3.	(a) Actual NZ deer herd 1987-1994, and (b) projected size of the NZ farmed deer herd for the years 1989-2000. (Adapted from GIB 1993a; 1994a)	13
Figure 1.4.	New Zealand deer velvet production (GIB 1994b)	16
Figure 1.5.	Export earnings from the deer products for the NZ deer industry (GIB 1995)	17
Figure 1.6.	Seasonal variations in venison schedule ($/kg), prime 50-70 kg carcass during 1991 and 1994 (GIB 1995)	18
Figure 1.7.	Average pasture growth rates in the Manawatu Downland (P.R. Wilson, pers.comm)	20
Figure 1.8.	A stylised seasonal feed supply and demand pattern for the Manawatu Downland, with a venison stags and breeding hinds operation (P.R. Wilson, pers.comm.)	21
Figure 1.9. Dry matter yields of chicory in mixed pasture
(Kg/ha) during: (a) autumn-winter; (b) spring; (c) summer and
(d) autumn (Adapted from Lancashire 1978) .. 24

Figure 1.10. Effects of 3 grazing systems on species composition
(Adapted from Lancashire & Brock 1983) .. 25

Figure 1.11. Duodenal non-ammonia (NAN) flow per unit total
N intake as a function of dietary condensed tannins (CT)
concentration in sheep fed on Lotus sp. (O) High CT
(106 g extractable CT/kg DM) Lotus pedunculatus;
(●) low CT (46 g extractable CT/kg DM) Lotus
pedunculatus; (●) high CT (14.5 g extractable CT/kg DM)
Lotus corniculatus; (●) low CT (2.5 g extractable CT/kg DM)
Lotus corniculatus (John & Lancashire 1981); (□) short
rotation ryegrass; (□) perennial ryegrass; (■) white clover
(MacRae & Ulyatt 1974) and (x) sainfonin
(Ulyatt & Egan 1979) (Adapted from Barry & Manley 1984) 35

Figure 1.12. The relationship of pasture intake to various
pasture characteristics and methods of pasture allocation
(Poppi et al. 1987) .. 38

Figure 1.13. The influence of stocking rate upon (a) sward morphology
and (b) digestibility of the herbage eaten (Adapted from
Hodgson 1990) .. 40

Fig 2.1. The relationship between date of first cut velvet antler
and liveweight at the end of winter. O red deer pasture;
● hybrid deer pasture; □ red deer chicory;
■ hybrid deer chicory .. 96
Figure 5.1. Experiment 1. The effect of PEG addition on solubility of the total nitrogen (N) in perennial ryegrass (●) and chicory (O). T, S.E .. 152

Figure 5.2. Experiment 2. Rumen ammonia concentration of deer grazing (a) perennial ryegrass and (b) chicory. With oral PEG supplementation (O); without oral PEG supplementation (●). ↓ indicates times of PEG administration. T, S.E .. 153

Figure 5.3. Experiment 2. Rumen pH of deer grazing (a) perennial ryegrass and (b) chicory. With oral PEG supplementation (O); without oral PEG supplementation (●). ↓ indicates times of PEG administration. T, S.E .. 155

Diagram 6.1. An experiment design to investigate the effect of feeding chicory on velvet antler production of 2 to 3-year old and adult stags .. 169

Figure 6.1. Plant density of chicory on Massey University Deer Research Unit over two seasons. Greatest reductions in plant density occurred in October/November (ie spring). Absolute percentage of plant survived was based on September 1995 counting, whilst relative percentage of plant survived was based on the previous counting (Li et al. 1994) .. 175
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>acid detergent fibre</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>Cr-EDTA</td>
<td>chromium ethylenediaminetetra acetic acid</td>
</tr>
<tr>
<td>CT</td>
<td>condensed tannin</td>
</tr>
<tr>
<td>D</td>
<td>digestibility</td>
</tr>
<tr>
<td>DM</td>
<td>dry matter</td>
</tr>
<tr>
<td>DMI</td>
<td>dry matter intake</td>
</tr>
<tr>
<td>DOMI</td>
<td>digestible organic matter intake</td>
</tr>
<tr>
<td>EAA</td>
<td>essential amino acids</td>
</tr>
<tr>
<td>FDR</td>
<td>fractional degradation rate</td>
</tr>
<tr>
<td>FDPR</td>
<td>fractional disappearance rate</td>
</tr>
<tr>
<td>FO</td>
<td>faecal output</td>
</tr>
<tr>
<td>FOR</td>
<td>fractional outflow rate</td>
</tr>
<tr>
<td>FV</td>
<td>feeding value</td>
</tr>
<tr>
<td>GR</td>
<td>a measurement of total soft tissue depth over the 12th rib at a point 11 cm from the carcass line</td>
</tr>
<tr>
<td>GI</td>
<td>gastrointestinal</td>
</tr>
<tr>
<td>GIB</td>
<td>game industry board</td>
</tr>
<tr>
<td>GT</td>
<td>grazing time</td>
</tr>
<tr>
<td>h</td>
<td>hours</td>
</tr>
<tr>
<td>ha</td>
<td>hectare</td>
</tr>
<tr>
<td>k_f</td>
<td>efficiency of utilization of ME for fattening</td>
</tr>
<tr>
<td>k_g</td>
<td>efficiency of utilization of ME for growth</td>
</tr>
<tr>
<td>k_l</td>
<td>efficiency of utilization of ME for lactation</td>
</tr>
<tr>
<td>k_m</td>
<td>efficiency of utilization of ME for maintenance</td>
</tr>
<tr>
<td>kg</td>
<td>kilograms</td>
</tr>
<tr>
<td>l</td>
<td>litres</td>
</tr>
<tr>
<td>Ltd</td>
<td>limited</td>
</tr>
</tbody>
</table>
LWG liveweight gain
ME metabolisable energy
min minute
MJ megajoule
N nitrogen
NAN non-ammonia nitrogen
NaOH sodium hydroxide
ND not determined
NDF neutral detergent fibre
NEAA non-essential amino acids
NH₃ ammonia
NV nutritive value
NZ New Zealand
OM organic matter
OMD organic matter digestibility
OMI organic matter intake
PEG polyethylene glycol
rpm revolutions per minute
SC structural carbohydrate
SD standard deviation
SE standard error
t tonne
µg microgram
USA United States of America
VFA volatile fatty acid
VFI voluntary feed intake
v/v volume by volume
WSC water soluble carbohydrate