Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Physiological Ecology of Two Tree Weta Species

A thesis presented in partial fulfilment of the requirements for the degree of

Masters of Science in Zoology

At Massey University, Palmerston North, New Zealand.

Niki Ann Minards
2011
Abstract

Tree weta in New Zealand have been extensively studied for the sexual selection that has resulted in their pronounced sexual dimorphism, yet surprisingly little basic ecological information about common tree weta species is available. Particularly, information on the interactions within and between tree weta species is lacking. As such, this thesis focuses on how tree weta in the North Island of New Zealand are distributed with attention on *Hemideina crassidens* and *H. thoracica* populations and whether or not their distributions are correlated with local temperatures. Using ArcSoft GIS software, I established that while *Hemideina crassidens* have established their populations in colder areas, they do not appear to show greater body size in response to this. Additionally, tree weta from high altitude populations on Mt Taranaki were collected as immature nymphs and raised alongside weta from lowland populations under two temperature treatments. The results indicate that two species of weta from high altitude are more alike in their growth rate than they are to lowland conspecific populations. Mt Taranaki tree weta not only showed fast rates of growth but were larger overall in later instars. Adult weta from Mt Taranaki and lowland populations were also tested for rates of oxygen consumption at various temperatures. Surprisingly, only the temperature at which the weta were tested resulted in metabolic differences, not the population or species differences that were predicted. This information allows more detailed investigations of environment and how changes of local and global climate may affect tree weta distributions.
Acknowledgements

Firstly, thank you to my supervisors, Dr Steve Trewick and Dr Mary Morgan-Richards, for all the enthusiasm, encouragement, wisdom and especially all the tedious proof reading. Many thanks go to Melissa Griffin, Craig Murray, Shaun Nielsen, Briar Smith, Robyn Dewhurst, Rachel Streeter and Melissa and Aaron Jacobson for all their hard work in the wet, freezing, muddy conditions they faced weta collecting. Melissa and Aaron Jacobson also kindly hosted us on overnight expeditions to Mt Taranaki. Thanks too go to The Department of Conservation for granting me the permit to collect on Mt Taranaki.

Several people have contributed their time and skills to the chapters of this thesis, without which, I would have been lost. So thanks go to Dr Gabe Redding for his advice and software contributing to oxygen metabolism; Matt Irwin for his unending patience and assistance with GIS and Dr Jonathan Godfrey and Penny Bilton, the statisticians who tested my growth rate data for me-something I could not have done myself.

I appreciate and thank Melissa Griffin for her hours of intelligent conversation, companionship in the field and general weta enthusiasm. Thanks also to Dr Cilla Wehi and Dr Mariana Bulgarella for their proof reading and helpful suggestions.

Thank you also to all those within the Ecology Group who have contributed their knowledge, time and expertise: Dr Masha Minor, Dr Ian Henderson, Dr Murray Potter, Tracy Harris, Paul Barrett, Cleland Wallace, Erica Dahya and Jess Costall.

Finally, the biggest thank you goes to my fiancé Craig Murray, who not only accompanied me on weta hunting expeditions and put in some serious time on the weekends in the lab, but supported me with encouragement, endless cups of tea and love. I would also like to thank Craig for the time he took to photograph my unruly subjects and as such, all photographs in this thesis are credited to him.

This thesis was supported by a grant from the Julie Alley Bursary, Massey University.
Table of Contents

Abstract... ii
Acknowledgements.. iii
Table of Contents .. iv
List of Figures .. vi
List of Tables ... ix

1 Introduction and Thesis Overview ... 1
 1.1 Competitive exclusion ... 2
 1.2 Weta ... 2
 1.3 Thesis Outline .. 7

2 The distribution of three tree weta: *Hemideina crassidens*, *Hemideina thoracica*
and *Hemideina trewicki* ... 8
 2.1 Introduction ... 9
 2.1.1 Distribution .. 9
 2.1.2 Size Clines .. 12
 2.2 Methods ... 15
 2.2.1 Weta Collections .. 15
 2.2.2 Geographical Information Systems (GIS) .. 16
 2.3 Results ... 16
 2.3.1 Distributions of three tree weta species in New Zealand 16
 2.3.2 Latitudinal size clines in tree weta ... 19
 2.3.3 Temperature size clines in tree weta .. 23
 2.4 Discussion ... 28
 2.5 Conclusions ... 32

3 A Comparison of Growth Rate among Tree Weta from Different Altitudes,
Grown at Constant Temperatures... 33
 3.1 Introduction ... 34
 3.1.1 Physiological mechanisms of growth... 35
 3.2 Methods ... 36
 3.2.1 Study animals ... 36
 3.2.2 Treatments .. 37
 3.2.3 Statistical analyses ... 39
 3.3 Results ... 40
 3.3.1 Maturation of Tree Weta .. 40
 3.3.2 Size of weta at each instar .. 40
 3.3.3 Growth of tree weta under controlled conditions ... 44
 3.4 Discussion ... 48
 3.5 Conclusions ... 51
4 Oxygen Consumption of Two Tree Weta Species, Measured by Closed Circuit Respirometry .. 52
 4.1 Introduction ... 53
 4.2 Methods ... 56
 4.2.1 Study animals ... 56
 4.2.2 Treatments .. 58
 4.2.3 Respirometry .. 59
 4.2.4 Calculations .. 60
 4.3 Results ... 62
 4.3.1 Determination of Lower Temperature Limits .. 62
 4.4 Mass specificity ... 63
 4.4.1 Oxygen Consumption of Tree Weta .. 65
 4.5 Discussion ... 70
 4.6 Conclusions ... 73

5 Conclusions ... 74

6 Appendix ... 77
 6.1 Growth Rate Analyses ... 78
 6.2 Weta tested for oxygen consumption .. 82

7 References ... 84
List of Figures

Figure 1.1 A phylogeny of New Zealand *Hemideina* and *Deinacrida* species based on genetic and morphological data, with arrow showing morphological root (Morgan-Richards & Gibbs, 2001). .. 5

Figure 1.2 *Hemideina crassidens*, tenth instar male (left); *Hemideina thoracica*, tenth instar female (right). ... 6

Figure 2.1 An historical overview of New Zealand’s changing climate (Newnham, Lowe, & Williams, 1999) .. 10

Figure 2.2 Proposed and existing high resolution vegetation zones in New Zealand (Barrell, Alloway, Shulmeister, & Newnham, 2005) ... 11

Figure 2.3 Distribution of tree weta in the North Island of New Zealand, from Trewick and Morgan-Richards (1995). ... 14

Figure 2.4 Distribution of tree weta species *Hemideina crassidens*, *H. thoracica* and *H. trewicki* in New Zealand with insert showing detail of altitudinal distributions of *H. crassidens* and *H. thoracica* at contact zone of the two species on Mount Taranaki (see table 2.1 for altitudinal distribution). ... 18

Figure 2.5 Geographical distributions in size (tibia length) of individual, adult tree weta *Hemideina crassidens*. ... 20

Figure 2.6 Geographical distributions in size (tibia length) of individual, adult tree weta *Hemideina thoracica*. ... 21

Figure 2.7 Distribution of adult *Hemideina crassidens* showing size (tibia length) variation with latitude. South Island n = 12, North Island n = 29. ... 22

Figure 2.8 Distribution of adult *H. thoracica* showing size (tibia length) variation with latitude. South of Auckland n = 45, North of Auckland n = 102 ... 22

Figure 2.9 LENZ map of mean annual temperature (°C) of regions of New Zealand. 24

Figure 2.10 LENZ map of minimum annual temperature (°C) of regions of New Zealand. 25

Figure 2.11 Size clines in *Hemideina crassidens* and *H. thoracica* based on a LENZ layer of mean annual temperature at the collecting site and tibia lengths of adult specimens. 26
Figure 2.12 Size clines in *Hemideina crassidens* and *H. thoracica* based on a LENZ layer of minimum annual temperature at the collecting site and tibia lengths of adult specimens.

Figure 3.1 Treatment groups of *Hemideina* species weta for growth rate experiments. High altitude = tree weta from Mt Taranaki, Low altitude = tree weta from Palmerston North.

Figure 3.2 Tibia length distributions for each group at instars 3-10. X-axis abbreviations; Hc: *Hemideina crassidens*, Ht: *Hemideina thoracica*, Pn: Palmerston North (lowland) population, Ts: Mount Taranaki (high altitude) population.

Figure 3.3 Weight distributions for each group at instars 3-10. X-axis abbreviations; Hc: *Hemideina crassidens*, Ht: *Hemideina thoracica*, Pn: Palmerston North (lowland) population, Ts: Mount Taranaki (high altitude) population.

Figure 3.4 Interaction plot for tibial growth (mm/week) showing dependence of temperature and altitude.

Figure 3.5 Interaction plot for tibial growth (mm/week) showing the dependence of sex and species.

Figure 4.1 Calculation of constant k at 14°C resulting in a value of 0.034.

Figure 4.2 Calculation of constant k at 6°C resulting in a value of 0.033.

Figure 4.3 Correlation between the size of the weta (weight) and estimated oxygen consumption, with 19% of the oxygen consumption at 14°C explained by mass.

Figure 4.4 Little correlation is seen between the size of the weta (weight) and estimated oxygen consumption, with only 0.5% of the oxygen consumption at 6°C explained by mass.

Figure 4.5 No significant correlation is seen between rate of oxygen consumption and mass in tree weta as 0.8% of oxygen consumption is explained by mass when 6°C and 14°C data are combined.

Figure 4.6 Comparison of oxygen consumption in individual weta tested at 6°C and 14°C.

Figure 4.7 Treatment groups and their rates of oxygen consumption. X-axis abbreviations; Hc: *Hemideina crassidens*, Ht: *Hemideina thoracica*, Pn: Palmerston North (lowland) population, Ts: Mount Taranaki (high altitude) population, 14: 14°C and 6: 6°C.

Figure 4.8 Significant differences in oxygen consumption between 6°C (median=0.3342 ml/hr) and 14°C (median=0.9790 ml/hr).
Figure 4.9 Comparison of mass specific oxygen consumption (MSOC) in individual weta tested at 6°C and 14°C. The outlier (*) is a true measurement as repeated measurements consistently achieved high mass specific VO2.. 68

Figure 4.10 Treatment groups and their rates of mass specific oxygen consumption. X-axis abbreviations; Hc: Hemideina crassidens, Ht: Hemideina thoracica, Pn: Palmerston North (lowland) population, Ts: Mount Taranaki (high altitude) population, 14: 14°C and 6: 6°C. .. 69

Figure 4.11 Significant differences in mass specific oxygen consumption between 6°C (median=0.07016) and 14 °C (median=0.21741). .. 69

Figure 6.1 Interaction plot for mass growth showing the dependence of temperature and sex. ... 80

Figure 6.2 Interaction plot for mass growth showing the dependence of temperature and altitude.. 81
List of Tables

Table 2.1 Relative altitude of distributions of Hemideina thoracica and H. crassidens on the three aspects of Mount Taranaki in 1995 and 2008/2009. ... 17
Table 2.2 Mean temperatures of sampled populations of Hemideina crassidens, H. thoracica and H. trewicki based on level one LENZ layers. * And # denotes a statistically significant difference between means in columns. .. 27
Table 3.1 Mean tibia growth rates (mm/week) of weta treatment groups. Pn: Palmerston North, Ts: Mt Taranaki, 14: 14°C and 6: 6°C, EM: early maturing male, M: male, F: female, Hc: Hemideina crassidens, Ht: Hemideina thoracica... 44
Table 3.2 The reduced factorial model for growth rate (tibia) of tree weta...................... 45
Table 4.1 Number of tree weta in 6°C treatment group (see appendix). 57
Table 4.2 Number of tree weta in 14°C treatment group (see appendix). 58
Table 4.3. Examining the lower temperature limits still conducive to activity in Hemideina crassidens and H. thoracica. .. 62
Table 4.4 Comparison of methods and results in mass specific oxygen consumption studies of Orthoptera. 1Figure calculated from standard metabolic rate and mean weight for species.
2In this study elevation is represented by acclimation temperatures 25°C, 29°C and 33°C.
3Based on oxygen consumption measured as carbon dioxide release.......................... 71
Table 6.1 Standard errors for growth rate (tibia) ... 78
Table 6.2 Full factorial model for growth rate (tibia). ... 78
Table 6.3 Means for growth rate (mass). ... 79
Table 6.4 Standard errors for growth rate (mass) ... 79
Table 6.5 Full factorial model for growth rate (mass) ... 79
Table 6.6 Reduced model for growth rate (mass) of tree weta. ... 80