Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
FUZZY MOTION CONTROLLERS AND HYBRIDS

A thesis presented in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
IN COMPUTER SCIENCE

Massey University,
Albany, New Zealand.

Anton Gerdelan

2011
Contents

Abstract

1 **Overview and Aim of This Thesis**
 1.1 Method of Experimentation ... 2

2 **A Brief History of Motion Control in Animation**
 2.1 Introduction ... 3
 2.2 Overview of Key Algorithms ... 5
 2.2.1 Boids and Flocking .. 6
 2.2.2 Helbing’s Crowds ... 7
 2.3 Evolving Motion Controllers ... 8
 2.3.1 rtNEAT .. 9

3 **Fuzzy Logic Controllers**
 3.1 Overview ... 11
 3.2 Standard Pattern 2-Input Fuzzy Controller 12
 3.3 As Part of a Hybrid Controller 15

4 **Assembling a Toolkit for Doing Science with Simulations**
 4.1 Overview ... 17
 4.2 Constructing a 3D Simulation 18
 4.3 A Delta-State Video Capture Tool 23
 4.4 Real-Time Data Plots and Time Tools 24
 4.5 Measurements of Uncertainty 25

5 **A Modular Agent Middleware**
 5.1 Introduction ... 27
 5.2 Agent Society Model .. 30
 5.3 Modular Architecture .. 32
 5.4 Modelling the Environment ... 35
 5.5 Agent Behaviour .. 39
 5.6 Summary ... 42
 5.7 Possible Extensions to this Architecture 43

6 **On Design of Automatic Calibration Systems**
 6.1 Introduction ... 45
 6.2 Hybrid Algorithm ... 46
 6.3 Visualisation .. 50
 6.4 Proposed Self-Training Architecture 50
 6.5 Conclusions ... 53
CONTENTS

7 Adding Agent-Based Road Networks To Simulations 55
 7.1 Introduction .. 55
 7.2 Representing Complex Road Networks in 3D Simulations 57
 7.3 Architecture for Non-Intrusive Data Structures 61
 7.4 Rapid Construction of Virtual Road Networks 61
 7.5 Future Works 67
 7.6 Discussion and Conclusions 67

8 Agents and Motion Controllers for Road Vehicles 69
 8.1 Introduction ... 69
 8.2 Agent Paradigm 71
 8.3 Path Planning ... 73
 8.4 Reactive Vehicle Control 74
 8.5 Discussion and Conclusions 81

9 On Simulation Frameworks for Automatic Calibration Systems 87
 9.1 Introduction ... 87
 9.2 Works of Note ... 88
 9.3 Initial Approach 88
 9.4 Preliminary Experiment 90
 9.5 Discussion and Conclusions 93

10 A Genetic-Fuzzy System for Optimising Motion 97
 10.1 Introduction .. 97
 10.2 Related Work ... 98
 10.3 Background: Fuzzy Controllers in Agent Steering 99
 10.4 Architecture of the GFS 101
 10.5 Benchmarking the Genetic Algorithm Component 104
 10.6 Experiments and Results 105
 10.7 Conclusions and Future Works 112

11 Mechanix: Vehicle Mechanical Simulation 113
 11.1 Overview of Architecture 113
 11.2 Visualisation .. 115
 11.3 Drive-train Simulation 118
 11.4 Resistance Forces 125
 11.5 Effective Torque 126
 11.6 Suspension Simulation 126
 11.7 Trailers, Articulated Vehicles, Trains & Trams 131
 11.8 Limitations .. 131

12 Gremlin: A System for Benchmarking Mechanical Motion 135
 12.1 Introduction .. 135
 12.2 Definition of Test-Course Environment 136
 12.3 Evaluation Method 137
 12.4 Control System Design 140
 12.5 Experiments and Results 141
 12.6 Future Works ... 143
CONTENTS

13 Conclusions and Discussion

13.1 Review of Fuzzy Motion Controllers ... 145
13.2 Conclusions on Genetic Hybrid Systems 146
13.3 Overarching Conclusions ... 147
13.4 Future Works ... 148

Appendices

A Summary of Publications ... 153
A.1 Peer-Reviewed Articles ... 153
A.2 Technical Reports ... 153

B Reference Cards: Simulation Models and Specifications 155

Glossary of Terms

166
List of Figures

1. Overview of subjects on which hybrid fuzzy controllers are based. 1

2. Levels of detail classified spatially from a camera. 4
2. The evolution of behavioural control in animation. 5
2. Boids used in animated film. 6
2. The boid “neighbourhood”. 7

3. Classifying frequency of light into fuzzy sets for colour. 12
3. 2-input 1-output fuzzy controller design . 13
3. Example 5-set fuzzy value for speed. 14
3. Levels-of-detail behaviour. Fuzzy behaviour used for mid-distance pedestrians. . . 16

4. A combination of simulation models displayed in a 3D simulation. 19
4. Production process for generating to-scale vehicle models. 20
4. Crowd simulation based on perceptual studies. 21
4. Motion capture acting and capture process. 22
4. User-assisted dynamic landscape generation. 23
4. Real-time fuzzy controller plot visualisation. 26

5. Agents with near-identical architectures in different scenarios. 28
5. A society of agents based on a hierarchical organisation. 30
5. An agent hierarchy used to control road traffic. 31
5. A typical “stack” architecture used for a robot soccer player agent. 32
5. A diagram of the rôle of middleware for agents. 33
5. A modular middleware architecture with exchangeable components. 34
5. A typical abstracted 2D environment map, and features. 36
5. Resolutions of planning used by a 3-level agent hierarchy in a 3D environment. . . 38
5. Heuristic representation of the Fuzzy A* navigation algorithm 39
5. Convergent cascades of fuzzy associative memory matrices for action-selection. . . 40
5. Agents cooperating over a shared world model . 41

6. Hybrid fuzzy-A* soccer robots . 45
6. To-scale model of real vehicle with mechanical simulation. 47
6. Representing combined heuristic cell weights in environment graph. 48
6. Classifying environment elements into overlapping fuzzy sets. 49
6. Scalable fuzzy navigation cascade with feedback loop. 49
6. Graphing navigation data in real time. 51
6. Proposed algorithm for machine-learning agent. 52

7. Simulated city requiring traffic. 57
7. Street map of city model area. 58
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>Nodular graph representation of road network</td>
<td>59</td>
</tr>
<tr>
<td>7.4</td>
<td>Lane occupancy and following distance model</td>
<td>60</td>
</tr>
<tr>
<td>7.5</td>
<td>Non-intrusive traffic module design</td>
<td>62</td>
</tr>
<tr>
<td>7.6</td>
<td>Laying road segments in an existing simulation</td>
<td>63</td>
</tr>
<tr>
<td>7.7</td>
<td>Laying road networks over a 3D landscape</td>
<td>64</td>
</tr>
<tr>
<td>7.8</td>
<td>3D Dublin Streets with Abstract Road Included. Birds-Eye.</td>
<td>65</td>
</tr>
<tr>
<td>7.9</td>
<td>Simulated traffic follow lane-mapped roads in 3D city model</td>
<td>66</td>
</tr>
<tr>
<td>8.1</td>
<td>Agent traffic system in operation</td>
<td>70</td>
</tr>
<tr>
<td>8.2</td>
<td>Test vehicle model: Enviro400 Bus</td>
<td>70</td>
</tr>
<tr>
<td>8.3</td>
<td>Agent architecture for road traffic</td>
<td>72</td>
</tr>
<tr>
<td>8.4</td>
<td>Fuzzy input set functions; angle to obstacle</td>
<td>75</td>
</tr>
<tr>
<td>8.5</td>
<td>Fuzzy input set functions; angle to destination</td>
<td>76</td>
</tr>
<tr>
<td>8.6</td>
<td>Fuzzy input set functions; distance to destination</td>
<td>76</td>
</tr>
<tr>
<td>8.7</td>
<td>Fuzzy input set functions; distance to obstacle</td>
<td>77</td>
</tr>
<tr>
<td>8.8</td>
<td>Fuzzy set midpoints; desired speed</td>
<td>78</td>
</tr>
<tr>
<td>8.9</td>
<td>Fuzzy set midpoints; to-destination steering</td>
<td>79</td>
</tr>
<tr>
<td>8.10</td>
<td>Fuzzy set midpoints; avoidance steering</td>
<td>79</td>
</tr>
<tr>
<td>8.11</td>
<td>Prototype in operation; congestion</td>
<td>82</td>
</tr>
<tr>
<td>8.12</td>
<td>Prototype in operation; lane demarcations</td>
<td>83</td>
</tr>
<tr>
<td>8.13</td>
<td>Final product; simulated traffic with lane map and fuzzy steering</td>
<td>85</td>
</tr>
<tr>
<td>9.1</td>
<td>Test environment for agents to navigate through</td>
<td>91</td>
</tr>
<tr>
<td>9.2</td>
<td>To-scale 3D model of the T-28E vehicle with continuous tracks</td>
<td>92</td>
</tr>
<tr>
<td>9.3</td>
<td>Score obtained by an agent moving through test environment</td>
<td>93</td>
</tr>
<tr>
<td>9.4</td>
<td>Architecture for a dynamic real-time training</td>
<td>94</td>
</tr>
<tr>
<td>10.1</td>
<td>Diagram of fuzzy set functions; angles</td>
<td>99</td>
</tr>
<tr>
<td>10.2</td>
<td>Overlapping fuzzy input sets in a spatial example</td>
<td>100</td>
</tr>
<tr>
<td>10.3</td>
<td>Component architecture; fuzzy process</td>
<td>101</td>
</tr>
<tr>
<td>10.4</td>
<td>Simulation plug-in architecture</td>
<td>102</td>
</tr>
<tr>
<td>10.5</td>
<td>Operation of the breeding tool chain</td>
<td>102</td>
</tr>
<tr>
<td>10.6</td>
<td>Mapping fuzzy rules to a chromosome representation</td>
<td>104</td>
</tr>
<tr>
<td>10.7</td>
<td>Graph; controlled benchmark of genetic algorithm process</td>
<td>106</td>
</tr>
<tr>
<td>10.8</td>
<td>Vehicle controlled by GFS move through test environment</td>
<td>107</td>
</tr>
<tr>
<td>10.9</td>
<td>Graph; effect of mutation probability on fitness</td>
<td>108</td>
</tr>
<tr>
<td>10.10</td>
<td>Graph; effect of mutation range on fitness</td>
<td>109</td>
</tr>
<tr>
<td>10.11</td>
<td>Graph; effect of population size on fitness</td>
<td>110</td>
</tr>
<tr>
<td>10.12</td>
<td>Graph; effect of number of parents on learning curve</td>
<td>111</td>
</tr>
<tr>
<td>11.1</td>
<td>Loosely coupled mechanical simulation architecture</td>
<td>113</td>
</tr>
<tr>
<td>11.2</td>
<td>Views of a simulated Willys MB jeep</td>
<td>116</td>
</tr>
<tr>
<td>11.3</td>
<td>Before and after effect of car paint shader</td>
<td>117</td>
</tr>
<tr>
<td>11.4</td>
<td>Several vehicles rendered with shaders and compositors</td>
<td>119</td>
</tr>
<tr>
<td>11.5</td>
<td>Comparison of bases rendered with and without effects</td>
<td>120</td>
</tr>
<tr>
<td>11.6</td>
<td>Comparison of DUKWs rendered with and without effects</td>
<td>121</td>
</tr>
<tr>
<td>11.7</td>
<td>Diagram of forces acting in complete drive-train</td>
<td>122</td>
</tr>
<tr>
<td>11.8</td>
<td>The RPM-torque curve for the Willys MB Jeep</td>
<td>123</td>
</tr>
<tr>
<td>11.9</td>
<td>The RPM at final drive for gears in a jeep</td>
<td>124</td>
</tr>
<tr>
<td>11.10</td>
<td>A mechanical blueprint overlays its simulated 3D shape</td>
<td>128</td>
</tr>
<tr>
<td>11.11</td>
<td>An inexpensive method for simulating tracked vehicles</td>
<td>129</td>
</tr>
<tr>
<td>11.12</td>
<td>Views of animated Caterpillar track deformation</td>
<td>130</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

11.13 Articulation in Mechanix with an unpowered trailer. 131
11.14 Photo of a universal joint with axis of rotation overlaid. 132

12.1 Close-up view of “forest” obstacle course. 138
12.2 Wide-angle view of “forest” obstacle course. 139
12.3 Control system used for destination-seeking behaviour. 141
12.4 A mixed function motion control system with algorithmic switches. 142
12.5 Accumulated mean fitness for pillars course. 144
List of Tables

3.1 Complete table of example rules. 14
8.1 Fuzzy input term definitions; route following. 74
8.2 Fuzzy input term definitions; obstacle avoidance. 75
8.3 Fuzzy output term definitions; route following. 77
8.4 Fuzzy output term definitions; obstacle avoidance. 78
8.5 3×3 FAMM for desired speed; obstacle avoidance 80
8.6 3×3 FAMM for desired steering; obstacle avoidance 80
8.7 3×3 FAMM for desired speed; route following 81
8.8 3×3 FAMM for desired steering; route following 81
10.1 Comparison of features of agent control systems. 99
10.2 Rules for change to steering in the obstacle avoidance component of a simulated car. 100
10.3 The most-fit chromosomes from selected generations in an evolutionary run. The chromosomes are converging towards an optimal individual of all zeros. 105
10.4 Baseline genetic parameters for GFS . 112
B.1 Classical mechanics simulation model parameter values used. 156
B.2 Summary of mechanical simulation models used. 157
B.3 Specifications used for mechanical simulation of a Willys MB Jeep. 158
B.4 Specifications used for mechanical simulation of a Enviro 400 bus. 159
List of Algorithms

1 Mechanical simulation component update loop. 115
2 End run condition detection in “forest” scenario. 140
3 Logic for mixed motion control system output switch. 142
LIST OF ALGORITHMS
Acknowledgements

This work would not have been possible without my supervisors at Massey University; Professor Ken Hawick, who insisted upon the highest scientific standards, and Doctor Napoleon Reyes, who inspired me to start moving things with fuzzy logic. I am in a great debt of gratitude to Professor Carol O’Sullivan, who provided support and guidance for 2 years of study in Ireland with the Graphics, Vision, and Visualisation (GV2) group at Trinity College Dublin.

I would like to acknowledge my talented peers, from whom I have gained a great deal of knowledge and experience during the last 3 years; Prof. Henry Rice, Dr Martin Johnson, Dr Chris Messom, Dr Sébastien Paris, Dr Simon Dobbyn, Dr Rachel McDonnell, Dr Yann Morvin, Dr Veronica Sundstedt, Dr Guy Kloss, Dr Ljiljana Skrba, Dr Sophie Jörg, Dr Darren Caulfield, Dr Cathy Ennis, Dr Steve Collins, Dr Rozenn Dahyot, Cormac O’Brien, Nithin Tharakan, Andrew Corcoran, Dr Michéal Larkin, Dr Arno Leist, Dr Daniel Playne, Fintan McGee, Martin Pražák, Teo Susnjak, Brian Cullen, Eric Risser, Jonathan Ruttle, Robert Smyth, Paul McDonald, and Tom Van Eyck.

I would also like to thank Craig Reynolds for his invaluable advice regarding motion control.
Abstract

This thesis describes implementations of motion control systems that are based on fuzzy logic; fuzzy motion controllers. The controllers are used by to drive a variety of simulated vehicles and computer-animated characters. The problem of heading towards a destination whilst simultaneously avoiding static and dynamic obstacles is addressed with fuzzy motion controllers. For situations where a level above reactive motion control is required, such as path-planning behaviour or traffic rule following, then hybrid algorithms are proposed; combining fuzzy motion controllers with other navigation algorithms. Consideration is given to behavioural level of detail models, with transition between behavioural models of different complexity based on the proximity, or visual importance of characters to the camera.

Fuzzy controllers have a set of fuzzy rules, or a “rule base” that defines the inference of the controller. There is no assurance that hand-calibrated rule bases are optimal, and indeed that calibration based on fixed test environment will apply well to a dynamic environment. Special consideration is given to genetic-fuzzy systems, which use a genetic algorithm to automatically calibrate a rule base. Various architectures for genetic-fuzzy system are proposed and evaluated including dynamic systems, which have the ability to learn “on the fly”, rather than in fixed experiment scenarios. A relationship between genetic algorithm parameters and time-efficient fitness improvement is found. The time requirements of training more complex “cascading” fuzzy systems are discussed. Distributed and parallel training models are also considered.

A new, modular agent middleware is proposed, which is the underpinning software that perceives the complex environment, feeds inputs into the fuzzy motion controllers, and effects output actions for each character and vehicle. The middleware model is successfully used to drive a range of vehicles and characters used in experiments.

The problem of evaluating motion controllers within a scientific framework is discussed. Several candidate solutions are used, and a system for objectively evaluating mechanically simulated vehicle motion is defined and evaluated. A complete tool-chain for designing complex simulations and doing scientific experiments with them is developed and discussed in detail, including simulation software design methods, libraries, visualisation tools, and useful algorithms, a well-defined mechanical simulation system, and practices for collecting data from simulations, and quantifying uncertainty.