Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Hierarchical Structure Function Models of Biopolymer Networks

Thesis submitted to the Institute of Fundamental Sciences, Massey University, New Zealand in partial fulfilment of the requirements for the degree of
Doctor of Philosophy in Physics
Palmerston North, October 2011

Erich Schuster

Supervisor: Assoc. Prof. Martin A.K. Williams
Co-Supervisor: Dr. Leif Lundin
Abstract

This project aimed to bridge the structure-function divide in polysaccharide networks so that the rheological properties of multi-chain assemblies might be predicted from the fine structures of the constituent polymers and their mode of assembly. The polysaccharide pectin is an important constituent of the plant cell wall and when cured into a gel the mechanical properties of its networks have recently come into the focus of research via extensive microrheological studies, in which interesting connections between the gel’s mechanical response, gelation conditions and the pectin fine structure were discovered. This tunability makes it therefore a promising model system for further experiments and computer-aided investigations, and accordingly it is the focus of this thesis.

Firstly, a small angle X-ray scattering study of different microrheologically well-characterized ionotropic pectin gels was undertaken to gain insights into the structures of the assembled elementary network strands. The SAXS results paired with molecular modelling confirm that gels which are semiflexible from a microrheological point-of-view contain large bundles of aggregated dimers compared to the more flexible networks, where predominantly single chain sections and dimers are found to contribute. These later gels can be formed among other ways using a biomimetic methodology exploiting plant enzymes.

Secondly, after learning that networks could be experimentally manifest where single chains form the majority of links between nodes, in contrast to the better known hierarchical structures of polysaccharide gels, a computational approach was pursued to investigate the behaviour of biopolymer networks comprised of single polysaccharide chains using the experimentally measured force extension relation for pectin. This exhibits interesting force-induced conformational transitions that have been investigated in their own right. A 2-dimensional model was initially chosen for practical purposes. The study supports the hypothesis that conformational transitions could have biological significance as stress-switches in signalling processes, but that they are unlikely to affect the bulk rheological properties of tissue.

Finally, the model was further expanded into 3-dimensions to test quantitatively its predictions of the shear moduli of such systems. To this end a comparison with rheological prestress experiments on enzymatically induced pectin gels was undertaken. The model was found to successfully describe the observed nonlinear rheology for completely percolated, strong gels, based only on the polymer concentration and an experimentally accessible single chain force-extension relationship; for the first time providing a true bottom-up example to the properties of soft materials.
Acknowledgements

Thanks first to Bill Williams for being such an enthusiastic and supportive supervisor and to my co-supervisor Leif Lundin for invaluable guidance, regardless of being located in Melbourne. Thanks for introducing me to this interdisciplinary field, giving me the possibility to attend conferences and the great flexibility when it came down to balance the lab and tide times. Discussions - not just about pectin - with Padmesh Anjukandi, Yacine Hemar and Romaric Vincent have been fun and stimulating. I also want to acknowledge the helpful collaborators at CSIRO, especially Stephen Homer for the help with the prestress experiment, as well as Sofia Øiseth, Andrew Leis, Sandra Crameri and Alex Hyatt for providing the TEM images, the SAXS/WAXS beamline team at the Australian Synchrotron, in particular Nigel Kirby, and Kate Nairn for support during the running of the SAXS experiments. Many thanks to Aurelie Cucheval for help with the sample preparations and the microrheological analysis, and also for all the (long) coffee breaks. Cheers to all the members of the biopolymer group, especially Stephen Keen, Lisa Kent, Brad Mansel and Davide Mercadante. It was great to have ‘obnoxious’ discussions in the office and the odd beer after hours. I am grateful for all my friends: thanks to the NZ-crew, it made life overseas very enjoyable, and cheers as well to the guys in Austria for the continuous ‘online-support’. Zu guter Letzt möchte ich meinen Eltern und Geschwistern meinen herzlichen Dank aussprechen - eure Unterstützung war auch am anderen Ende der Welt grandios. En Anne, dank je wel voor de inspiratie en alle moois dingen die we samen doen.

This research is supported by the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia.
Contents

Abstract ... i
Acknowledgements ... iii
Contents ... vii
List of Figures ... xiv
List of Tables ... xv
List of Publications ... xvii
List of Abbreviations ... xix

1 Literature review & background
1.1 Introduction ... 1
1.2 Theoretical approaches ... 2
 1.2.1 Rubber elasticity ... 3
 1.2.2 Cascade theory ... 6
 1.2.3 Dynamics of flexible polymers 7
 1.2.4 Semiflexible polymer physics 11
 1.2.5 Dynamics of semiflexible polymers 16
 1.2.6 Soft glassy rheology .. 18
 1.2.6.1 The glassy wormlike chain model 19
 1.2.7 Networks formed by semiflexible polymers 19
 1.2.7.1 Nonlinear rheology 24
1.3 Further characteristics of biopolymer systems 27
1.4 Aims of the thesis ... 30
References .. 31

2 The nature & architecture of network strands in pectin gels
2.1 Introduction ... 43
2.2 Materials and methods .. 45
 2.2.1 Sample preparation ... 47
 2.2.2 Analytical methods .. 48
2.3 Results and discussion .. 49
2.4 Conclusions 62
References .. 62

3 2D network model where connections are single chains 69
 3.1 Introduction 69
 3.2 Models .. 71
 3.2.1 Simulation 71
 3.2.2 Averaging approach to elasticity calculations for affine deformations 74
 3.3 Results and discussion 75
 3.3.1 Single agent networks 75
 3.3.2 Dual agent - towards biological networks 84
 3.4 Conclusions 86
References .. 86

4 3D network model and comparison with experiments 91
 4.1 Introduction 91
 4.2 Materials and methods 93
 4.2.1 Sample preparation 93
 4.2.2 Methods 94
 4.3 Results and discussion 96
 4.3.1 Comparison with previous work on protein networks 98
 4.3.2 Comparison with simulations 100
 4.3.3 Conformational transitions 110
 4.4 Conclusions 110
References .. 111

5 Conclusion and future work 115
 5.1 Scope of the thesis 115
 5.2 Summary 116
 5.3 Conclusions 118
 5.4 Future Work 118
References .. 119

A Small angle X-ray scattering 121
 A.1 Basic principle 121
References .. 124
List of Figures

1 Molecular mechanisms of the network formation in biopolymers [4], (left) point cross-linking, (middle) different modes of chain association, (right) rodlike structures. ... 2

3 A schematic drawing of two entangled chains. 5

4 Sketch of the Rouse model [6]; a chain of N monomers is mapped onto a bead-spring chain. .. 11

5 Possible methods of data inversion to provide the complex viscoelastic shear moduli \(G' \), \(G'' \) from the compliance (or mean-square particle fluctuations \(\langle r(t)^2 \rangle \)). \(s \) is the complex Laplace frequency, and \(\omega \) is the experimental frequency [38]. .. 12

6 A bendy filament with inextensible arc-length (contour length) \(l_C \) and one fixed end can be characterized by its transverse displacement from a straight conformation (dashed line). The transverse thermal fluctuations lead to a contraction of the end-to-end distance, which is denoted by \(\Delta l \) [39]. ... 13

7 Force-extension relationship of a WLC; a linear region at small extensions and divergence once stretched up to the contour length is observed (excluding enthalpic deformations) [47]. 16

8 Stress relaxation in soft glassy materials takes place through the rearrangement of densely packed bubbles, which requires energies orders of magnitude greater than the thermal energy; a driving energy source is needed to overcome potential wells - if the energy falls below this limit the system equilibrates akin to a glass transition [68]........ 18

9 The G WLC is proposed as a minimalistic dynamic model for “Arrhenius gels”, solutions of polymers interacting via small adhesive patches (grey spots). To break contact an energy barrier has to be overcome [71]. ... 20

10 Random network structures generated via the Mikado model [84] - similar patterns to those in the Mikado game: ‘pick-up sticks’. 21
11 A sketch of the state diagram showing the various elastic regimes in terms of molecular weight (or contour length) and concentration. The solid line represents the rigidity percolation transition, where rigidity is first observed at a macroscopic level [82]. Wilhelm and Frey observed similar scaling regimes [78]. 23

12 Sketch of the investigations on actin networks of Gardel et al. [86], depicting the two different density regimes and its different (non)linear and (non)affine response. .. 23

13 Shear moduli vs. strain measurements [74]; observing strain-stiffening for a series of cross-linked biopolymer networks. 24

14 Schematic diagram: deformation leads to negative normal stress in an isotropic network of semiflexible filaments [90]; filaments are elongated (red) and equally many are compressed (yellow), therefore an overall negative normal force arises due to the nonlinear force-extension relation of the single filaments. 25

15 The normalised stiffness as a function of the applied normalised force for a semiflexible filament [98]. 26

16 Stress-strain measurements, obtained either by strain sweep or pre-conditioning methods, lead to the same results for cross-linked networks. However a careful distinction between the two moduli, the shear modulus $G = \sigma/\gamma$ and the differential modulus $K = d\sigma/d\gamma$, needs to be made [120]. 29

17 The resulting tracer particle MSDs obtained by DWS from gels created by the controlled release of calcium (as described in the experimental section) from B63f (small circles) and B63s (big circles) 49

18 Small-angle x-ray scattering profiles $I(q)$ of the pectin gels PMEgel (□), B63f (○), B71s (△), B71s (◇), B63s (▽) 51

19 (a) Small-angle X-ray scattering profile $I(q)$ of the semi-dilute pectin solution. (b) Zimm-plot of the scattering profile of the starting pectin solution used to extract the correlation length ξ via Eq. (2.2). 53

20 Distance distribution functions $p(r)$ evaluated by Fourier transform of the SAXS data from the pectin gels and the semi-dilute pectin solution. 54
Cross-sectional Guinier plots of the SAXS scattering profiles of (a) SDsol (○) and PMEgel (□), (b) B71f (○) and B63f (□) and (c) B71s (○) and B63s (□). The dashed lines display the Guinier regime in which R_c was evaluated via Eq. (2.4), the resulting radii are reported in Table 2.2 with the corresponding error due to the linear fit; a being an arbitrary shift to distinguish better between the plots.

(left) 8-chain junction zone formed by dimers of 2-fold helices with a DP of 16 as suggested by the adjusted egg-box model [26]. (right) Projection of a 16-chain junction zone. All other calculated junction zones are arranged in the same mode of packing - either as a subset or superposition of the configurations shown here.

Scattering profiles originating from the molecular model calculation and the fit of the normalized SDsol profile; a being an arbitrary shift to distinguish better between the plots.

Kratky plot of the SAXS data and fits to the molecular model with a sketch of the suggested network structures. (a) PMEgel network consisting of ‘pinned-down’ small junction zones; (b) B71f (○) and B63f (□) showing a structure of densely confined chains cross-linked by dimeric junction zones; (c) B71s (○) and B63s (□) containing an assembly of large rodlike bundles.

Force-extension curves of CEWLC and EWLC models used in the simulations described herein. The CEWLC parameters have been chosen in order to produce a curve consistent with experimentally measured data on the polysaccharide pectin. Specifically: $l_p = 1\, nm$, $l_C = 128\, nm$, $T = 298\, K$, chair length = $0.4592\, nm$, boat length = $0.5176\, nm$, inverted chair length = $0.5576\, nm$, specific stiffness = $20\, nN$, and the energy differences for the two conformational transitions $\Delta G = 12\, kJ\, mol^{-1}$ and $17\, kJ\, mol^{-1}$ respectively.

Plots of shear stress, σ, versus strain, γ, for networks comprising CEWLCs (solid circles) or EWLCs (open circles) at different ratios of $l_C/l_M = (a)\, 1.0$, (b)\, 1.8, (c)\, 2.5, (d)\, 3.3 following an affine deformation. σ is given in simulation units. The error bars show the standard deviation of an ensemble average over ten runs. Solid lines are fits described in the text.
Distribution of the node-to-node distance of unstrained equilibrated CEWLC (thick line) and EWLC networks (thin line) with $l_C/l_M = 1.0$; normalized with respect to the length of the fully extended skew-boat conformation of the CEWLC. Inset: Histogram of the number of CEWLCs that have undergone a) no b) one or c) two force-induced conformational transitions in their constituent sugar rings.

Snapshots of a CEWLC network with $l_C/l_M = 1.0$ at $\gamma = (a) 0$, (b) 0.3, (c) 0.5, (d) 1. Chains are depicted in blue (no “click”), red (one “click”) or yellow (two “clicks”) depending on the force-induced conformational state of the sugar rings.

Snapshots of a CEWLC network with $l_C/l_M = 1.8$ at $\gamma = (a) 0$, (b) 0.3, (c) 0.5, (d) 1. Chains are depicted in blue (no “click”), red (one “click”) or yellow (two “clicks”) depending on the force-induced conformational state of the sugar rings.

Snapshots of a CEWLC network with $l_C/l_M = 2.5$ at $\gamma = (a) 0$, (b) 0.3, (c) 0.5, (d) 1. Chains are depicted in blue (no “click”), red (one “click”) or yellow (two “clicks”) depending on the force-induced conformational state of the sugar rings.

The node-to-node distance distribution and number of clicked chains at $\gamma = 0.3$ for $l_C/l_M = (a) 1.0$, (b) 1.8, (c) 2.5.

Percentage of chains exhibiting “clicked” states - which have undergone either one or two conformational transitions - versus strain in CEWLC networks at different l_C/l_M ratios.

Snapshots of a CEWLC network with $l_C/l_M = 1.0$ at $\gamma =$ (a) 0.5, and (b) 1. Chains are depicted in blue (no “click”), red (one “click”) or yellow (two “clicks”) depending on the force-induced conformational state of the sugar rings. Non-affine deformation using Lees-Edwards boundary conditions.

(a) The node-to-node distance distribution of a CEWLC network with $l_C/l_M = 1.0$ at $\gamma = 0.3$. Non-affine deformation using Lees-Edwards boundary conditions (b) Percentage of chains exhibiting “clicked” states (which have undergone either one or two conformational transitions) versus strain.

Force-extension curves of the implemented CEWLC (with parameters as in Figure 25) and Hookean springs as used in the dual agent network simulations described herein; with spring stiffness $\bar{k} = (a) 5.0 \text{ pN/nm}, (b) 11.2 \text{ pN/nm}, (c) 50.0 \text{ pN/nm}$ or in simulation units $\bar{k} = (a) 50, (b) 112, (c) 500$ respectively.
Plots of normalized shear stress, $\sigma_{\text{normalized}}$ (normalized by the according stress at strain 1), versus strain, γ, for dual agent networks following an affine deformation. The stress-strain curves for all parameters displayed in Figure 37 collapse on the same master-curve. Inset: Plots of shear stress, σ, versus strain, γ, for dual agent networks comprising CEWLCs or EWLCs at spring stiffness $k = 112$ and $l_C/l_M = 4.0$. ... 85

Percentage of chains exhibiting “clicked” states (which have undergone either one or two conformational transitions) versus strain in dual agent networks at different ratios of l_C/l_M and at different rod stiffness k. ... 86

Snapshots of a dual agent network at $\gamma = 0.3$. CEWLCs are depicted in blue (no “click”), red (one “click”) or yellow (two “click”) depending on the force-induced conformational state of the sugar rings; the Hookean rods are depicted in green. The conditions of (a), (b) and (c) are marked in Figure 37. ... 87

Gel evolution as a function of time during in situ de-esterification of the samples reacting with different activities of each enzyme and at different concentrations of CaCl$_2$, as in Table 4.1. Empty markers, G''; full markers, G'''; diamond, PMEl1; triangle upwards, PMEl2; circle, PMElh1; crossed circle, PMElh2. 97

(a) The differential elastic modulus, K, as a function of applied pre-stress σ for the samples: diamond, PMEl1; triangle upwards, PMEl2; circle, PMElh1; crossed circle, PMElh2. (b) the moduli are scaled by the corresponding modulus at a stress of 1.5\timesG$_0$ of the plateau modulus; the inset shows the prediction of the spatial averaging approach (described in Section 4.3.2) in the K vs. σ representation. 99

Differential shear moduli K plotted as a function of the dimensionless strain γ, for the two samples PMEl1 & PMElh2; the pectin gels are compared with the measurements on cross-linked biopolymer networks, the data taken from [10]. 101

Probability distribution of the distance between two randomly placed points, see Eq. 4.1, applied to a chain of 260 nm contour length; resulting in an average distance of $<x> = 110$ nm. 102

Differential shear moduli K plotted as a function of the dimensionless strain γ, for the sample PMElh2 and the results of the simulation; inset: K versus σ of the simulation results. 103
44 Snapshot of the CEWLC network in a 1 μm^3 simulation box, a slice parallel to the shear plane of 10% sample thickness, at 0 strain. The longer chain section of “2-nodes” are depicted in yellow, the remaining chain segments in blue. 104
45 Differential shear moduli K plotted as a function of the dimensionless strain γ, for the sample PMEII and the results of the simulation; inset: K versus σ of the simulation results. 105
46 Preliminary perspective images of the network structure of the gel PMEh1; top: TEM micrograph of a slice of 150 nm thickness; bottom: tomography image of a slice of 150 nm thickness. 106
47 Visualisation of the unstrained network structure of the gel PMEh1, with a cross-section of 1 μm^3; top: TEM micrograph; bottom: snapshot of the CEWLC network, 2/3 of the nodes of the set-up in Figure 44 were randomly removed in “chunks” as described. 108
48 Normalized differential shear moduli K/G_0 plotted as a function of the dimensionless strain γ, for the samples: diamond, PMEII; triangle upwards, PMEII2; circle, PMEh1; crossed circle, PMEh2. Eq. 3.1 was utilized to fit this master plot, with a normalized relaxed end-to-end extension of $L_R = 0.53$, as depicted in the inset. 109
49 Distribution of the of the node-to-node distance of a fully percolated network, mimicking PMEh2: unstrained equilibrated (grey line) and strained $\gamma = 0.5$ (black line). The extensions are normalized with respect to the length of the fully extended skew-boat conformation of the CEWLC. 111
50 A schematic of experiments and methods utilized in this thesis; and how such a structure-function approach motivated a network model (in this case for biomimetic pectin gels). 116
51 Illustration of the Australian Synchrotron, Melbourne [7]. 123
52 Conjugate gradients: g_0 denotes the direction of steepest descent at point P_0; h_1 points out the direction of the gradient conjugate to g_0. To reach the minimum of this quadratic function: the steepest descent method follows the zig-zag course, whereas the conjugate gradient h_1 gets to the goal in just two steps [3]. 128
List of Tables

1.1 Persistence length and various parameters of some (bio)polymers. [42, 43, 44, 40, 45] .. 13

2.1 Pectin samples: nomenclature, polymer concentration c_P (％ w/w), R_{eff} value, DM, MR exponent α (obtained from fitting data at $\tau < 10^{-4}$ s) and the gelling method; the samples are prepared as described in the text. .. 47

2.2 Results of the analysis via cross-sectional Guinier plots and the parameters of the molecular model fit. .. 63

4.1 Pectin samples: the samples are prepared as described in the text, the specific PME and CaCl$_2$ conditions used are reported here. 94
List of Publications

List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>Affine entropic regime</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic force microscopy</td>
</tr>
<tr>
<td>AM</td>
<td>Affine mechanical regime</td>
</tr>
<tr>
<td>AN</td>
<td>Affine network model</td>
</tr>
<tr>
<td>CE</td>
<td>Capillary electrophoresis</td>
</tr>
<tr>
<td>CEWLC</td>
<td>Clickable extensible wormlike chain</td>
</tr>
<tr>
<td>CG</td>
<td>Conjugate gradient</td>
</tr>
<tr>
<td>DFT</td>
<td>Density-functional theory</td>
</tr>
<tr>
<td>DM</td>
<td>Degree of methylesterification</td>
</tr>
<tr>
<td>DN</td>
<td>Discrete Network Model</td>
</tr>
<tr>
<td>DP</td>
<td>Degree of polymerisation</td>
</tr>
<tr>
<td>DWS</td>
<td>Diffusing wave spectroscopy</td>
</tr>
<tr>
<td>EANC</td>
<td>Elastically-active network chain</td>
</tr>
<tr>
<td>EWLC</td>
<td>Extensible wormlike chain</td>
</tr>
<tr>
<td>FE</td>
<td>Force-extension</td>
</tr>
<tr>
<td>GWLC</td>
<td>Glassy wormlike chain</td>
</tr>
<tr>
<td>HG</td>
<td>Homogalacturonan</td>
</tr>
<tr>
<td>HWLC</td>
<td>Helical wormlike chain</td>
</tr>
<tr>
<td>MR</td>
<td>Microrheology</td>
</tr>
<tr>
<td>MSD</td>
<td>Mean-square displacement</td>
</tr>
<tr>
<td>NA</td>
<td>Non-affine regime</td>
</tr>
<tr>
<td>OZ</td>
<td>Ornstein-Zernike equation</td>
</tr>
<tr>
<td>PGA</td>
<td>Polygalacturonic acid</td>
</tr>
<tr>
<td>PME</td>
<td>Pectinmethylesterase</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>pPME</td>
<td>plant PME</td>
</tr>
<tr>
<td>SANS</td>
<td>Small angle neutron scattering</td>
</tr>
<tr>
<td>SAXS</td>
<td>Small angle X-ray scattering</td>
</tr>
<tr>
<td>SEC</td>
<td>Subelastic chain model</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>WLC</td>
<td>Wormlike chain</td>
</tr>
</tbody>
</table>