Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Environmental and plant factors causing low legume seedling establishment following oversowing into drought-prone hill swards

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (Ph.D.) in Plant Science at Massey University, New Zealand

Manzoor-ul-Haque Awan
June, 1995
ABSTRACT

Legumes are a valuable component of pastures since they tend to have higher feed quality than grasses and can also fix atmospheric nitrogen in the soil. The technology for oversowing legumes has had many improvements but the success rate is poor and the legume contribution to hill country pasture production remains low. It was concluded that unpredictable weather and plant factors were the major factors causing poor pasture legume establishment from oversowing.

To determine the environmental and plant factors responsible for poor pasture legume establishment from oversowing, a series of seven trials were carried out at AgResearch, Poukawa near Hastings. The five annual and seven perennial legume species oversown in order of establishment success were; subterranean clover (*Trifolium subterraneum*), barrel medic (*Medicago trunculata*), birdsfoot trefoil (*Lotus corniculatus*), white clover (*T. repens*), strawberry clover (*T. fragiferum*), murex medic (*M. murex*), arrow leaf clover (*T. vesiculosum*), lucerne (*M. sativa*), alsike clover (*T. hybridium*), persian clover (*T. resupinatum*), Makulotus (*L. pedunculatus*) and caucasian clover (*T. ambiguum*). Seeds of each species were oversown in autumn, winter and spring, following defoliation with glyphosate and trodden with sheep. The greatest loss of potential seedlings after oversowing was non-appearance of seedlings, which accounted for about 80% of viable seed. Overall, the contribution of sown legume species to total herbage mass was less than 12% and seedling establishment success was typically between 5 and 30%.

The relationships between eight environmental factors and seedling establishment were explored and the main influences on establishment were found to be gravimetric soil water content, soil temperature, minimum air temperature and daily wind run. A simple model based on these four factors was developed from the field trial data and extrapolated to 10 years of Lawn Road, Hastings and 5 years of Poukawa climate data and the best time, on average, for oversowing was predicted.

To test the effect of high, medium and low soil surface moisture and also to find out the fate of oversown seed two experiments were carried out in a glasshouse using caucasian, strawberry and subterranean clovers. A simple and cheap technique
based on CoCl₂ saturated paper strips was developed to measure the changes in soil surface moisture. The soil moisture at depth was a poor indicator of seed germination compared with the surface soil moisture. The low soil surface moisture gave lowest seedling survival. The main cause of low soil surface was wind run. The percentage of ungerminated seed was significantly higher for oversowing than to the standard seed germination test.

Two trials were carried out at AgResearch, Ballantrae, to test the effect of seed rate and seed size. It was observed that sowing rates greater than those usually recommended would increase the seedling density and legume contribution to the total herbage mass and might produce more seed for re-establishment of annual legumes in the subsequent years. Seed size did not significantly affect establishment.

The effect of seed coating and seed dressing was also monitored in a trial at Poukawa. The seed of subterranean and white clovers dressed with fungicide, insecticide and two commercial seed coatings were compared with bare seed. The commercial seed coating increased the early seed germination by 30% but not the final seedling density compared with bare seed. Apron fungicide seed dressing had a deleterious effect on seed germination. The effect of glyphosate residue and litter phytotoxicity was tested in a glasshouse experiment with birdsfoot trefoil and subterranean and white clovers. The species were oversown onto sods sprayed with glyphosate 20 days earlier and onto ordinary sand. The glyphosate residue and dead material did not have any major effect on seed germination and seedling survival.

Overall, environmental factors were found to be the key determinants of successful establishment for pasture legumes by oversowing. Both, the likely environmental conditions at the time of oversowing, and during the first few months of seedling growth need to be considered. The establishment of legume species suited to oversowing can be improved by using high sowing rates and seed coating but ultimately it is the moisture level and temperature at the soil surface that determines germination, and wind run and minimum air temperature that determines seedling survival in drought-prone hill swards.
ACKNOWLEDGEMENTS

I find no appropriate words to express my deepest sense of gratitude to almighty God, whose blessing did not let me deviate from the right direction even through trials and tribulations.

It is a great pleasure to acknowledge the stimulation and wise counsel of my chief supervisor Dr. P. D. Kemp. His friendship, scholastic supervision, guidance, advice, great patience and encouragement made this study fruitful. I express my appreciation for the enthusiastic, helpful, friendly and scholastic supervision of my co-supervisors Dr. D. J. Barker (Sustainable Agri. Division, AgResearch) and Dr. M. A. Choudhary (Agri. Eng. Dept.). The great patience and considerable attention of Dr. Kemp and Dr. Barker shown at regular weekly meetings during analysis of data and write up of thesis was highly appreciated. To me, this has been an invaluable educational experience, any errors remaining in this thesis are entirely mine.

During my computation and analysis of data, I had considerable help from Dr. I. L. Gordon, Dr. S. Ganesh and Dr. C. Matthew. Particularly, I appreciated the way of advice of Dr. Gordon on regression analysis and standardized regression coefficients, and I would like to thank him from the core of my heart.

The invisible help from Prof. J. Hodgson was highly appreciated, as was his charismatic personality which attracted me to return to Massey University. I would also like to thank Dr. I. Valentine for his invaluable criticism on the development of seedling establishment model and Prof. A. C. P. Chu and Mr. P. N. P. Matthews for their smile and sympathetic support.

I acknowledge the assistance given to me by the following:-
* Technicians of Plant Science Department: Ms. C. McKenzie, Ms. F. Brown and Mr. D. Sollit for assistance with laboratory work on seed germination tests and rhizobium inoculation.
* Field technicians Mr. T. Lynch, Mr. M. Osborne and Mr. G. Evans for assistance in layout of trials, herbicide spray, fixing soil sod in trays. Mr. R. Johnstone and Ms. L. Taylor of Plant Growth Unit for technical assistance during glasshouse trials. Mr. I. Painter (Agri. Eng. Dept.) for help in making the stud roller.
* Dr. D. Smith and Mr. J. Lane of AgResearch, Poukawa (Hastings) and Dr. D. J. Barker and Mr. J. Napier of AgResearch, Ballantrae for the management of trial sites.
* Forage Division, AgResearch, Palmerston North and Dr. D. Smith for the provision of valuable legume seed.
* Mr. M. Suckling of International Seed Coaters Ltd. (Hodder and Tolly) for preparing different seed coatings, seed dressings and provision of free coated seed.
* Mr. K. Johns, Dr. D. Smith and Dr. C. Korte for supply of Poukawa and Lawn Road, Hastings meteorological data.
* Prof. M. Hill, Ms. K. Hill and Mr. M. Dehghan-shoar for helping my work in the Seed Technology Centre, on the Accelerated Aging test.
* My friend Mr. B. Mahmood for his generous help in finalizing the setting up and production of the thesis.

I am particular thankful to the Miss E. L. Hellaby Indigenous Grassland Research Trust for their generous financial support. This study was not possible without their help. The financial support of Ministry of Foreign Affairs and Trade, New Zealand for fee scholarship, Helen E. Akers Scholarships and AJK Forest Department for grant of study leave is highly acknowledged.

Many thanks to all the graduate and members of Plant Science Department who provided me an excellent and friendly environment to complete this study.

Finally a special thanks to my beautiful fingers for typing this manuscript very slowly but well.

Special thanks to my life partner Mrs. Talhat Naheed Awan and my children Rabia, Usman, Saadhia and Tahibia for their patience, encouragement, sacrifices, forbearance and understanding which made my study easier.

Last but not the least, I can not be indifferent to my father, brothers, sisters and my friends Mr. Yousaf Qureshi and Mr. Rauf Qureshi, whose round the clock prayers and encouragement went a long way in enabling me to achieve what was previously considered unattainable.
TABLE OF CONTENTS

Abstract ... ii
Acknowledgements iv
Contents ... vi
List of Tables xiii
List of Figures xvii

CHAPTER 1 General introduction and objectives 1

CHAPTER 2 Review of literature 3

2.1 Introduction 3
2.2 Hill country pastures 4
2.3 Legumes .. 6
2.4 Oversowing 8
2.4.1 Methods 8
2.4.2 Techniques 9
2.4.3 Time for oversowing 11
2.5 Environmental factors affecting establishment 12
2.6 Summary and conclusion 14

CHAPTER 3 Factors affecting legume seedling survival and
establishment 16

3.1 Introduction 16
3.2 Materials and methods 22
3.2.1 Physical description 22
3.2.2 Climate 22
3.2.3 Materials 22
3.2.4 Trial description 25
3.2.5 Management of trials .. 25
3.2.6 Measurements ... 27
 3.2.6.1 Plant density .. 27
 3.2.6.2 Herbage yield and botanical composition 27
 3.2.6.3 Early plant development 27
 3.2.6.4 Micro-environment and environmental factors 28
3.2.7 Statistical analysis .. 28
 3.2.7.1 General Linear Model (GLM) and repeat time measurements 28
 3.2.7.2 Standardized regression coefficients 29
 3.2.7.3 Regression analysis 29
3.3 Results .. 31
 3.3.1 Climatic conditions 31
 3.3.2 Environmental factors 31
 3.3.3 Seed germination and vigour 31
 3.3.4 Plant density ... 43
 3.3.4.1 Response of seedling establishment over time 43
 3.3.4.2 Response of legume species over time 43
 3.3.5 Seedling survival from viable seed over time 52
 3.3.6 Herbage yield and botanical composition 55
 3.3.7 Early plant development 60
 3.3.8 Influence of environmental factors 60
 3.3.8.1 Response of environmental factors to sowing conditions over legume species and time 60
 3.3.8.2 Response of environmental factors to legume species over sowing conditions and time 65
 3.3.8.3 Response of environmental factors to time over legume species and sowing conditions 65
 3.3.8.4 Standard regression lines 65
3.3.9 Survivorship pattern 69
3.4 Discussion ... 72
 3.4.1 General ... 72
 3.4.2 Seedling survival and establishment 72
 3.4.2.1 Legume species 73
 3.4.2.2 Seed vigour 75
 3.4.2.3 Temperature 76
 3.4.2.4 Moisture 76
 3.4.2.5 Early plant development 77
 3.4.2.6 Survivorship pattern 78
 3.4.3 Botanical composition 79
 3.4.3 Environmental vs plant factors 80
 3.4.3.1 Soil moisture 80
 3.4.3.2 Soil temperature 81
 3.4.3.3 Minimum temperature 82
 3.4.3.4 Wind run 82
 3.5 Summary ... 84

CHAPTER 4 Seed rate and seed size effects on seedling
density and herbage yield 87
 4.1 Introduction 87
 4.2 Materials and methods 90
 4.2.1 Site ... 90
 4.2.2 Materials and trial description 90
 4.2.2.1 Experiment 1. Seed rate trial 90
 4.2.2.2 Experiment 2. Seed size trial 92
 4.2.3 Management 92
 4.2.4 Statistical analysis 92
 4.2.5 Measurements 94
 4.2.5.1 Plant density 94
CHAPTER 5 Soil surface moisture, its measurement, and influence on early seedling survival and fate of sown seed of three oversown legume species

5.1 Introduction ... 108
5.2 Materials and methods .. 111
 5.2.1 Glasshouse experiments ... 111
 5.2.2 Field experiment ... 112
 5.2.3 Measurements ... 113
 5.2.3.1 Soil surface moisture test ... 113
 5.2.3.2 Plant density .. 113
 5.2.3.3 Fate of sown seed ... 113
 5.2.4 Statistical analysis ... 114
5.3 Results .. 115
 5.3.1 CoCl₂ technique ... 115
7.2 Materials and Methods ... 152
3.7 Results ... 154
 7.3.1 Climatic conditions .. 154
 7.3.2 Response of seedling survival to seed treatments ... 154
7.4 Discussion .. 158
7.5 Summary .. 161

CHAPTER 8 Oversown seedling survival and
 establishment model ... 162

8.1 Introduction ... 162
8.2 Methodology .. 164
 8.2.1 Model concepts .. 164
 8.2.2 Meteorological data ... 164
 8.2.3 Model parameterisation 166
8.3 Results ... 168
 8.3.1 General .. 168
 8.3.2 Performance of the model 168
 8.3.2.1 Poukawa ... 168
 8.3.2.2 Lawn Road, Hastings 173
 8.3.2.3 Individual species behaviour 173
8.4 Discussion .. 178
8.5 Limitations of the model 180
8.6 Conclusion .. 182

CHAPTER 9 General Discussion and Conclusion 183

9.1 Introduction ... 183
 9.1.1 Oversown seed .. 183
 9.1.2 Germination of viable seed 185
 9.1.3 Seedling survival ... 188
9.2 Seedling establishment ... 190
9.3 Seedling survival and establishment model 190
9.4 Conclusion ... 191

Bibliography .. 193

Appendices

Appendix 3.1 The standardized coefficients of slopes for sowing conditions over seven legume species from 0 - 90 DAS .. 220

Appendix 3.2 The standardized coefficients of slopes for different legume species over seven sowing conditions from 0 - 90 DAS .. 227

Appendix 4.1 Response of seedling density (number m⁻²) over time for different seed sizes and legume species 234

Appendix 7.1 Response of seedling density (number m⁻²) over time under different treatments 235
LIST OF TABLES

CHAPTER 3

Table 3.1 Soil analysis of the trial sites ... 23

Table 3.2 Legumes species sown at Poukawa trial area during
1992 and 1993 ... 24

Table 3.3 Time of sowing and herbage yield harvesting times at
Poukawa trial area for 1992 and 1993 .. 26

Table 3.4 Climatic data (monthly average) data recorded at Poukawa
AgResearch daily at 0900 hours. ... 32

Table 3.5 Climatic data (monthly average) recorded at Poukawa
AgResearch daily at 0900 hours. ... 33

Table 3.6 Environmental data for seven trials encompassing
2 years and 3 seasons, at 15 days intervals after sowing. 34

Table 3.7 Seed germination test; accelerated aging test and
seed moisture content, weight and number of seed sown of
different legume species at Poukawa. 41

Table: 3.8 Responses of seedling density (plant m²) over time
in Autumn A 1992. ... 45

Table: 3.9 Responses of seedling density (plant m²) over time
in Autumn B 1992. ... 46
Table 3.10 Responses of seedling density (plant m$^{-2}$) over time in Winter A 1992. ... 47

Table 3.11 Responses of seedling density (plant m$^{-2}$) over time in Winter B 1992. ... 48

Table 3.12 Responses of seedling density (plant m$^{-2}$) over time in Autumn 1993. ... 49

Table 3.13 Responses of seedling density (plant m$^{-2}$) over time in Winter 1993. ... 50

Table 3.14 Responses of seedling density (plant m$^{-2}$) over time in Spring 1993. ... 51

Table 3.15 The standardized regression coefficients, R^2 and significance levels of different environmental factors related to different sowing conditions. ... 64

Table 3.16 The standardized regression coefficients, R^2 and significance levels of different environmental factors related to different legume species. ... 66

Table 3.17 The standardized regression coefficients, R^2 and significance levels of different environmental factors related over time after sowing the trials. ... 67

Table 3.18 The regression line intercept, slope and R^2 of environmental factors over time for seven sowing conditions and seven legume species. ... 70
Table 3.19 Optimum time for oversowing different legume species as observed under different trials at Poukawa 85

CHAPTER 4

Table 4.1 Species and sowing rates of viable seed 91

Table 4.2 Species and seed size, normal seed germination test and seed diameter and weight ... 93

Table 4.3 Dry weight (mg) per plant for four sowing rates and four legume species at 300 DAS. .. 103

CHAPTER 5

Table 5.1 Surface (5 mm depth) and total (30 mm depth) gravimetric soil moisture content (%) for three moisture treatments imposed on natural sods in the glasshouse. .. 117

Table 5.2 Fate of 216 seed oversown in plastic trays from 0 - 40 DAS in Experiment 2 ... 123

Table 5.3 Seedling survival of three legume species under three moisture regimes from total seed sown and viable seed sown. 125

Table 5.4 Days to half of the maximum seedling germination for three species and three moisture levels. 127

Table 5.5 Fate of sown seed at the last harvest (40 DAS). 129
Table 5.6 Percentage of oversown seed of the three legume species after simulated sheep treading. Seed was regarded as on the surface of the soil if visible and buried in soil if not visible during the whole trial period. ... 130

Table 5.7 Percentage (average) of hard and ungerminated seed present in standard seed germination test, accelerated aging test and oversown on soil surface and then trodden. ... 132

CHAPTER 7

Table 7.1 Seed treatments of legume species ... 153

Table 7.2 Climatic data (monthly average) recorded at Poukawa AgResearch at 0900 hours for 1994 ... 155

Table 7.3 Comparison and contrast of mean seedling density (number m$^{-2}$) of two legume species oversown with different seed treatments ... 157

CHAPTER 8

Table 8.1 Comparison of actual and predicted values of seedling establishment (mean for seven legume species) for different sowing conditions (seasons) during 1992 and 1993 at Poukawa ... 171
LIST OF FIGURES

CHAPTER 3

Figure 3.1 Seedling number per unit area for eleven legume species (A) under different sowing conditions in 1992 and for eight legume species (B) under different sowing conditions in 1993. .. 44

Figure 3.2 Percentage of seedling survival from viable seed sown of seven legume species and seven sowing conditions in 1992 and 1993. .. 53

Figure 3.3 Percentage of seedling survival from viable seed sown of seven sowing conditions over legume species and time. 54

Figure 3.4 Percentage of seedling survival from viable seed sown of seven legume species over sowing conditions and time. 56

Figure 3.5 The percentage contribution to December herbage mass of five annual legume species under different sowing conditions in 1992. .. 57

Figure 3.6 The percentage contribution to December herbage mass of six perennial legume species under different sowing conditions in 1992. .. 58

Figure 3.7 The percentage contribution to December herbage mass of eight legume species under different sowing conditions in 1993 .. 59
Figure 3.8 The relationship of plant development over time for eleven legume species during autumn and winter sowing conditions. .. 61

Figure 3.9 The relationship of plant development over time for five annual legume species during autumn and winter sowing conditions. .. 62

Figure 3.10 The relationship of plant development over time for six perennial legume species during autumn and winter sowing conditions 63

Figure 3.11 The average relationship of different environmental factors to percentage seedling survival from viable seed for seven sowing seasons and seven legume species over time. 68

Figure 3.12 The average seedling survivorship pattern over time, for all legume species in all trials. .. 71

CHAPTER 4

Figure 4.1 The average response of seedling density to four legume species and four seed rates over time 96

Figure 4.2 The average response of seedling density to two seed sizes for three legume species over time. 98

Figure 4.3 The average response of seedling density to three legume species over time. ... 99
Figure 4.4 The contribution of four legume species to herbage mass before grazing at 7 months after oversowing and after grazing 8 months after oversowing for different sowing rates. 100

Figure 4.5 The contribution of two seed sizes of three legume species to herbage mass 7 months after oversowing. 102

CHAPTER 5

Figure 5.1 The relationship between the time for CoCl₂ paper strips to change from blue to pink and the gravimetric soil water content (GSWC) of the surface 5 mm of the soil in the glasshouse experiment. ... 116

Figure 5.2 a) Average response of surface gravimetric soil water content (GSWC) using the CoCl₂ technique to three levels of soil moisture in the glasshouse and one in the field conditions, and b) the occurrence of rain in the field experiment. 118

Figure 5.3 Average response of seedling number per tray of three legume species to three surface moisture treatments in the glasshouse and one in the field. ... 120

Figure 5.4 The response of seedling number per tray at 10 DAS to the GSWC of the soil surface measured by CoCl₂ test for three legume species in the glasshouse. ... 121

Figure 5.5 The total and net number of seedlings plus radicles that survived and died for three legume species at three surface moisture levels in the glasshouse 40 DAS. ... 122
Figure 5.6 Relationship of total number of seedlings and radicles over time for different legume species and different surface soil moisture. ... 126

Figure 5.7 The average length of radicles present on the soil surface from oversown seeds of three legume species at three moisture levels from 0 to 20 DAS. ... 133

CHAPTER 6

Figure 6.1 The average response of seedling number per tray of three legume species to two surface treatments in the glasshouse. ... 145

Figure 6.2 The dry weight per plant of three legume species 40 DAS for two surface treatments in the glasshouse. 146

CHAPTER 7

Figure 7.1 The average response of seedling number per unit area of two legume species under five seed treatments over time. 156

CHAPTER 8

Figure 8.1 Flow diagram showing basic structure of the model for predicting germinated seedling, seedling survival and establishment indices from four environmental factors (values shown for one possible case). ... 165

Figure 8.2 Interaction of GSWC and soil temperature on the germinated seedling index. ... 169
Figure 8.3 Interaction of minimum temperature and wind run on the seedling survival index. .. 170

Figure 8.4 Model predictions for germinated seedling index, seedling survival index and seedling establishment index for mean of seven legume species oversown at Poukawa (1990 - 1994). .. 172

Figure 8.5 Model predictions for germinated seedling index, seedling survival index and seedling establishment index for mean of seven legume species oversown at Lawn Road, Hastings (1982 - 1991). .. 174

Figure 8.6 Model predictions for germinated seedling index, seedling survival index and seedling establishment index for subterranean clover oversown at Lawn Road, Hastings (1982 - 1991). .. 175

Figure 8.7 Model predictions for germinated seedling index, seedling survival index and seedling establishment index for birdsfoot trefoil oversown at Lawn Road, Hastings (1982 - 1991). .. 176

CHAPTER 9

Figure 9.1 Some environmental, seed and plant factors contributing for oversown legume seed germination and seedling survival .. 184