Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
NITROGEN LOSS THROUGH DENITRIFICATION IN SOIL UNDER PASTURE IN NEW ZEALAND

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Soil Science

at

Massey University
Palmerston North
New Zealand

Jiafa Luo

1996
ABSTRACT

Denitrification is an important process in the N cycle that can affect the efficiency of use of soil nutrients and also the impact of agricultural activities on the wider environment. There have been few studies on the losses of N by denitrification from pasture soils. The current study was undertaken to investigate N loss through denitrification in a New Zealand pasture, and to examine relationships between denitrification and other environmental and soil factors. Denitrification was measured using the acetylene inhibition technique by incubating soil in a closed system.

A study on the effect of storage concluded that a soil’s moisture status and the duration of storage can affect the denitrification activity, as measured by a short-term assay. This effect can operate by changing both denitrification enzyme activities and the availability of substrate.

Denitrification activities were greatest in the surface soil and generally decreased with depth in the soil profile. The decrease in denitrification activity with depth could be also attributed to both a decrease in enzyme activity and also decreasing availability of C and NO₃⁻-N.

High coefficients of variation (CV) and skewed distributions of denitrification rate were always observed in the field. The log-normal distribution generally provided a better fit than the normal distribution for denitrification rates measured in the field. The variance in denitrification rate changed temporally, and depended on the soil moisture content and the grazing pattern. Amendment of soil cores with NO₃⁻-N and soluble-C, either singly or together, substantially decreased the skewness of the frequency distribution of denitrification rates.

Denitrification rates varied according the location in the paddock. Highest rates were detected in the floor of a gully and in a gateway area.

Denitrification rates followed a marked seasonal pattern, with higher rates being measured
during the wet winter and lower rates during the dry summer. Higher denitrification rates were also observed during brief periods after rainfall events in the summer. An annual N loss of about 4.5 kg N ha\(^{-1}\) through denitrification was estimated in this dairy-farm paddock. Block grazing with cows at a high stocking rate increased the denitrification rate between 3 and 14 days after grazing under seasonally moist conditions. However, the total N loss through denitrification induced by grazing during that period was still very small, compared with the N returned by the grazing animals.

Correlation and multiple regression analyses revealed that relationships between single core measurements of denitrification rates and other edaphic factors in the field were poor for the combined data set. However better relationships between denitrification rate and NO\(_3^–\)-N concentration in the individual soil cores existed at high soil moisture contents, and better relationships between denitrification rate and respiration rate existed at low soil moisture contents. Mean denitrification rates from individual dates were positively correlated to soil moisture content. Regression equations derived from the mean-value data for each sampling date improved the prediction of the observed denitrification rate, compared to those from the individual data sets. Soil moisture content and NO\(_3^–\)-N concentration accounted for 51% of the observed variability in denitrification rate in the field.

Experiments conducted to obtain insights into factors regulating denitrification, by removing possible limitations to denitrification during the incubation, found that the addition of NO\(_3^–\)-N solution to soil cores stimulated denitrification rates in all seasons. This result suggested that the NO\(_3^–\)-N concentration, or more importantly, the accessibility of NO\(_3^–\)-N to the denitrification sites in the pasture soil may have limited denitrification. Denitrification rates also increased when soluble-C was added to the soil cores, but the magnitude of the effect depended on other edaphic factors.

A separate study demonstrated that the presence of acetylene during the denitrification measurement also inhibited the nitrification process, and consequently could affect the NO\(_3^–\)-N availability for denitrification in the soil. However, this study also indicated that inhibition of nitrification by acetylene did not affect short-term measurement of denitrification rate.
ACKNOWLEDGEMENTS

I am greatly indebted to the Department of Soil Science and to all the people who made the study possible by offering me research facilities and individual support.

In particular, I would like to thank Professor R.W. Tillman, chief supervisor, for his generous advice, thoughtful guidance, suggestions and encouragement throughout this study, Dr P. Roger Ball, associate supervisor, for his invaluable assistance and helpful discussions, and Professor R.E. White for his advice in study planning.

I wish to express my appreciation to L.D. Carrie, M. Bretherton, I. Furkert, R. Wallace, A. West for their skilful technical assistance with experimental work and data processing, and to Mr R.A. Carran, AgResearch Grassland, for his helpful discussions and continued interest in this research. Thanks are also due to D. Brunskill for her kind support.

Fertilizer and Lime Research Centre of Massey University is acknowledged for having financially sponsored this work.

Special thanks must go to my wife L. Ouyang for her endurance, patience and support throughout my study. Last but least, I thank all the staff, postgraduates and friends of the Department of Soil Science for their cares.
TABLE OF CONTENTS

ABSTRACT ... i

ACKNOWLEDGEMENTS ... iii

TABLE OF CONTENTS ... iv

LIST OF FIGURES ... x

LIST OF TABLES .. xiv

CHAPTER 1 INTRODUCTION ... 1
 1.1 INTRODUCTION .. 1
 1.2 STRUCTURE OF THE THESIS ... 3

CHAPTER 2 REVIEW OF LITERATURE .. 7
 2.1 INTRODUCTION .. 7
 2.2 BIOCHEMISTRY OF DENITRIFICATION .. 8
 2.2.1 Microbiological basis of denitrification ... 8
 2.2.2 Process of denitrification ... 9
 2.3 FACTORS REGULATING DENITRIFICATION IN SOILS 10
 2.3.1 Carbon availability ... 11
 2.3.2 Nitrate concentration ... 13
 2.3.3 Soil aeration .. 14
 2.3.4 Soil pH ... 16
 2.3.5 Temperature .. 17
 2.3.6 Plants ... 18
 2.3.7 Agricultural management practices .. 19
 2.4 EXPERIMENTAL CONSIDERATIONS IN THE STUDY
 OF DENITRIFICATION ... 20
 2.4.1 Outline of the methodology for measuring denitrification 20
 2.4.2 Acetylene inhibition method ... 22
 2.5 MEASUREMENT OF FIELD DENITRIFICATION RATES 28
 2.5.1 Field denitrification rate ... 28
2.5.2 Denitrification enzyme activity .. 30

2.6 NITROGEN LOSS THROUGH DENITRIFICATION FROM
PASTURE SOILS .. 30

2.7 SUMMARY AND FUTURE RESEARCH NEEDS 32
 2.7.1 Summary ... 32
 2.7.2 Future research needs .. 34

CHAPTER 3 OPTIMIZING CONDITIONS FOR THE SHORT-TERM
DENITRIFICATION ENZYME ASSAY AND EFFECTS OF SOIL
STORAGE ON DENITRIFICATION ACTIVITY 36
 3.1 INTRODUCTION .. 36
 3.2 MATERIALS AND METHODS 39
 3.2.1 Soil sample preparation .. 39
 3.2.2 Procedure .. 40
 3.2.3 Analytical methods .. 42
 3.3 RESULTS AND DISCUSSION 43
 3.3.1 Incubation conditions .. 43
 3.3.2 Influence of soil sample storage 51
 3.4 CONCLUSIONS .. 58

CHAPTER 4 VARIABILITY IN DENITRIFICATION ACTIVITY
WITH SOIL DEPTH .. 60
 4.1 INTRODUCTION .. 60
 4.2 MATERIALS AND METHODS 61
 4.2.1 Soil sample preparation .. 61
 4.2.2 Laboratory measurement of denitrification activity 61
 4.2.3 Denitrification measurement at field temperature and moisture 62
 4.2.4 Analytical methods .. 63
 4.3 RESULTS ... 63
 4.3.1 Denitrification activity measured in the laboratory in samples
 collected in the summer of 1991 and the winter of 1992 63
 4.3.2 Impact of rainfall on denitrification activity as measured
 in the laboratory ... 69
4.3.3 Denitrification rates measured at field temperature and moisture before and after rainfall in the autumn of 1993 .. 71

4.4 DISCUSSION .. 71

4.4.1 Decrease in denitrification activity with depth 71

4.4.2 Factors controlling denitrification activity in the soil profile 73

4.4.3 Denitrification activity in the soil profile affected by rainfall 74

4.5 CONCLUSIONS .. 75

CHAPTER 5 FREQUENCY DISTRIBUTION AND SPATIAL VARIABILITY OF DENITRIFICATION RATE .. 77

5.1 INTRODUCTION ... 77

5.2 MATERIALS AND METHODS ... 80

5.2.1 Site description .. 80

5.2.2 Field denitrification measurement .. 81

5.2.3 Soil moisture, mineral nitrogen and CO₂ measurement 86

5.2.4 Statistics .. 87

5.3 RESULTS AND DISCUSSION ... 88

5.3.1 Variation and frequency distribution of denitrification rate 88

5.3.2 Variation and frequency distributions of other soil variables .. 94

5.3.3 Temporal patterns of spatial variability 95

5.3.4 Spatial dependence of denitrification 100

5.4 CONCLUSIONS ... 103

CHAPTER 6 TEMPORAL VARIABILITY OF NITROGEN LOSS THROUGH DENITRIFICATION .. 105

6.1 INTRODUCTION ... 105

6.2 MATERIALS AND METHODS ... 106

6.2.1 Field sampling and variable analyses 106

6.2.2 Statistical analyses ... 106

6.3 RESULTS AND DISCUSSION ... 108

6.3.1 Temporal pattern of denitrification 108

6.3.2 Temporal patterns of other edaphic parameters 111

6.3.3 Site differences in denitrification .. 111
6.3.4 Correlations and regressions between denitrification and other edaphic parameters .. 113
6.3.5 Annual nitrogen loss by denitrification 125
6.4 GENERAL DISCUSSION ... 125
 6.4.1 Denitrification associated with soil moisture 125
 6.4.2 Denitrification associated with soil nitrate 128
 6.4.3 Denitrification associated with soil respiration 129
 6.4.4 Denitrification associated with soil temperature 130
 6.4.5 Nitrogen loss through denitrification from agricultural systems .. 131
6.5 CONCLUSIONS .. 132

CHAPTER 7 EFFECT OF GRAZING EVENTS ON DENITRIFICATION DURING TWO CONTRASTING SEASONS 134
7.1 INTRODUCTION ... 134
7.2 MATERIALS AND METHODS 135
 7.2.1 Experimental design ... 136
 7.2.2 Measurement of denitrification and respiration rates 136
 7.2.3 Analyses of other soil properties 137
 7.2.4 Climatic information .. 138
 7.2.5 Statistical analyses .. 138
7.3 RESULTS AND DISCUSSION .. 140
 7.3.1 Denitrification rate in relation to grazing events 140
 7.3.2 Soil mineral nitrogen and denitrification 144
 7.3.3 Soil moisture and denitrification 149
 7.3.4 Soil respiration and denitrification 149
 7.3.5 Denitrification enzyme activity in relation to grazing events .. 154
 7.3.6 Soil pH and denitrification 157
 7.3.7 Nitrogen losses through denitrification directly induced by the grazing in winter ... 157
7.4 CONCLUSIONS .. 161
CHAPTER 8 STUDY ON LIMITING FACTORS AFFECTING DENITRIFICATION

8.1 INTRODUCTION 163
8.2 MATERIALS AND METHODS 163
8.3 RESULTS ... 167
 8.3.1 Responses of denitrification to treatments 167
 8.3.2 Relationships between NO₃⁻ concentration, C availability
 and denitrification rate 172
8.4 DISCUSSION 179
 8.4.1 Influence of soil temperature and soil water content
 on denitrification 179
 8.4.2 Availability of nitrate in soil associated with denitrification . 180
 8.4.3 Availability of carbon in soil associated with denitrification . 181
 8.4.4 Influence of grazing on amendment effect 182
8.5 CONCLUSIONS 182

CHAPTER 9 A PRIMARY STUDY ON THE EFFECT OF SOIL NITRATE CONCENTRATION ON DENITRIFICATION AS AFFECTED BY DIFFUSION AND NITRIFICATION 184

9.1 INTRODUCTION 184
9.2 MATERIALS AND METHODS 186
9.3 RESULTS ... 187
 9.3.1 Diffusion experiments 187
 9.3.2 Inhibition of nitrification by acetylene in relation to
 denitrification .. 191
9.4 DISCUSSION ... 194
 9.4.1 Nitrate-N concentration at denitrification sites 194
 9.4.2 Influence on denitrification of nitrification inhibition
 by acetylene ... 197
9.5 CONCLUSIONS 199
CHAPTER 10 SYNTHESIS AND SUMMARY ... 200
10.1 INTRODUCTION .. 200
10.2 NITROGEN LOSS THROUGH DENITRIFICATION 201
10.3 FACTORS REGULATING DENITRIFICATION 203

REFERENCES ... 208
LIST OF FIGURES

3.1 N$_2$O evolved during anaerobic incubation of Tokomaru silt loam
(0-5 cm) after addition of NO$_3^-$ (50 µg N g$^{-1}$ soil) in the presence
and absence of C$_2$H$_2$.. 44

3.2 N$_2$O evolved during anaerobic incubation of Tokomaru silt loam
after NO$_3^-$ (50 µg N g$^{-1}$ soil) and glucose (300 µg C g$^{-1}$ soil) were added 46

3.3 Effect of NO$_3^-$ concentration on denitrification activity in
the Tokomaru and Manawatu soils, (a) Surface soil (0-5 cm)
and (b) subsurface soil (5-10 cm) 47

3.4 Effect of soluble-C on denitrification activity in the Tokomaru
and Manawatu soils, (a) Surface soil (0-5 cm) and
(b) subsurface soil (5-10 cm) .. 50

3.5 Change in denitrification activity of moist soil during storage
at 2 and 20°C when assayed without NO$_3^-$ and C addition,
(a) Tokomaru soil and (b) Manawatu soil 52

3.6 Change in denitrification activity of moist soil during storage
at 2 and 20°C when assayed with NO$_3^-$ addition,
(a) Tokomaru soil and (b) Manawatu soil 53

3.7 Change in denitrification activity of moist soil during storage
at 2 and 20°C when assayed with C addition,
(a) Tokomaru soil and (b) Manawatu soil 54

3.8 Change in denitrification activity of moist soil during storage
at 2 and 20°C when assayed with NO$_3^-$ and C addition,
(a) Tokomaru soil and (b) Manawatu soil 55

3.9 Change in denitrification activity following air-drying and storage
of air-dry soil, (a) assayed without NO$_3^-$ and C addition,
(b) assayed with NO$_3^-$ addition, (c) assayed with C addition
and (d) assayed with NO$_3^-$ and C addition 57

4.1 Denitrification activities under anaerobic conditions in the Tokomaru soil .. 65

4.2 Denitrification activities under anaerobic conditions in the Manawatu soil .. 66
4.3 Nitrate concentrations in soil profiles of the Tokomaru and Manawatu soils at three sampling times 68
4.4 Denitrification activities under anaerobic conditions in the Tokomaru soil before and after heavy rain .. 70
4.5 Denitrification rates in the Tokomaru soil under field conditions before and after heavy rain .. 72
5.1 Sampling grid used for the analysis of spatial variability in soil denitrification rate on 20 April 1993 .. 84
5.2 Sampling grid used for the analysis of spatial variability in soil denitrification rate. Same types of grid were used both in the control and the grazed sites on 5 August 1993, as well as on 20 July 1993 before grazing .. 85
5.3 Histograms of denitrification rates at selected sampling dates and sites ... 89
5.4 Analysis of spatial dependence in the variability of denitrification rate ($\mu g N_2O-N kg^{-1} d^{-1}$, log-transformed data) (20 April 1993) 101
5.5 Analysis of spatial dependence in the variability of denitrification rate ($\mu g N_2O-N kg^{-1} d^{-1}$, log-transformed data) before grazing and 10 days after grazing (winter, 1993) .. 102
6.1 Monthly rainfall and evaporation (a), and mean soil temperature (10 cm depth) (b) during the field denitrification study 107
6.2 Temporal variation in the rate of denitrification ... 110
6.3 Seasonal variation in the soil nitrate concentration (a), the soil moisture content (b), and the soil respiration rate (c) 112
6.4 Relationship between denitrification rates and soil moisture contents (based on pooled data) .. 116
6.5 Relationship between denitrification rates and soil nitrate concentrations (moisture w/w (a), $>45%$; (b), $<45%$ and $>30%$; (c), $<30%$) 118
6.6 Relationship between denitrification rates and soil respiration rates (moisture w/w (a), $>45%$; (b), $<45%$ and $>30%$; (c), $<30%$) 119
6.7 Relationship between denitrification rates and soil moisture contents (based on mean data) .. 124
7.1 Soil temperature (10 cm depth) during the experiment in winter, 1993 (a) and in summer, 1994 (b) .. 139
7.2 Effect of grazing on denitrification rate during the experiment in the cool, moist winter in 1993 142
7.3 Denitrification rates during the experiment in summer, 1994 143
7.4 Soil mineral nitrogen concentrations during the experiment in the cool, moist winter in 1993 147
7.5 Soil mineral nitrogen concentrations during the experiment in summer, 1994 (a, NH$_4^+$-N; b, NO$_3^-$-N) 148
7.6 Soil moisture contents during the experiments in winter, 1993 (a) and in summer, 1994(b) 150
7.7 Soil respiration rates during the experiment in the cool, moist winter in 1993 152
7.8 Soil respiration rates during the experiment in summer, 1994 ... 153
7.9 Denitrification enzyme activities before and after grazing in “break 5” and the control area during the experiment in winter, 1993 155
7.10 Denitrification enzyme activities during the experiment in summer, 1994 .. 156
7.11 Soil pH values during the experiment in the cool, moist winter in 1993 .. 159
7.12 Soil pH values during the experiment in summer, 1994 160
8.1 Denitrification rates in untreated soil cores collected in warm moist seasons and incubated at field temperature (circle) and in the same cores after application of treatments and incubated at 25°C (square) 168
8.2 Denitrification rates in untreated soil cores collected in warm dry seasons and incubated at field temperature (circle) and in the same cores after application of treatments and incubated at 25°C (square) 169
8.3 Denitrification rates in untreated soil cores collected in cold wet seasons and incubated at field temperature (circle) and in the same cores after application of treatments and incubated at 25°C (square) 170
8.4 Relationship between denitrification rates and soil nitrate concentrations in cores receiving the indicated treatments (17 November 1992) 173
8.5 Relationship between denitrification rates and soil nitrate concentrations in cores receiving the indicated treatments (25 January 1993) 174
8.6 Relationship between denitrification rates and soil nitrate concentrations
in cores receiving the indicated treatments (9 June 1993) 175
8.7 Relationship between denitrification rates and soil respiration rates
in cores receiving the indicated treatments (17 November 1992) 176
8.8 Relationship between denitrification rates and soil respiration rates
in cores receiving the indicated treatments (25 January 1993) 177
8.9 Relationship between denitrification rates and soil respiration rates
in cores receiving the indicated treatments (9 June 1993) 178
9.1 Accumulated N₂O from denitrification in soils incubated at 67% (ww⁻¹)
moisture content and containing different initial concentrations of NO₃⁻-N . 188
9.2 Accumulated N₂O from denitrification in soils incubated at 39% (ww⁻¹)
moisture content and containing different initial concentrations of NO₃⁻-N . 189
9.3 Accumulated N₂O from denitrification in soils incubated at 25% (ww⁻¹)
moisture content and containing different initial concentrations of NO₃⁻-N . 190
9.4 N₂O emission rates in soil incubated at 25% (ww⁻¹) moisture content
with different concentrations of acetylene 192
9.5 Concentrations of NO₃⁻-N in soil incubated at 25% (ww⁻¹) moisture
content with different concentrations of acetylene 193
9.6 N₂O emission rates in soil incubated at 39% (ww⁻¹) moisture content
with different concentrations of acetylene 195
9.7 Concentrations of NO₃⁻-N in soil incubated at 39% (ww⁻¹) moisture
content with different concentrations of acetylene 196
LIST OF TABLES

3.1 Chemical and physical properties of soils from the experimental sites 40
4.1 Variation of gravimetric soil moisture content (% ww⁻¹) with depth at different sampling times in the Tokomaru and Manawatu soils 64
5.1 Major characteristics of the soils at 0-7.5 cm depth 81
5.2 Statistical properties of some soil parameters measured on individual soil cores at all sampling sites and dates 90
5.3 Statistical properties of some soil parameters measured on individual soil cores but aggregated for the whole paddock on each sampling date 91
5.4 Summary of statistical characteristics of denitrification rate at each topographical site ... 92
5.5 Effect of rainfall on the variation of denitrification rate, soil nitrate concentration and soil moisture content 96
5.6 Effect of intensive grazing on denitrification rate and other soil parameters (sampled on 5 August 1993) .. 98
6.1 Coefficients of variation (%) of measured parameters within sampling sites throughout the year ... 109
6.2 Pearson correlations between denitrification rate (mg N₂O-N kg⁻¹ d⁻¹) and measured variables in individual cores 115
6.3 Stepwise regressions between denitrification rate (mg N₂O-N kg⁻¹ d⁻¹) and measured variables in individual soil cores 117
6.4 Pearson correlations between denitrification rate (mg N₂O-N kg⁻¹ d⁻¹) and measured variables using means from individual dates 121
6.5 Pearson correlations between soil temperature and other measured variables using means from individual dates 122
6.6 Stepwise regressions between denitrification rate (mg N₂O-N kg⁻¹ d⁻¹) and measured variables using means from individual dates 123
6.7 Estimated annual nitrogen loss through denitrification from the study paddock ... 123
7.1 Denitrification rates (mg N₂O-N kg⁻¹ d⁻¹) (mean values ± SD) during the experiment in winter, 1993 141

7.2a Soil mineral nitrogen concentrations (mg NH₄⁺-N kg⁻¹) (mean values ± SD) during the experiment in winter, 1993 145

7.2b Soil mineral nitrogen concentrations (mg NO₃⁻-N kg⁻¹) (mean values ± SD) during the experiment in winter, 1993 146

7.3 Soil respiration rates (mg CO₂-C kg⁻¹ d⁻¹) (mean values ± SD) during the experiment in winter, 1993 151

7.4 Soil pH values during the experiment in winter, 1993 158

8.1 Soil properties on sampling dates 165

8.2 Variation in soil properties in individual soil cores after application of treatments to samples collected on 25 January 1993 166

9.1 Change in NO₃⁻-N concentration in bulk soil during incubation 191