CRYSTALLOGRAPHIC STUDIES OF FOLYL-POLYGLUTAMATE SYNTHETASE AND RECOMBINANT HUMAN LACTOFERRIN

by

Xiaolin Sun

A dissertation submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in the

Department of Biochemistry

Institute of Molecular BioSciences

at

MASSEY UNIVERSITY, NEW ZEALAND

December, 1998
ABSTRACT

This thesis is written in two parts. In the first (chapters 1-4), crystallographic studies on the enzyme folylpolyglutamate synthetase from Lactobacillus casei, both in complex with MgATP\(^3\) and in its apo form, are presented. In the second part (chapters 5-8), a structural analysis of recombinant diferric human lactoferrin is reported.

Folylpolyglutamate synthetase (FPGS) is an ATP-dependent enzyme from eukaryotic and bacterial sources. It catalyzes the addition of glutamate residues to folate to produce folylpolyglutamates which are required for effective intracellular retention of folate and are the preferred substrates for the enzymes of one-carbon metabolism. The crystal structures of L. casei FPGS in both the MgATP\(^3\)-bound and apo forms have been determined by the methods of multiple isomorphous replacement and molecular replacement, and refined by restrained least squares method using data to 2.4 Å resolution. The structural analysis of MgATP-FPGS reveals that folylpolyglutamate synthetase is a modular protein consisting of two domains, one with a typical mononucleotide-binding fold and the other strikingly similar to the folate-binding enzyme, dihydrofolate reductase (DHFR). The ATP-binding site is located in an interdomain cleft and a presumed mode of folate-binding has also been suggested for FPGS by analogy to the structure of DHFR. An unexpected structural similarity has been discovered between FPGS and the UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase (MurD). It is proposed that FPGS and MurD might carry out their biological functions in a very similar way and the structural comparison suggests that a possible domain movement could be involved in the catalytic reaction of FPGS. Two disordered loop regions in the MgATP-FPGS structure are well defined in apo-FPGS, allowing analysis of the interactions between these loops and surrounding structures of the protein.

Human lactoferrin (hLf) has considerable potential as a therapeutic agent. Overexpression of hLf in the fungus Aspergillus awamori has resulted in the availability of large quantities of this protein. Here the crystal structure of the recombinant human
lactoferrin (rhLf) has been determined by X-ray crystallography at 2.2 Å resolution. Superposition of the rhLf structure on to the native milk hLf shows a very high level of correspondence, and their dynamic properties, as indicated by the B factor distribution, also agree closely. This demonstrates that the structure of the protein is not affected by the mode of expression or the use of strain improvement procedures.
ACKNOWLEDGEMENTS

This thesis is not only the result of three and a half years work, but also a reflection of a great amount of help and support shown to me over these years by a large number of people.

In particular I thank my principal supervisor, Professor Ted Baker for giving me the chance to be his PhD student, for his guidance and kind advice throughout the years, and for his constructive criticism during the preparation of this thesis. His support is valued and much appreciated. I also thank Mrs. Heather Baker for her understanding and constant encouragement.

I am especially grateful to Dr. Clyde Smith, my associate supervisor, for his daily assistance throughout the course of my research, from crystallographic computing to making nice figures for the manuscript. He is always there wherever I need help. Thank you very much, Clyde.

My thanks also go to my other associate supervisor, Dr. Geoffrey Jameson, for his excellent advice and helpful discussions on structure refinement.

I would like to thank Mr. Steven Shewry for his help in my protein purification experiments, for his crystallization of recombinant human lactoferrin and allowing me to use his purification protocol.

I also would like to thank Dr. Bryan Anderson for his excellent advice on using computing programmes of crystallography. And I also thank Dr. Peter Metcalf for his assistance with computer and typing part of this thesis.

Thanks to the members of the laboratory of structural biology at both Massey and Auckland University for their help in many aspects. Stanley, Gillian, Jakki, Maria, Todd, Richard, Andrew McCarthy, Andrew Sutherland Smith, Allan, Ross, Neil, Bin and all others.
The work on the folylpolyglutamate synthetase was carried out in collaboration with Dr. Andrew Bognar (University of Toronto, Canada), I thank him for kindly providing the protein samples and useful result of biochemical experiments.

I thank Massey University for the award of a doctoral scholarship which enabled me to carry out this work.

Finally, I am indebted to my family for their love, support and encouragement all the time.
TABLE OF CONTENTS

ABSTRACT ... i
ACKNOWLEDGEMENTS .. iii
TABLE OF CONTENTS ... v
LIST OF TABLES ... x
LIST OF FIGURES .. xii
ABBREVIATIONS .. xvi
RELATED PUBLICATIONS ... xviii

PART A CRYSTALLOGRAPHIC STUDIES OF FOLYL POLYGLUTAMATE SYNTHETASE FROM LACTOBACILLUS CASEI

Chapter 1
INTRODUCTION

1.1 STRUCTURE AND NATURAL OCCURRENCE OF FOLATES 1
1.2 PHYSIOLOGICAL FUNCTIONS OF FOLYL POLYGLUTAMATES 3
 1.2.1 FOLYL POLYGLUTAMATES AS SUBSTRATES AND INHIBITORS FOR FOLATE-DEPENDENT ENZYMES IN ONE-CARBON METABOLISM 4
 1.2.2 MULTIFUNCTIONAL COMPLEXES AND CHANNELLING OF FOLYL POLYGLUTAMATES ... 8
 1.2.3 FOLYL POLYGLUTAMATES AND INTRACELLULAR RETENTION OF FOLATE .. 10
1.3 BIOSYNTHESIS OF FOLYL POLYGLUTAMATES ... 12
 1.3.1 FOLYL POLYGLUTAMATE SYNTHETASE AND ITS OCCURRENCE 12
 1.3.2 GENERAL MOLECULAR PROPERTIES .. 14
 1.3.3 FUNCTIONAL DIFFERENCES AND SEQUENCE ALIGNMENT OF FPGS FAMILY ... 21
 1.3.4 PROPOSED SUBSTRATE BINDING AND KINETIC MECHANISM 27
1.4 ROLE OF FPGS IN ANTIFOLATE CHEMOTHERAPY 30
 1.4.1 FOLATE ANALOGUES AND CANCER CHEMOTHERAPY 30
 1.4.2 CELLULAR TRANSPORT AND POLYGLUTAMYLATION OF ANTIFOLATES ... 32
 1.4.3 PHARMACOLOGIC ROLE OF ANTIFOLATE POLYGLUTAMYLATION .. 34
1.5 AIMS OF THIS PROJECT ... 35
Chapter 2

MATERIALS AND METHODS

2.1 PROTEIN INSTABILITY AND PURIFICATION ... 37
 2.1.1 PROTEIN INSTABILITY ... 37
 2.1.2 SDS-POLYACRYLAMIDE GEL ELECTROPHORESIS 38
 2.1.3 PROTEIN PURIFICATION ... 39
 2.1.4 DETERMINATION OF PROTEIN CONCENTRATION 40

2.2 PROTEIN CRYSTALLIZATION ... 41
 2.2.1 HANGING DROP TRIALS ... 41
 2.2.2 MICRO-SEEDING PROCEDURE ... 41

2.3 X-RAY DATA COLLECTION AND PROCESSING .. 45
 2.3.1 DATA COLLECTION .. 45
 2.3.2 DATA PROCESSING ... 46

2.4 MULTIPLE ISOMORPHOUS REPLACEMENT ... 49
 2.4.1 HEAVY ATOM SOAKING EXPERIMENTS ... 49
 2.4.2 SEARCH FOR HEAVY ATOM POSITIONS AND EXPERIMENTAL PHASES 52

2.5 DENSITY MODIFICATION METHODS ... 57
 2.5.1 SOLVENT FLATTENING .. 58
 2.5.2 HISTOGRAM MATCHING .. 58
 2.5.3 PHASE EXTENSION ... 59
 2.5.4 PHASE COMBINATION WITH MIR PHASES 59
 2.5.5 OVERVIEW OF APPROACH TAKEN .. 60

2.6 STRUCTURAL MODEL BUILDING AND REFINEMENT 62
 2.6.1 INITIAL MODEL BUILDING .. 63
 2.6.2 INITIAL MODEL REFINEMENT .. 64
 2.6.3 PHASES AND INITIAL MODEL IMPROVEMENT 65
 2.6.4 SEQUENCE ASSIGNMENT .. 66

2.7 MODEL REBUILDING AND FINAL REFINEMENT 68
 2.7.1 OMIT MAP AND MODEL ERRORS CORRECTION 69
 2.7.2 LOCATION OF THE PHOSPHATE BINDING SITE 71
 2.7.3 MODELLING ORDERED WATER STRUCTURE 71
 2.7.4 BULK SOLVENT CORRECTION ... 72
 2.7.5 DUMMY-ATOM PROCEDURE FOR BUILDING MISSING STRUCTURE 75
 2.7.6 THE QUALITY OF FINAL MODEL .. 76

Chapter 3

STRUCTURE AND FUNCTION OF FPGS
Chapter 4

STRUCTURE OF APO-FPGS

4.1 STRUCTURE DETERMINATION ... 120
 4.1.1 INITIAL MODEL AND REFINEMENT 120
 4.1.2 STRUCTURAL MODEL REBUILDING 121
4.2 THE QUALITY OF FINAL MODEL 122
4.3 STRUCTURAL COMPARISON WITH MgATP-FPGS 124
 4.3.1 OVERALL STRUCTURAL SIMILARITY 124
 4.3.2 STRUCTURE OF THE RECOVERED MISSING LOOPS 125

PART B CRYSTALLOGRAPHIC STUDIES OF RECOMBINANT HUMAN LACTOFERRIN

Chapter 5

INTRODUCTION AND LITERATURE REVIEW

5.1 INTRODUCTION ... 128
5.2 BIOLOGICAL ROLES OF LACTOFERRIN ... 129
 5.2.1 LACTOFERRIN AND IRON ABSORPTION 130
 5.2.2 BACTERIOSTATIC AND BACTERICIDAL PROPERTIES 131
 5.2.3 LACTOFERRIN AND INFLAMMATION ... 133
 5.2.4 LACTOFERRIN AND GROWTH FACTOR ACTIVITY 134
 5.2.5 LACTOFERRIN AS OXIDANT OR ANTIOXIDANT 135
5.3 STRUCTURE OF LACTOFERRIN .. 136
 5.3.1 PRIMARY STRUCTURE ... 136
 5.3.2 THREE-DIMENSIONAL STRUCTURE ... 137
5.4 RECOMBINANT DNA STUDIES .. 146
 5.4.1 RECOMBINANT TRANSFERRIN FOR STRUCTURAL AND FUNCTION STUDIES 146
 5.4.2 RECOMBINANT LACTOFERRIN FOR LARGE-SCALE PRODUCTION 147
5.5 AIMS OF THIS PROJECT .. 149

Chapter 6

EXPERIMENTAL APPROACH AND METHODS

6.1 PROTEIN PURIFICATION AND CRYSTALLIZATION 150
 6.1.1 IRON-SATURATION FOR THE PROTEIN SAMPLES 150
 6.1.2 PROTEIN PURIFICATION BY GEL FILTRATION 150
 6.1.3 CRYSTALLIZATION ... 151
6.2 DATA COLLECTION AND PROCESSING ... 151
 6.2.1 DATA COLLECTION ... 151
 6.2.2 DATA PROCESSING .. 151
6.3 STRUCTURE DETERMINATION AND REFINEMENT 153

Chapter 7

RESULTS AND DISCUSSION

7.1 THE FINAL MODEL .. 156
 7.1.1 THE QUALITY OF THE FINAL MODEL 156
 7.1.2 GLYCOSYLATION SITES ... 163
 7.1.3 OVERALL POLYPEPTIDE CHAIN FOLDING 164
7.2 STRUCTURAL COMPARISON WITH NATIVE LACTOFERRIN 167
 7.2.1 SECONDARY STRUCTURE ELEMENTS 167
 7.2.2 IRON AND ANION BINDING SITES .. 169
 7.2.3 AMINO ACID SEQUENCE DIFFERENCES 174
Chapter 8

CONCLUSIONS

8.1 **STRUCTURAL IDENTITY** ... 180

8.2 **FUNCTIONAL IMPLICATIONS** .. 181

REFERENCES ... 182
LIST OF TABLES

Chapter 1

TABLE 1.3.1-1 FPGS FULLY OR PARTIALLY PURIFIED AND CHARACTERIZED TO DATE14
TABLE 1.3.2-1 PROPERTIES OF SOME SELECTED POLYGLYGLUTAMATE SYNTHETASES ... 15

Chapter 2

TABLE 2.3.2-I STATISTICS OF DATA COLLECTED FOR MgATP-FPGS COMPLEX47
TABLE 2.3.2-II STATISTICS OF DATA COLLECTED FOR APO-FPGS47
TABLE 2.4.1-I CONDITIONS TESTED FOR HEAVY-ATOM SOAKING EXPERIMENT50
TABLE 2.4.1-II DERIVATIVE DATA COLLECTION AND PHASING STATISTICS51
TABLE 2.4.2-I HEAVY-ATOM PARAMETERS AND LOCATIONS56
TABLE 2.7.6-I REFINEMENT STATISTICS FOR MgATP-FPGS COMPLEX77

Chapter 3

TABLE 3.1-I THE LABEL AND LOCATION OF THE SECONDARY STRUCTURAL ELEMENTS ... 85
TABLE 3.2.2-I THE PROTEINS FOR COMPARISON WITH THE N-DOMAIN OF FPGS90
TABLE 3.2.2-II SUPERPOSITION OF NUCLEOTIDE-BINDING PROTEINS ON THE N-DOMAIN OF FPGS ... 94
TABLE 3.4-I INTERDOMAIN INTERACTIONS ...111

Chapter 4

TABLE 4.2-I REFINEMENT STATISTICS FOR APO-FPGS ..122

Chapter 5

TABLE 5.3.1-I PRIMARY SEQUENCES OF THE TRANSFERRIN FAMILY KNOWN TO DATE136

Chapter 6

TABLE 6.2.2-I STATISTICS FOR REFLECTION DATA COLLECTED152
TABLE 6.3-I OUTLINE OF REFINEMENT ...153

Chapter 7

TABLE 7.1.1-I REFINEMENT STATISTICS ...156
TABLE 7.2.1-Ia SECONDARY STRUCTURES (HELICES) ..165
TABLE 7.2.1-ib SECONDARY STRUCTURES (β-STRANDS) ..165
<table>
<thead>
<tr>
<th>TABLE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.1-1c</td>
<td>SECONDARY STRUCTURES (TURNS)</td>
<td>166</td>
</tr>
<tr>
<td>7.2.2-I</td>
<td>GEOMETRY OF THE IRON BINDING SITES</td>
<td>170</td>
</tr>
<tr>
<td>7.2.2-II</td>
<td>ANION HYDRGEN BONDING DISTANCE (Å) AND ANGLES (°)</td>
<td>172</td>
</tr>
<tr>
<td>7.2.4-I</td>
<td>SINGLE-WATER BRIDGES BETWEEN TWO DOMAINS</td>
<td>176</td>
</tr>
<tr>
<td>7.2.5-I</td>
<td>INTERDOMAIN HYDROGEN BOND INTERACTIONS</td>
<td>177</td>
</tr>
<tr>
<td>7.2.5-II</td>
<td>INTERLOBE INTERACTIONS</td>
<td>178</td>
</tr>
<tr>
<td>7.2.6-I</td>
<td>INTERMOLECULAR INTERACTIONS</td>
<td>178</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Chapter 1

<table>
<thead>
<tr>
<th>FIG.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1-I</td>
<td>STRUCTURE AND NOMENCLATURE OF THE NATURALLY OCCURRING FOLATES</td>
<td>2</td>
</tr>
<tr>
<td>1.2-I</td>
<td>CYTOPLASMIC PATHWAYS OF ONE-Carbon METABOLISM</td>
<td>5</td>
</tr>
<tr>
<td>1.3-1</td>
<td>MULTIPLE SEQUENCE ALIGNMENT OF FPGS FAMILY</td>
<td>22</td>
</tr>
<tr>
<td>1.4-I</td>
<td>PROPOSED REACTION INTERMEDIATE FOR THE FOLYLPOLYGLUTAMATE SYNTHETASE REACTION</td>
<td>28</td>
</tr>
<tr>
<td>1.5-I</td>
<td>STRUCTURES OF SOME ATP ANALOGUES</td>
<td>28</td>
</tr>
<tr>
<td>1.6-I</td>
<td>PROPOSED MECHANISM FOR BINDING OF FOLYLPOLYGLUTAMATE TO FOLYLPOLYGLUTAMATE SYNTHETASE</td>
<td>29</td>
</tr>
<tr>
<td>1.7-I</td>
<td>THE CHEMICAL STRUCTURES OF SOME ANTIFOLATES</td>
<td>31</td>
</tr>
</tbody>
</table>

Chapter 2

<table>
<thead>
<tr>
<th>FIG.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1-1</td>
<td>SDS PAGE OF L. CASEI FPGS PROTEIN OVER TIME</td>
<td>37</td>
</tr>
<tr>
<td>2.1-3</td>
<td>THE ELUTION PROFILE OF DEGRADED FPGS SAMPLE FROM THE MONO-S COLUMN</td>
<td>39</td>
</tr>
<tr>
<td>2.1-3-II</td>
<td>SDS PAGE OF THE PARTIALLY PURIFIED FPGS</td>
<td>39</td>
</tr>
<tr>
<td>2.1-4</td>
<td>THE STANDARD CURVE OF THE CONCENTRATION FOR IgG</td>
<td>41</td>
</tr>
<tr>
<td>2.1-4-II</td>
<td>THE ABSORPTION SPECTRA FOR AN FPGS SAMPLE</td>
<td>41</td>
</tr>
<tr>
<td>2.2-2</td>
<td>THE MICRO-SEEDING PROCEDURES USED FOR CRYSTALLIZATION OF L. CASEI FPGS</td>
<td>42</td>
</tr>
<tr>
<td>2.2-2-II</td>
<td>CRYSTALS OF MgATP-FPGS COMPLEX AND APO-FPGS</td>
<td>43</td>
</tr>
<tr>
<td>2.2-2-III</td>
<td>CRYSTALS OF APO-FPGS WITH DEGRADED ENZYME SAMPLE AND REPURIFIED ENZYME SAMPLE</td>
<td>44</td>
</tr>
<tr>
<td>2.3-2</td>
<td>R_{merge} DISTRIBUTION AS A FUNCTION OF RESOLUTION FOR BOTH APO- AND MgATP-FPGS</td>
<td>48</td>
</tr>
<tr>
<td>2.3-2-II</td>
<td>I/σ(I) DISTRIBUTION OVER RESOLUTION FOR BOTH APO-AND MgATP-FPGS</td>
<td>48</td>
</tr>
<tr>
<td>2.4-2</td>
<td>SCHEMATIC PROCEDURES FOR SEARCH OF HEAVY-ATOM POSITIONS</td>
<td>53</td>
</tr>
<tr>
<td>2.4-2-II</td>
<td>HARKER SECTION OF THE ISOMORPHOUS DIFFERENCE PATTERSON</td>
<td>54</td>
</tr>
<tr>
<td>2.5-I</td>
<td>THE IMPROVEMENT OF DENSITY MAP BY THE DM AND PHASE COMBINATION TECHNIQUES FOR THE MgATP-FPGS STRUCTURE</td>
<td>61</td>
</tr>
<tr>
<td>2.6-I</td>
<td>FLOW DIAGRAM ILLUSTRATING THE PROCESSES OF STRUCTURAL MODEL BUILDING</td>
<td>62</td>
</tr>
<tr>
<td>2.6-4-I</td>
<td>THE SECONDARY STRUCTURES PREDICTED FOR L. CASEI FPGS</td>
<td>67</td>
</tr>
<tr>
<td>2.7-4-I</td>
<td>THE 2Fo-Fc MAPS (AT 1.0σ) CALCULATED WITH THE BULK SOLVENT EXPONENTIAL SCALING MODEL AND THE BULK SOLVENT MASK MODEL FOR A DISORDERED LOOP REGION (RESIDUES 15-20)</td>
<td>75</td>
</tr>
</tbody>
</table>
Chapter 3

FIG. 3.1-1 STEREOVIEW OF CO DIAGRAM OF L. CASEI FPGS ... 84
FIG. 3.1-II TOPOLOGIC DIAGRAM OF L. CASEI FPGS ... 85
FIG. 3.1-III STEREO RIBBON DIAGRAM OF L. CASEI FPGS ... 86
FIG. 3.2.1-I SCHEMATIC REPRESENTATION OF HYDROGEN BONDING IN THE SMALL ANTIPARALLEL β-SHEET (B8-B10) ... 88
FIG. 3.2.2-I TOPOLOGY DIAGRAMS OF N-DOMAIN OF FPGS AND OTHER NUCLEOTIDE-BINDING PROTEINS .. 91
FIG. 3.2.2-II SUPERPOSITION OF SOME NUCLEOTIDE-BINDING PROTEINS ON TO THE N-DOMAIN OF FPGS .. 93
FIG. 3.2.3-I THE ATP-BINDING SITE IN FPGS OVERLAIo WITH THAT FROM ras-P21 AND MurD .. 97
FIG. 3.2.3-II THE HYDROGEN BONDING PATTERN AROUND THE Ω-LOOP 98
FIG. 3.3.1-1 TOPOLOGY DIAGRAMS OF THE C-DOMAIN OF FPGS, DHFR AND THE DOMAIN 3 OF MurD ... 103
FIG. 3.3.1-II THE REACTION MECHANISM SUGGESTED FOR FPGS AND MurD 105
FIG. 3.3.2-I SUPERPOSITION OF THE DOMAIN 3 OF MurD ON TO THE C-DOMAIN OF FPGS .. 106
FIG. 3.3.2-II RESIDUES HIS296 AND TRP297 INVOLVED IN THE POSSIBLE HINGE MOTION OF THE N-DOMAIN OF FPGS ... 107
FIG. 3.3.2-III RAMACHANDRAN PLOT OF THE PRESUMED MAIN CHAIN TORSION ANGLE CHANGES OF HIS296 AND TRP297 ... 108
FIG. 3.3.2-IV THE HYDROGEN BONDING INTERACTIONS BETWEEN THE PYROPHOSPHATE GROUP AND RESIDUES FROM C-DOMAIN AS A RESULT OF THE DOMAIN MOVEMENT 109
FIG. 3.5.1-I FOLATE-BINDING SITE OBSERVED IN HUMAN DHFR 112
FIG. 3.5.2-I STEREOVIEW OF THE MOLECULAR SURFACE CALCULATED FOR THE N-DOMAIN AND THE C-DOMAIN OF FPGS ... 113
FIG. 3.5.2-II CARTOON REPRESENTATION OF FPGS SHOWING THE TWO POSSIBLE BINDING MODES OF FOLATE ADJACENT TO HELICES A10 AND A11 114
Chapter 4

FIG. 4.2-1 PLOTS OF THE VARIATION OF THE CRYSTALLOGRAPHIC R FACTOR AND lnσ, WITH RESOLUTION FOR APO-FPGS ... 123
FIG. 4.3.2-I HYDROGEN BONDING PATTERN AROUND THE LOOP (ILE146-THR150) 125
FIG. 4.3.2-II COMPARISON OF LOOP REGIONS BETWEEN THE N-DOMAIN OF APO-FPGS AND THE DOMAIN 2 OF MurD .. 127

Chapter 5

FIG. 5.3.2-I STEREO DIAGRAM FOR DIFERRIC LACTOFERRIN, SHOWING THE ORGANIZATION OF THE MOLECULE .. 138
FIG. 5.3.2-II POLYPEPTIDE FOLDING PATTERN FOR THE N-LOBE OF LACTOFERRIN 139
FIG. 5.3.2-III SCHEMATIC DIAGRAM OF THE IRON AND CARBONATE BINDING SITE IN LACTOFERRIN ... 139
FIG. 5.3.2-IV SCHEMATIC DIAGRAM OF THE N-LOBE OF LACTOFERRIN SHOWING THE CHANGE FROM THE "OPEN" FORM OF APO-LACTOFERRIN (LEFT) TO THE "CLOSED" FORM OF IRON-LACTOFERRIN (RIGHT) .. 142
FIG. 5.3.2-V STEREOVIEW OF THE POLYPEPTIDE CHAIN CONFORMATION IN THE FULLY "OPEN" FORM OF APO-LACTOFERRIN .. 144
FIG. 5.3.2-VI REPRESENTATION OF DYNAMICS OF THE LACTOFERRIN MOLECULE (SHOWN FOR A SINGLE LOBE ONLY) .. 145

Chapter 6

FIG. 6.2.2-I DATA ANALYSIS AGAINST RESOLUTION ... 152

Chapter 7

FIG. 7.1.1-I LUZZATI PLOT OF THE R FACTOR AS A FUNCTION OF RESOLUTION 157
FIG. 7.1.1-II Cα PLOT OF RECOMBINANT LACTOFERRIN ... 157
FIG. 7.1.1-III REAL SPACE CORRELATION COEFFICIENT OF THE FINAL MODEL OF RECOMBINANT LACTOFERRIN .. 159
FIG. 7.1.1-IV THE FINAL 2F,F,F ELECTRON DENSITY MAP FOR PART OF N-LOBE OF THE RECOMBINANT LACTOFERRIN, CONTOURED AT 1.5σ ... 159
FIG. 7.1.1-V RAMACHANDRAN PLOT FOR THE FINAL MODEL OF RECOMBINANT LACTOFERRIN ... 160
FIG. 7.1.1-VI MAIN CHAIN PARAMETERS OF THE FINAL MODEL OF RECOMBINANT LACTOFERRIN ... 161
FIG. 7.1.1-VII SIDE CHAIN PARAMETERS OF THE FINAL MODEL OF RECOMBINANT LACTOFERRIN .. 162
FIG. 7.2-I Cα SUPERPOSITION BETWEEN RECOMBINANT (RED) AND NATIVE (BLUE) LACTOFERRIN ... 167
FIG. 7.2.1-1	PLOT OF THE POSITIONAL DIFFERENCES AND AVERAGE B AGAINST RESIDUE NUMBERS	169
FIG. 7.2.2-I	SUPERPOSITION OF THE N-LOBE AND C-LOBE IRON-BINDING SITES BETWEEN RECOMBINANT (RED) AND NATIVE (BLUE) LACTOFERRIN	171
FIG. 7.2.2-II	THE 2F_o-F_e ELECTRON DENSITY MAP (AT 1.5σ) FOR THE CARBONATE ION (N-LOBE), SHOWING ITS BIDENTATE COORDINATION TO THE METAL ION AND HYDROGEN BONDING WITH THE SURROUNDING PROTEIN STRUCTURE	172
FIG. 7.2.2-III	SUPERPOSITION OF HYDROGEN BONDING NETWORK BEHIND IRON-BINDING SITE IN N-LOBE AND C-LOBE	173

Chapter 8

<p>| FIG. 8.1-1 | COMPARISON OF THE B FACTOR (AVERAGED AMONG MAIN CHAIN ATOMS) BETWEEN RECOMBINANT AND NATIVE LACTOFERRIN | 180 |</p>
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADK</td>
<td>adenylate kinase</td>
</tr>
<tr>
<td>ADP</td>
<td>adenosine-5’-diphosphate</td>
</tr>
<tr>
<td>ALL</td>
<td>acute lymphoblastic leukaemia</td>
</tr>
<tr>
<td>AMPCPP</td>
<td>α,β-methylene-adenosine-5’-triphosphate</td>
</tr>
<tr>
<td>AMPPCP</td>
<td>β,γ-methylene-adenosine-5’-triphosphate</td>
</tr>
<tr>
<td>AMPPNP</td>
<td>β,γ-imido-adenosine-5’-triphosphate</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine-5’-triphosphate</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese hamster ovary</td>
</tr>
<tr>
<td>CTP</td>
<td>cytidine-5’-triphosphate</td>
</tr>
<tr>
<td>DDATHF</td>
<td>5,10-dideaza-5,6,7,8-tetrahydrofolate</td>
</tr>
<tr>
<td>DHFS</td>
<td>dihydrofolate synthetase</td>
</tr>
<tr>
<td>DHFR</td>
<td>dihydrofolate reductase</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>FeNTA</td>
<td>ferric nitritriacetate</td>
</tr>
<tr>
<td>EF-Tu</td>
<td>elongation factor Tu</td>
</tr>
<tr>
<td>EXAFS</td>
<td>Extended X-ray absorption fine structure</td>
</tr>
<tr>
<td>FOM</td>
<td>figure of merit</td>
</tr>
<tr>
<td>FPGS</td>
<td>folylpoly-γ-glutamate synthetase</td>
</tr>
<tr>
<td>FPLC</td>
<td>fast performance liquid chromatography</td>
</tr>
<tr>
<td>GARFT</td>
<td>glycinamide ribonucleotide formyltransferase</td>
</tr>
<tr>
<td>GTP</td>
<td>guanosine-5’-triphosphate</td>
</tr>
<tr>
<td>HEPES</td>
<td>N-[2-Hydroxyethyl]piperazine-N’-[2-ethanesulfonic acid]</td>
</tr>
<tr>
<td>HPLC</td>
<td>high pressure liquid chromatography</td>
</tr>
<tr>
<td>H₄PteGlu</td>
<td>7,8-dihydrofolate</td>
</tr>
<tr>
<td>H₄PteGlu</td>
<td>5,6,7,8-tetrahydrofolate</td>
</tr>
<tr>
<td>hLf</td>
<td>diferric human lactoferrin</td>
</tr>
</tbody>
</table>
rhLf recombinant diferric human lactoferrin
IgG Immunoglobulin G
K_m Michaelis constant
MIR multiple isomorphous replacement
MurD UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase
PEG4000 polyethylene glycol 4000
PMN polymorphonuclear leucocytes
PteGlu pteroylmonoglutamic acid (folic acid)
PteGlu_a folylpolyglutamate
rms root mean square
SDS PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis
TEMED NNN’N’-Tetramethylethylenediamine
TMV tobacco mosaic virus
Tris Tris(hydroxymethyl)aminomethane
TS thymidylate synthase
UDP uridine-5’-diphosphate
UK uridylate kinase
UMA UDP-N-acetylmuramoyl-L-alanine
UTP uridine-5’-triphosphate
V_{max} maximal velocity
RELATED PUBLICATIONS

Some of the material presented in this thesis has already been published, or has been accepted for publication.
