Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
EPIDEMIOLOGICAL STUDIES OF EARLY
EXERCISE AND MEASURES OF TRAINING
AND RACING PERFORMANCE IN
THOROUGHBRED RACEHORSES

A thesis submitted in partial fulfilment
of the requirements for the degree of
Doctor of Philosophy
in
Veterinary Epidemiology

Massey University, Palmerston North,
New Zealand

CHARLOTTE FRANCES BOLWELL

2011
ABSTRACT

This thesis includes a series of epidemiological studies conducted to quantify the exercise regimens of Thoroughbred yearlings during their sales preparation and 2- and 3-year-old race training. Additionally, this thesis aims to establish if there are associations between the exercise regimens and training and racing performance at two years of age.

Cross-sectional and cohort studies quantified the components of the exercise regimens used during sales preparation on stud farms in New Zealand. Exercise was a common practice during sales preparation. The type and amount of exercise was often tailored to individual horses. Overall, exercise varied by gender, the month of preparation, and between farms indicating that the exposure to exercise during sales preparation was not the same for all horses.

Survival analysis identified different horse and exercise risk factors for voluntary, involuntary, and musculoskeletal interruptions during training. Specifically, there were strong associations between increased total hand walking time and reduced chance of voluntary interruptions, and more time walking on a mechanical walker increased the risk of involuntary interruptions. Other horse and training factors, such as trainer, gender, age at the start of training, and the distance accumulated at canter and high speed, were associated with the time to interruptions during training.

Interruptions before the first trial were associated with an increased time to the first trial or race and a decreased chance of starting in a trial. Accumulating shorter distances and fewer events at high speed were both associated with a decreased chance of a trial or race start. Longer distances accumulated at high speed were associated with a decreased time to the first trial. No associations were found between the exercise accumulated during sales preparation and the time to the first trial during training. Overall, the exercise accumulated during sales preparation was associated with a measure of training performance, whilst the timing of interruptions and the accumulation of exercise during training have implications for reaching important training and racing milestones. The results of this thesis indicate that current exercise regimens could be modified to enhance the training and racing performance of Thoroughbred racehorses.
ACKNOWLEDGEMENTS

I am indebted to the many studmasters and trainers and their staff that gave up their valuable time to assist in this project and who recorded data with such interest and enthusiasm; without them this project would not have been possible. Thank you to all the people in the Thoroughbred industry who provided information or assisted in some way with this project, your help was greatly appreciated.

I would like to gratefully acknowledge New Zealand Racing Board as part of the Partnership for Excellence for funding the project and myself. I would like to thank Massey University and Education New Zealand for travel scholarships to attend conferences.

I am very grateful to my supervisors Professor Elwyn Firth, Dr Chris Rogers and Professor Nigel French for their advice, guidance and support. I would like to thank Elwyn for meeting with me in London and for giving me an amazing opportunity to live and work in New Zealand. I am grateful to Elwyn for his enthusiasm and encouragement, attention to detail, and for making me strive to produce the best work. I would like to thank Chris for always having an open door policy, for receiving my first drafts and for always sending me away with a unique drawing of an idea, problem or solution! I would like to thank Nigel for bringing his enthusiasm for epidemiology to my supervisory team, and for his guidance and advice during analysis and write-up.

I also thank Stuart Duggan and Georg Magerl at New Zealand Thoroughbred Racing for providing technical support and data extracts. I am very grateful to the New Zealand Thoroughbred Breeders’ Association, New Zealand Equine Research Foundation, Allan Child at New Zealand Thoroughbred Racing and Justine Sclater at Waikato Breeders’ Bloodline for their assistance in publishing information and findings from the project.

I am very grateful to Marije Blok and Audrey Burkard for their company and assistance when travelling around the country collecting data and for their friendship during their time in New Zealand. I would like to thank Marije, Nikita Stowers and Lauren Beanland for their help with data processing and entry. I would like to thank Bryan O’Leary for his assistance with designing the databases and his patience when answering all my questions. Thank you to Naomi Cogger and Nigel Perkins for their suggestions and advice on statistical analysis.

To Elwyn’s Angels, Brielle, Jaz, Niki, Sarah T and Sarah R, thank you for making my working environment a fun, stimulating and challenging place to be. Thanks for reading drafts, helping with all my queries, problems and ideas and for supporting me.
through this process. Thanks also for your friendship, laughter, chocolate and bubbles; it has been a pleasure to work with you all over the last four years. A special thanks to all those who helped with reading drafts towards the end of the project, your thoughts and comments were invaluable. Birte, your knowledge of the English language is inspirational and I thank you for passing some of it on to me.

Thanks to all my family for their continued love and support over the last four years. Being so far away has been tough at times, so I thank Mum, Bill, Adam, Jake, Birte and Lucas for keeping in touch through regular Skype video chats, and to Dad, Patrick and other family and friends who have called, emailed, sent essential care packages of my favourite chocolate or made the long journey to visit us! Also, I want to thank my Kiwi friends who made it so easy to settle and feel at home and provided me with much needed fun, laughs and ‘down time’ from the PhD.

To Dan, thank you for agreeing to start a new adventure together in New Zealand, and for understanding when I then had to work all hours of the day, night and weekends! I thank you for your advice, love and support throughout this journey. I feel very lucky to have experienced this with you.

To my Mum: there are no words to describe how much I appreciate the sacrifices you have made for me and for your financial help that got me where I am today. Thank you for being there, for your encouragement, for supporting all my decisions and choices in life, and for making it so easy to follow my dreams to the other side of the world. This thesis is dedicated to you.
LIST OF PUBLICATIONS

TABLE OF CONTENTS

ABSTRACT .. II
ACKNOWLEDGEMENTS .. III
LIST OF PUBLICATIONS .. V
TABLE OF CONTENTS .. VI
LIST OF ABBREVIATIONS ... IX
LIST OF TABLES .. X
LIST OF FIGURES .. XIII
CHAPTER 1 .. 1
INTRODUCTION ... 1
 Background .. 1
 Literature Review ... 3
 Aims and Hypotheses ... 30
 Prelude .. 32
PRELUDE TO CHAPTER 2 .. 34
CHAPTER 2 ... 35
RISK FACTORS FOR INTERRUPTIONS TO TRAINING OCCURRING BEFORE THE FIRST TRIAL START OF 2-YEAR-OLD THOROUGHBRED RACEHORSES .. 35
 Abstract .. 35
 Introduction .. 36
 Materials and Methods ... 37
 Results ... 39
 Discussion ... 47
 References .. 49
 Appendix A ... 52
PRELUDE TO CHAPTER 3 .. 57
CHAPTER 3 ... 58
THE EFFECT OF INTERRUPTIONS DURING TRAINING ON THE TIME TO THE FIRST TRIAL AND RACE START IN THOROUGHBRED RACEHORSES .. 58
 Abstract .. 58
 Introduction .. 59
 Materials and Methods ... 60
 Results ... 62
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discussion</td>
<td>71</td>
</tr>
<tr>
<td>Conclusion</td>
<td>74</td>
</tr>
<tr>
<td>References</td>
<td>75</td>
</tr>
<tr>
<td>Appendix B</td>
<td>78</td>
</tr>
<tr>
<td>PRELUDE TO CHAPTER 4</td>
<td>81</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td>82</td>
</tr>
<tr>
<td>MANAGEMENT AND EXERCISE OF THOROUGHBRED YEARLINGS DURING PREPARATION FOR YEARLING SALES IN THE NORTH ISLAND OF NEW ZEALAND</td>
<td>82</td>
</tr>
<tr>
<td>Abstract</td>
<td>82</td>
</tr>
<tr>
<td>Introduction</td>
<td>82</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>83</td>
</tr>
<tr>
<td>Results</td>
<td>84</td>
</tr>
<tr>
<td>Discussion</td>
<td>88</td>
</tr>
<tr>
<td>Conclusion</td>
<td>89</td>
</tr>
<tr>
<td>References</td>
<td>91</td>
</tr>
<tr>
<td>Appendix C</td>
<td>93</td>
</tr>
<tr>
<td>PRELUDE TO CHAPTER 5</td>
<td>104</td>
</tr>
<tr>
<td>CHAPTER 5</td>
<td>105</td>
</tr>
<tr>
<td>EXERCISE IN THOROUGHBRED YEARLINGS DURING SALES PREPARATION: A COHORT STUDY</td>
<td>105</td>
</tr>
<tr>
<td>Abstract</td>
<td>105</td>
</tr>
<tr>
<td>Introduction</td>
<td>106</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>107</td>
</tr>
<tr>
<td>Results</td>
<td>109</td>
</tr>
<tr>
<td>Discussion</td>
<td>115</td>
</tr>
<tr>
<td>References</td>
<td>119</td>
</tr>
<tr>
<td>Appendix D</td>
<td>121</td>
</tr>
<tr>
<td>PRELUDE TO CHAPTER 6</td>
<td>125</td>
</tr>
<tr>
<td>CHAPTER 6</td>
<td>126</td>
</tr>
<tr>
<td>FATE OF THOROUGHBRED HORSES AFTER YEARLING SALES</td>
<td>126</td>
</tr>
<tr>
<td>Abstract</td>
<td>126</td>
</tr>
<tr>
<td>Introduction</td>
<td>127</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>128</td>
</tr>
<tr>
<td>Results</td>
<td>130</td>
</tr>
<tr>
<td>Discussion</td>
<td>135</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

12s 12s/200m
13s 13s/200m
15s 15s/200m
BMC Bone mineral content
CI Confidence interval
CONDEX Pasture plus exercise
DMD Dorsometacarpal disease
GPS Global positioning systems
HR Hazard ratio
IQR Interquartile range
LRS Likelihood ratio statistic
MSI Musculoskeletal injury
NH National Hunt
NZB New Zealand Bloodstock
NZTR New Zealand Thoroughbred Racing
OR Odds ratio
PASTEX Pasture with no additional exercise
RR Risk ratio
TAS Training activity score
LIST OF TABLES

CHAPTER 1
Table 1: The number of trainers, horses and percentage of lost training days due to musculoskeletal injury (MSI) reported in studies across several countries ... 7
Table 2: Outcomes used in studies describing the epidemiology of injuries in Thoroughbred racehorses during training and racing ... 8
Table 3: Studies reporting the incidence of fatalities during flat and jump races, per 1,000 starts ... 9
Table 4: Definitions of exercise intensity and time periods used in epidemiological studies of risk factors for MSI .. 13
Table 5: Description of exercise velocity and phases used in the conditioning programme by Rogers et al (2008) .. 26

CHAPTER 2
Table 1: Reasons for, and duration of (days), the first voluntary and involuntary interruptions occurring during training, as reported by the trainer, for a cohort of 208 racehorses ... 40
Table 2: Descriptive statistics for age at the start of training and training exercise exposure variables included in competing risk models for interruptions occurring before the first trial start for a cohort of 205 2-year-old racehorses in training .. 42
Table 3: Results of univariable competing risks analysis of voluntary interruptions (n=115) occurring before the first trial start for a cohort of 205 2-year-old racehorses in training ... 43
Table 4: Final multivariable competing risks model of voluntary interruptions (n=115) occurring before the first trial start for a cohort of 205 2-year-old racehorses in training ... 44
Table 5: Results of univariable competing risks analysis of musculoskeletal injury interruptions (n=19) occurring before the first trial start for a cohort of 205 2-year-old racehorses in training ... 45
Table 6: Final multivariable competing risks model of musculoskeletal injury interruptions (n=19) occurring before the first trial start for a cohort of 205 2-year-old racehorses in training ... 46
Table A1: Results of the final voluntary and involuntary interruption competing risks models and of a sensitivity analysis for informative censoring. 56

CHAPTER 3

Table 1: Distribution of continuous variables investigated for factors affecting the time to first trial and race start in a cohort of Thoroughbred horses in training ... 64

Table 2: Results of univariable screening of variables associated with the time to first trial start for 200 2-year-old racehorses in training .. 64

Table 3: Multivariable Cox regression results of variables associated with the time to first trial for 2-year-old racehorses in training .. 65

Table 4: Results of univariable screening of variables associated with the time to first race start for 2-year-old racehorses in training 69

Table 5: Multivariable Cox regression results of variables associated with the time to first race start for 2-year-old racehorses in training 70

CHAPTER 4

Table 1: Description of general management factors during yearling preparation for 2008 Karaka yearling sales expressed as the number of farms, percentage and 95% confidence interval. Central Districts = Manawatu and Wanganui Northern Districts = Waikato and South Auckland 85

Table A1: The number and percentage of responders and non-responders, the location of the stud farm and the type of phone used to contact eligible participants. ... 100

Table A2: Results of univariable logistic regression of exposure variables and the provision of exercise during sales preparation. .. 102

Table A3: Results of the multivariable logistic regression analysis for exposure variables and the provision of exercise during a sales preparation. 103

CHAPTER 5

Table 1: Distributions of continuous exercise variables for sales preparations, and total exercise by gender and month of preparation................................. 112

Table 2: Days at risk, number of lameness cases and lameness incidence rates by gender, age at entry (months), stud farm and sale type 115
CHAPTER 6
Table 1: Distribution of features of horses in the 2007 foal crop and in the study population, stratified by gender... 134
Table 2: Distribution of the horses catalogued for sale in the 2007 foal crop and in the study population. ... 135

CHAPTER 7
Table 1: Descriptive statistics of total walker and hand walking yearling exercise and race training exercise accumulated since entering training for a cohort of 2-year-old Thoroughbred racehorses in training.......................... 149
Table 2: Variables significantly associated with voluntary and involuntary interruptions in univariable analysis. The critical level for assigning statistical significance P<0.20 .. 150
Table 3: Final competing risks models for voluntary and involuntary interruptions occurring before the first trial for 2-year-old Thoroughbred racehorses in training ... 151
Table A1: Results of the final voluntary and involuntary interruption competing risks models and of a sensitivity analysis for informative censoring. 159

CHAPTER 8
Table 1: Total number, number of horses that trialled, days at risk and incidence rate of a first trial by gender, type of interruption and trainer 166
Table 2: Results of univariable Cox regression of variables associated with time to first trial for 2-year-old Thoroughbred racehorses in training......... 167
Table 3: Multivariable Cox regression results of variables associated with the time to first trial for 2-year-old racehorses in training 168
Table A1: Results of multivariable Cox regression results of variables associated with the time to first trial for 2-year-old racehorses in training, with two influential horses excluded from the analysis 178
LIST OF FIGURES

CHAPTER 1

Figure 1: An overview of the stages from birth to racing for a Thoroughbred racehorse in New Zealand and the relationship to the studies presented in this thesis. C=Chapter. *Average start time, some horses may enter later than this. .. 33

CHAPTER 2

Figure 1: Kaplan-Meier ‘survival’ curve of the time from entering training until the first interruption for a cohort of 208 2-year-old Thoroughbred racehorses. Grey lines represent 95% confidence intervals 41

Figure A1: Flyer given to trainers to raise awareness of the project. The contact information was provided in the yellow area but has been removed for confidentiality reasons... 52

Figure A2: An excerpt from the New Zealand Thoroughbred Racing Inc Media Bulletin emailed to trainers on Tuesday 6th May 2008, to raise awareness of the project. For confidentiality reasons, the contact information given to trainers has been removed. ... 53

Figure A3: An example of the forms used to record daily exercise during training.... 53

Figure A4: Extract of the data entered for each horse in the customised database...... 54

Figure A5: Example of the data structure used in the competing risks analysis....... 55

CHAPTER 3

Figure 1: Kaplan-Meier ‘survival’ curve showing the cumulative probability of not having a trial since entering training, for horses that had no interruption, an involuntary interruption, or a voluntary interruption.............. 63

Figure 2: Relationship between the number of high speed events accumulated since entering training and the likelihood of a trial, after adjusting for age at the start of training, the type of interruption, daily walker time, the number of jump outs, distance at 15s/200m and clustering at the trainer level. Number of high speed events modelled as a fractional polynomial as (cumulative high speed events+1)/10)^-2.......................... 66

Figure 3: Relationship between the number of jump outs accumulated since entering training and a the likelihood of a trial, after adjusting for age at the start of training, the type of interruption, daily walker time, the
number of high speed events, distance at 15s/200m and clustering at the
trainer level. Number of jump outs modelled as a fractional polynomial
as (cumulative jump outs+1)^-0.5. ... 67

Figure 4: Kaplan-Meier ‘survival’ curve showing the cumulative probability of
not starting in a race since entering training for horses that had no,
voluntary and involuntary interruptions during training. 68

Figure 5: Relationship between the number of high speed events accumulated
since entering training and the likelihood of a race start, after adjusting
for the distance accumulated at 13s/200m and the number of trial starts.
Number of high speed events modelled as a fractional polynomial as
((high speed events+1)/10)^-1. ... 70

Figure 6: Relationship between the number of trials accumulated since entering
training and the likelihood of a race start, after adjusting for the distance
accumulated at 13s/200m and the number of high speed events. Number
of trials modelled as a fractional polynomial as (number of trials+1)^-1 71

Figure A1: An example of the Stata output of fitting a fractional polynomial to
explore the relationship between high speed events (count_12) and the
time to first trial. ... 78

Figure A2: Plot of likelihood displacement values against time. The numbered
point is the horse that was considered to be influential in the model......... 79

Figure A3: Plot of the Cox-Snell residuals against the cumulative hazard for the
final multivariable model for time to first trial. A reference line with a
slope=1 is also displayed. .. 80

Figure A4: Plot of the Cox-Snell residuals against the cumulative hazard for the
final multivariable model for time to first race. A reference line with a
slope=1 is also displayed. .. 80

CHAPTER 4

Figure 1: The selection of stud farms from source population through to study
participants. The number of stud farms excluded at each stage and the
reason for exclusion is shown. Adapted from Elwood (2007). 84

Figure 2: Multiple correspondence analysis results of stud farms participating in a
cross-sectional survey of the management of yearlings during sales
preparation. Projections are shown on the first two dimensions. Dotted
circles highlight identified clusters 1, 2 and 3. A (Y axis), B (X axis) =
Percentage of inertia or variance explained by the first and second dimension, respectively. Central Districts = Manawatu and Wanganui, Northern Districts = Waikato and South Auckland. Explanation of the abbreviations used are shown in the table below.

Figure A1: An example of the separate sheet used in the questionnaire for recording exercise information.

CHAPTER 5

Figure 1: Box plots for the number of days of a yearling sales preparation across 18 Thoroughbred stud farms.

Figure 2: Box plots of total exercise for males and females within each month of sales preparation.

Figure 3: Median exercise time during sales preparation across 18 Thoroughbred stud farms.

Figure A1: An example of the forms that were used to record daily exercise during sales preparations on stud farms. The horse names were provided for each farm to facilitate recording, but have been removed to maintain confidentiality and anonymity.

Figure A2: An example of a completed data collection form used to record daily exercise during sales preparations on stud farms.

CHAPTER 6

Figure 1: Fate of the sales yearlings after the sales for the foal crop (n=627) and for the study population (n=4,194). Trainer2 = registered with a trainer at two years of age. Trainer3 = registered with a trainer at three but not at two years of age.

Figure 2: Tracking horses from the enrolment to the study at stud farm to the end of the study period (31st July 2010). The loss of horses before a trial and a race is indicated by grey arrows, whilst the remaining number of horses at each stage is noted in each box.

CHAPTER 7

Figure A1: Plot of the Cox-Snell residuals against the cumulative hazard for the final multivariable model for voluntary interruptions. A reference line with a slope=1 is also displayed.
Figure A2: Plot of the Cox-Snell residuals against the cumulative hazard for the final multivariable model for voluntary interruptions, excluding the fixed effect for stud farm. A reference line with a slope=1 is also displayed. ... 160

CHAPTER 8

Figure 1: Kaplan Meier ‘survival’ curve of the time since entering training to the first trial for a cohort of 2-year-old Thoroughbred racehorses in training. 165

Figure 2: Association between the distance (furlongs) accumulated at 15s/200m (15s) since entering training and the likelihood of a trial. Distance at 15s modelled as a fractional polynomial transformation (\((15s+0.24)/10\)^0.5. 169

Figure 3: Association between the distance (furlongs) accumulated at 13s/200m (13s) since entering and the likelihood of a trial. Distance at 13s modelled as a fractional polynomial transformation \((13s+0.24)/10\)^-0.5. ... 170

Figure 4: Association between the distance (furlongs) accumulated at 12s/200m (12s) since entering and the likelihood of a trial. Distance at 12s modelled as a fractional polynomial transformation \((12s+0.49)/10\)^-2... 170

Figure A1: Plot of the Cox-Snell residuals against the cumulative hazard for the final multivariable model for time to first trial (bold line). A reference line with a slope=1 is also displayed. ... 176

Figure A2: Plot of likelihood displacement values against time. The three numbered points are the horses that were considered to be influential. 177

Figure A3: Plot of LMAX values against time, with the numbers representing the horses that were considered influential. ... 178

Figure A4: Plot of the Cox-Snell residuals against the cumulative hazard for the time to the first trial with two influential horses removed from the model. ... 179